川金丝猴源柯萨奇B3病毒的分子特征及其致病性初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着自然生态环境和人工圈养繁殖条件的不断改善,已被列入濒危动物的金丝猴种群数量有所增多,同时又不断有其感染疾病死亡的案例发生。除外伤和天敌等因素外,多种病原菌感染是导致金丝猴死亡的一个重要原因,但未见有病毒感染致死的相关资料。本研究对临床送检的死亡川金丝猴进行了系统的病理学和分子生物学检测,根据临床症状和实验室诊断结果综合分析,揭示该金丝猴的死亡可能与柯萨奇B组病毒感染有关,而且病理特征以病毒性心肌炎为主,并伴发有多个脏器的损伤。进而应用Vero细胞从该猴的心肌组织中成功分离获得一株病毒,对所分离的病毒进行系统的形态学、理化学、动物回归试验和RT-PCR等方法鉴定,确定其为柯萨奇B3病毒(CVB3),将其初步命名为川金丝猴源柯萨奇B3病毒(SSM-CVB3)。经SSM-CVB3免疫家兔制备的抗体用于免疫荧光化学检测结果显示,在金丝猴的心肌、肾等组织的细胞胞浆内呈病毒感染的强阳性反应。从而确诊该猴死于SSM-CVB3感染,这是国内外首次有病毒感染死亡金丝猴的报道。应用5’RACE和3’RACE试剂盒,以及设计合成的5对引物完成了该毒株的全基因组测序,获得其全长基因组共7397bp的序列,并提交GenBank(登录号为GU109481)。对SSM-CVB3的全长基因组序列进行系统的分子特征分析,发现其与GenBank中公布的另外12株CVB3相比在VP2区域有3个核苷酸缺失,导致相应位置的1个氨基酸缺失,同时该区域对应的编码氨基酸也由其他CVB3毒株的LGRTG变为SSM-CVB3毒株独有的WSDW,这一特征性变化可以作为SSM-CVB3毒株的遗传特征。另外,分别位于VP2和2A区域的氨基酸序列AAKEFAGEPI和RNKHFPVS可作为CVB3中国分离株的两个遗传标志。序列比对结果显示,SSM-CVB3的5’-NTR与CVB3F及CVB3B同源性最高,其编码区和3’-NTR均与广州分离株CVB3G的同源性最高,由此推测SSM-CVB3可能为CVB3G和CVB3F或CVB3B重组后的一个新的变种。为了进一步明确该毒株的致病特性,将SSM-CVB3通过腹腔注射途径接种猕猴,从临床病理学和病理形态学等方面进行了系统的分析。从感染后第2天开始,猕猴出现体温升高、一过性的精神沉郁和粥样粪便,其他症状不明显。不同时间点的尿常规检测发现可检出血尿和蛋白尿,其他指标变化不明显。血常规检测结果显示,其白细胞总数和红细胞总数的检测值偏低,在临床检测时有一定的参考价值。血清中的各项酶学指标检测结果证实,在感染的初期CK和CK-MB值均显著升高;第1周内ALT值显著升高,之后下降至正常水平;AMY在感染初期升高,后期下降至正常水平;CRE和BUN值无明显改变。分别于接种病毒后15天和30天剖杀猕猴进行病理学组织学观察,其病变以病毒性心肌炎、间质性肾炎、神经系统的非化脓性炎症及肝脏汇管区有细胞增生性反应为主要特征,其他组织器官也有不同程度的病理变化。说明SSM-CVB3感染猕猴可造成多系统的损伤。本研究不仅为临床上金丝猴疾病的诊断和防治提供参考,为我国流行CVB3的遗传学背景、种系进化关系及流行病学调查和预防研究提供基础,而且为后期建立该病毒感染猕猴的实验动物模型提供依据,具有重要的比较医学意义。
The snub-nosed monkey, or golden monkey, is one of the most endangered primate species due to its dramatically shrinking distribution during the past 400 years. Populations of the snub-nosed monkey are found mainly in three isolated regions in China: Qinglin, Sichuan/Gansu, and Shennongjia. There are three species of snub-nosed monkey found in China, including the Sichuan snub-nosed monkey (Rhinopithecus roxellanae), the Yunnan snub-nosed monkey (Rhinopithecus bieti) and the Guizhou snub-nosed monkey (Rhinopithecus brelichi). There is also one species of snub-nosed monkey (Rhinopithecus avunculus) found in Vietnam. The snub-nosed monkey species are all under first-class state protection in China, and the International Union for Natural Conservation (IUCN) has formally recognized them as vulnerable or endangered species. Because of these designations, snub-nosed monkeys have drawn a lot of attention from various conservation efforts. In recent years, the population of the Sichuan snub-nosed monkey has increased by more than 10,000 because of improvement in the conditions of some nature conservation areas and also by artificial propagation. However, many diseases that threaten the snub-nosed monkey have developed because of multitude of factors. There are reports that Sichuan snub-nosed monkeys have died from septicemia due to infection with pneumoniae Diplococcus or Escherichia coli and Klebsiella, from acute pyelonephritis attributed to infected with Escherichia coli and Proteus mirabilis, from unspecified parenchymatous hepatitis, and from unspecified myocarditis. In addition, Staphylococcus aureus can cause spontaneous abortion or stillbirth in the snub-nosed monkey. Since 2001, five Sichuan snub-nosed monkeys had been living in the zoological garden in Changchun in the Jilin province of China. Four of them died between 2003 and 2004. The causes of death were unknown, but they all showed the homoplastic clinical symptoms on lack of activity and shortness of breath before death, if they had cardiac failure, no more evidence were acquired. The final monkey of the original five, a five-year-old female, died on September 18, 2005. She had been in good health but exhibited reduced activity and showed evidence of shortness breath after movement during the previous day. No dizziness or syncope was observed. The hind limbs were slightly edematous. She had been treated using several drugs, but with no effect. No other information about her was available. In order to ascertain the cause of death of the suub-nosed monkey, and the pathogenicity and molecular characteristics of its etiological agent,systematical experiments were done in this study.
     we dissected the died Sichuan snub-nosed monkey by the common practice and recorded its pathological changes, and then made manufacture pathological section. Pathology of the organs of the suub-nosed monkey appeared septicaemia. Cardiac pericardium, epicardium, and endocardium appeared bleeding point and ecchymosis; cardiac muscle appears white necrotic focus; lungs were swollen and congestive. Histopathologic examination showed that cardiac muscle fiber were abound with inflammatory cell infiltrate; part of them broke, degenerated, and the heart appears typical myocarditis symptom; blood capillary of alveolar wall highly stretched and congested; Other tissues appeared various degree legions. The viruses (Picornaviridae-like morphous) were found in the cardiac muscle tissue homogenate from the suub-nosed monkey by transmission electron microscope after negative staining. The animal regression test showed that the viruses isolates could make mouse died and it showed the similar pathologic symptoms with the suub-nosed monkey. The reverse transcriptase polymerase chain reaction (RT-PCR) performed on an extract of cardiac muscle tissue revealed a DNA sequence specific for Coxsackievirus B. According to the clinical symptom, pathologic histology character and results of pathogen detection, we could conclude that the myocarditis caused by the viruses was the immediate cause of the suub-nosed monkey’s death.
     The tissues homogenates with PBS were centrifuged and the supernatants were treated with 100 U/ml penicillin, 0.1 g/l streptomycin, and 1 mg/l Fungizone. After centrifugation, the supernatant was added to duplicate monolayers of African green monkey kidney cells (Vero), porcine kidney cells (PK-15), and baby hamster kidney cells (BHK-21) in cell culture flasks in an attempt to isolate viruses. Five blind passages were performed at 5-day intervals, the viruses was successfully isolated from cardiac muscle tissue homogenates of the died monkey following inoculation of Vero. The viruses’property consistented with CVB by morphology, physicochemistry test, animal regression test and RT-PCR. Analysis of VP1 partial gene sequence of virus and detecting of mice specific serum IgG by virus were performing, the results showed that the strain isolated was a coxsackievirus B3. It was the first CVB3 case discovered in Sichuan snbu-nosed monkey in world and The virus was designated provisionally Sichuan snub-nosed monkey-origin coxsackievirus B3 (SSM-CVB3). Selected paraffin sections were examined for the presence of SSM-CVB3 antigens by immunofluorescence using an anti-CVB3 rabbit antibody. The fluorescence was detected using confocal laser scanning microscopy. CVB3 was found in the endochylema of myocardial cells and in the glomerular capillary basement membrane and mesangial matrix. This result can confirm furtherly that the snub-nosed monkey were infected with SSM-CVB3.
     Molecular cloning and sequencing of the genome of SSM-CVB3 were performed by special primers and 5’RACE kit and 3’RACE kit. From the poly (C) tract of the 5' non-translated region (NTR) to the 3' NTR, 7397 bp sequences of the whole genome were obtained by reverse transcription polymerase reaction (RT-PCR). The genome of SSM-CVB3 has been submitted to GenBank (access number: GU109481). The deduced amino acid sequences of the structural and nonstructural proteins of the SSM-CVB3 were analyzed for the sequence similarity among CVB3 strains. Comparison between SSM-CVB3 and other 12 strains indicates that overall the number of amino acids appears an amino acid deletion in VP2 region of capsid proteins, and corresponding amino acid sequences has changed from LGRTG to WSDW, and WSDW sequence can be think as a hereditary feature of SSM-CVB3. For another, the amino acid sequence AAKEFAGEPI in VP2 and RNKHFPVS in 2A can also be think as genetic mark of CVB3 that from China. There are high homology between SSM-CVB3 and CVB3F, CVB3B in 5’-NTR, and between SSM-CVB3 and CVB3G in 3’-NTR and coding region, thus, suggesting that SSM-CVB3 evolved with minor difference from domestic strains, and may be recombinate from CVB3G and CVB3F, CVB3B, but with major difference from the standard strains CVB3N (Nancy-CVB3). Molecular studies suggest that the agent of Sichuan snub-nosed monkey is a highly variant novel CVB3.
     Inoculate the SSM-CVB3 in healthy macaques by peritoneal injection, observe the pathogenicity to macaque. The macaque show hige body temperature, temple lack of activity, blood urine and albuminuria from 2 days post-inoculation. No other clinical symptoms were observed. Total white blood cells and neutrophil in blood decreased in some days post-inoculation. The myocardial enzyme, liver duty enzyme, kidney duty enzyme, amylopsin and blood sugar in serum were detected, the results showed that CK, CK-MB, ALT and AMY had different extent changing characteristic, but CRE and BUN no obviously change. Macaques were mercy killed and the representative tissues were divided into two portions: one was fixed in 10% neutral buffered formalin solution and processed for histology and immunofluorescence staining, and the other was stored at -80℃. Microscopically, the main lesion were mild extensive infiltration of lymphocytes in the heart, cells productive reaction in the Kiernan's space of liver, relatively severe infiltration of lymphocytes in the interstitial substance of kidney, and nerves cell degeneration, necrosis, and neuronophagia in the spinal cord and brain. Congestion, hyperaemia and oedema were found in most tissues, which indicated macaque infected with the SSM-CVB3 Strain can cause most organ damage. For most tissues, CVB3 antigens were detected by RT-PCR. Especially for the kidney, spleen, lung and liver of the monkey, CVB3 antigens in the cytoplasm of infected cells could be detected by immunofluorescence with a specific anti-CVB3 rabbit hyperimmune serum.
     In this study, the dead snub-nosed monkey infected with CVB3 were final diagnosis, the molecular characteristics of SSM-CVB3 were analysis systematically, and pathopoiesis were studied to macaque infected with SSM-CVB3 according to clinical pathology and pathologic histology. These results not only can provide the reference for the diagnosis and prevention and cure of snub-nosed monkey disease in clinic, know the genetic background and germline evolution relation of CVB3 in China, but also settle the grounding for further construct animal model of macaque infected with SSM-CVB3, it is very significant for the comparative medicine.
引文
[1]文榕生.金丝猴的考辨与古今分布[J].自然杂志, 2002, 25(1):: 41-48.
    [2]汪松.中国濒危动物红皮书(兽类) [M].北京:科学出版社, 1998, 59-65.
    [3]彭燕章.中国金丝猴[J].生物学通报. 1994, 29(6): 1-4
    [4]任宝平,李明,魏辅文,龙勇诚.滇金丝猴(Rhinopithecus bieti) [J].动物学杂志, 2004, 39(5): 111
    [5] WU Gang, WANG Hong-chang, FU Hai-wei, ZHAO Jing-zhu, YANG Ye-qin. Habitat selection of Guizhou golden monkey (Phinopithecus roxellanae brelichi) in Fanjing Mountain Biosphere Reserve, China[J]. Journal of Forestry Research, 2004, 15(3): 197-202
    [6]田保平,马原野,张力跃,等.滇金丝猴的抗应激研究[J].中国灵长类通讯, 1993, 2(5): 18
    [7]江燕,张力跃,田保平,马原野,王桂兰,严晔. 4种药物在灵长类动物引种养殖中抗应激的应用[J].云南畜牧兽医, 2000, 3: 1-2.
    [8]张丽霞,涂健,方富贵. 1例滇金丝猴应激死亡的诊断[J].安徽农业科学, 2007, 35(5): 1279, 1287.
    [9]马清义,任建设,崔民,等.人工饲养川金丝猴流产死产原因调查[J].动物医学进展. 2005, 26(3): 115-116.
    [10]李树忠.金丝猴包虫病3例报告[J].中国兽医杂志, 1992, 18(10): 28-29.
    [11]姜昌富,杨敦敬.神农架金丝猴肠道寄生虫调查[J].中国兽医杂志, 1991, 17(4):
    [12]熊焰,苟琳,王印,等.大肠杆菌和肺炎克雷伯氏杆菌表面抗原的研究[J].畜牧兽医学报, 1999, 30(6): 585-560.
    [13]郭定宗,胡薛英,周诗其,等.金丝猴肺炎克雷伯氏菌及埃希氏大肠杆菌败血症的病理学观察[J].华中农业大学学报. 2001, 20(1): 60-62.
    [14]宋培林,石柱奎.金丝猴急性肾盂肾炎一例[J].中国兽医科技, 1998, 28(8): 39-40.
    [15]宋德光,贺文琦,陆慧君,等.东北虎巴氏杆菌病的病原分离鉴定及耐药性分析[J].中国预防兽医学报. 2007, 29(1): 13-16.
    [16]刘建国,徐泽年,贾博,等.一例病死金丝猴的病原分离鉴定与病理形态学观察[J].动物医学进展. 2008, 29(3): 113-115.
    [17]郭定宗,雷健保,章康民. 1999.金丝猴撕裂创合并链球菌病[J].中国兽医杂志. 25(12): 32-33
    [18]李秦,洪检芳,郑振锋.猴肺炎双球菌败血症尸检分析[J].第四军医大学学报,1993, 9(增刊): 85- 86.
    [19]李秦,张海,姜焕宏,等义.金丝猴肺炎双球菌败血症诊断[J].第四军医大学学报. .2000, 21(6): 691
    [20] Baker HJ. Pathology of laboratory animal[M]; New York: Academic Press, 1978, 1455.
    [21]韩丽娟.金丝猴葡萄球菌性流产病例报告[J].中国动物检疫. 1994, 11(4): 20-21.
    [22]邓家波,牛李丽,王强,等.金丝猴金黄色葡萄球菌感染的诊治一例[J].四川动物, 2008, 27(3): 436,439.
    [23]黄修奇.综合治疗金丝猴破伤风二例[J].中兽医学杂志. 2002, (1):25
    [24]徐小芹,罗玉均,冯春复,等.金丝猴肺脏中分离到绿脓杆菌[J].中国兽医杂志, 2009, 45(1): 77-78.
    [25]张金国.金丝猴脑膜炎病例[J].中国兽医杂志, 1993, 19(7): 32-33
    [26]吕慧.金丝猴B病毒检疫初报[J].畜牧与兽医, 1993, 25(5): 222.
    [27]贺文琦,陆慧君,宋德光,等.临床死亡川金丝猴心肌炎病例的诊断及病因分析[J].兽类学报, 2008,28(1): 81-86.
    [28]贺文琦,陆慧君,宋德光,等.川金丝猴柯萨奇病毒的分离鉴定.病毒学报, 2008.24(4): 329-333.
    [29] He W, Lu H, Song D, et al. The evidence of Coxsackievirus B3 induced myocarditis as the cause of death in a Sichuan snub-nosed monkey (Rhinopithecus roxellana) [J]. Journal of Medical Primatology. 2009, 38(3):192-198.
    [30]张一.金丝猴肺腺瘤样畸形一例[J].中国兽医杂志, 1982, 10: 43.
    [31]胡新波,杨启秀,鲍英.金丝猴脾淋巴肉瘤一例[J].浙江畜牧兽医, 1992, 4: 47.
    [32]汤锡珊,朱本仁.幼金丝猴急性出血性坏死性肠炎的病理观察[J].上海畜牧兽医通讯, 1993, 6: 8.
    [33]袁明纯,鲁建生,丁甫明,等.金丝猴心肌炎及病理解剖1例[J].畜牧与兽医, 2002, 34(8): 30-31.
    [34]姜传坤.金丝猴急性实质性肝炎的诊治[J].中国兽医科技. 2001, 31(1): 36
    [35]刘文旺.金丝猴腹壁透创一例的治疗[J].动物医学进展, 2009, 30(6): 127-128.
    [36]王才益,白帆,王哲行.幼金丝猴肠梗阻的诊疗[J].畜牧与兽医, 2008, 40(9): 111-112.
    [37]李宏群,廉振民.中国的金丝猴资源现状及其保护[J].延安大学学报(自然科学版), 2007, 26 (1) : 65-71.
    [38] Yongcheng, L. & Richardson, M. 2008. Rhinopithecus roxellana. In: IUCN 2009. IUCN Red List of Threatened Species. Version 2009.1. . Downloaded on 11 September 2009.
    [39]施方勤.白马雪山滇金丝猴种群数量分布调查研究[J].内蒙古林业调查设计, 2009, 32(5): 102-104.
    [40] Bleisch, W. & Richardson, M. 2008. Rhinopithecus bieti. In: IUCN 2009. IUCN Red List of Threatened Species. Version 2009.1. . Downloaded on 11 September 2009.
    [41]聂帅国,向左甫,李明.黔金丝猴食性及社会结构的初步研究[J].兽类学报, 2009, 29(3): 326-331.
    [42] Bleisch, W., Yongcheng, L. & Richardson, M. 2008. Rhinopithecus brelichi. In: IUCN 2009. IUCN Red List of Threatened Species. Version 2009.1. . Downloaded on 11 September 2009.
    [43]杨业勤.梵净山研究:黔金丝猴的野外生态[M].贵阳:贵州科技出版社, 2002, 7-8.
    [44]金奇.医学分子病毒学[M].北京:科学出版社, 2001,579-602.
    [45] Dalldorf G, Sickles, GM. An unidentified, filterable agent isolated from the feces of children with paralysis[J]. Science, 1948, 108: 61-63.
    [46] Rueckert R. Picornaviridae: the viruses and their replication[M]. In: Fields B, Knipe DM, eds. Virology, Raven Press, New York, 1996, 609-654.
    [47] Melnick JL. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses[M], 1996.p. 655-712. In B. N. Fields, D. M. Knipe, and P. M. Howley (ed), Fields virology, 3rd ed. Lippincott-Raven, Philadelphia, Pa.
    [48] Romero JR. Pediatric group B coxsackievirus infections[J]. Curr Top Microbiol Immunol. 2008, 323: 223-39.
    [49] Miyagi J, Tsuhako K, Kinjo T, et al. Coxsackievirus B4 myocarditis in an orangutan[J]. Vet Pathol. 1999, 36(5): 452-456
    [50] Kelly ME, Soike K, Ahmed K, et al. Coxsackievirus in an infant chimpanzee [J]. J Med Primatol. 1978, 7(2):119-121.
    [51] Hoshino T, Kawai C, Tokuda M. Experimental coxsackie B viral myocarditis in cynomolgus monkeys [J]. Jpn Circ J. 1983, 47(1): 59-66.
    [52] Yoon JW, London WT, Curfman BL, et al. Coxsackie virus B4 produces transient diabetes in nonhuman primates [J]. Diabetes. 1986, 35(6): 712-716.
    [53]靳红,杨宝华,沈中彦.比格犬柯萨奇病毒感染的报道[J].实验动物科学与管理, 1998,15 (3) : 62.
    [54] Crowell R, Landau B. A short history and introductory background on the coxsackieviruses of group B [J]. Curr Top Microbiol Immunol, 1997, 223: 1-11.
    [55]毛琳,李向群,王翔,等.柯萨奇B组病毒感染与扩张型心肌病发病关系的研究[J].中国公共卫生, 2000, 16(7): 577-578.
    [56] Chow LH, Beisel KW, McManus BM. Enteroviral infection of mice with severe combined immunodeficiency. Evidence for direct viral pathogenesis of myocardial injury[J]. Lab Investig, 1992, 66: 24-31.
    [57] Feldman AM, McNamara D. Myocarditis[J]. N. Engl. J. Med. 2000, 343: 1388-1398.
    [58] Boucek MM, Faro A, Novick RJ, et al. The registry of the International Society for Heart and Lung Transplantation: fourth official pediatric report-2000[J]. J. Heart Lung Transplant. 2001, 20: 39-52.
    [59] Kim KS, Hufnagel G, Chapman NM, et al. The group B coxsackieviruses and myocarditis[J]. Rev Med Virol. 2001, 11(6): 355-368.
    [60] Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 [J]. Science, 1997, 275 (5304): 1320-1323.
    [61] Clapham PR, Weiss RA. Spoilt for choice of coreceptors [J]. Nature,1997, 388 (6639): 230-231.
    [62] Andreoletti L, Hober D, Becquart P, et al. Experimental CVB3-induced chronic myocarditis in two murine strains: evidence of interrelationships between virus replication and myocardial damage in persistent cardiac infection [J]. J Med Virol, 1997, 52 (2): 206-214.
    [63] Klingel K, Hohenadl C, Canu A, et al. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation [J]. Proc Natl Acad Sci USA, 1992, 89(1): 314-318.
    [64]沈茜,方凤,蒋爱琴,等.柯萨奇B组病毒性心肌炎患儿血清TNF-α、IL-8、IL-6和SIL-2R变化[J].第二军医大学学报, 1997, 18(5): 428-430.
    [65] Seko Y, Shinkai Y, Kawasaki A, et al. Expression of perforin in infiltrating cells in murine hearts with acute myocarditis caused by coxsackieviruaB3 [J]. Circulation, 1991, 84(2): 788-795.
    [66] Tam PE. Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease [J]. Viral Immunol. 2006, 19(2): 133-146.
    [67] Gebhard JR, Perry CM, Harkins S, et al. Coxsackievirus B3-induced myocarditis: perforin exacerbates disease, but play no detectable role in virus clearance [J]. Am J Pathol, 1998, 153 (2): 417-428.
    [68] Bevan AL, Zhang H, Li Y, et al. Nitric oxide and coxsackievirus B3 myocardirtis: differential expression of inducible nitric oxide synthase in mouse heart after infection with virulent or attenuated virus [J]. J Med Virol, 2001, 64 ( 2): 175-182.
    [69] Huber S. Host immune responses to coxsackievirus B3 [J]. Curr Top Microbiol Immunol. 2008; 323: 199-221.
    [70] Beisel KW, Srinivasappa J, Prabhakar BS: Molecular cloning of a heart antigen that cross-reacts with a neuralizing antibody to coxsackievirus B4 [J]. Eur Heart J, 1991, 12: 60-64.
    [71] Kawano H, Okada R, Kauano Y, et al. Apoptosis in acute and chronic myocarditis [J]. Jpn Heart J, 1994, 35(6): 745-750.
    [72] Martin U, Nestler M, Munder T, et al. Characterization of coxsackievirus B3-caused apoptosis under in vitro conditions [J]. Med Microbiol Immunol. 2004, 193(2-3): 133-139.
    [73] Henke A, Launhardt H., Klement K., et al. Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva [J]. J Virol. 2000, 74(9): 4284-4290.
    [74] Yang Decheng, Yu Jen, Luo Zongshu, et al. Viral Myocarditis:Identification of Five Differentially Expressed Genes in Coxsackievirus B3–Infected Mouse Heart [J]. Circ. Res, 1999, 84: 704-712.
    [75] Banatvala JE, ed.: Viral Infection of the Heart[M]. Hodder & Stoughton, London, England, 1993.
    [76] Easton AJ, Eglin RP: The detection of coxsackievirus RNA in cardiac tissue by in situ hybridization [J]. J Gen Virol, 1988, 69: 285-291.
    [77] Kandolf R, Ameis D, Kirschner P, et al. In situ detection of enteroviral genomes in myocardial cells by nucleic acid hybridization: an approach to the diagnosis of viral heart disease [J]. Proc Natl Acad Sci USA, 1987, 84: 6272-7276.
    [78] Kandolf R, Klingel K, Mertsching H, et al. Molecular studies on enteroviral heart disease: patterns of acute and persitent infections [J]. Eur Heart J, 1991, 12: 49-55.
    [79] Halwig OFC, Schmidt ECH: A filter-passing agent producing interstitial myocarditis in anthropoid apes and small animals [J]. Science, 1945, 102: 31-33.
    [80] Tracy S, H?fling K, Pirruccello S, et al. Group B coxsackievirus myocarditis and pancreatitis: connection between viral virulence phenotypes in mice [J]. J Med Virol. 2000, 62(1): 70-81.
    [81] Ramsingh AI. Coxsackieviruses and pancreatitis [J]. Front Biosci. 1997, 2: e53-62.
    [82] Ramsingh AI. CVB-induced pancreatitis and alterations in gene expression [J]. Curr Top Microbiol Immunol. 2008. 323: 241-258.
    [83] Horwitz MS, Krahl T, Fine C, et al. Protection from lethal coxsackievirus-induced pancreatitis by expression of gamma interferon [J]. J Virol. 1999, 73(3): 1756-1766.
    [84]张宸豪,高俊涛.柯萨奇病毒感染与Ⅰ型糖尿病关系的研究进展[J].吉林医药学院学报. 2006, 27(1): 48-50.
    [85] Drescher KM, Tracy SM. The CVB and etiology of type 1 diabetes [J]. Curr Top Microbiol Immunol. 2008, 323: 259-274.
    [86]黄红兰,李凡.柯萨奇B组病毒感染与胰岛素依赖型糖尿病关系的研究[J].微生物学杂志, 2003, 23(6): 5-6.
    [87] Green J, Casabonne D, Newton R. Coxsackie B virus serology and Type 1 diabetes mellitus: a systematic review of published case-control studies [J]. Diabet Med. 2004, 21(6): 507-514.
    [88] Tracy S, Drescher KM. Coxsackievirus infections and NOD mice: relevant models of protection from, and induction of, type 1 diabetes [J]. Ann N Y Acad Sci. 2007, 1103: 143-151.
    [89] Kanno T, Kim K, Kono K, et al. Group B Coxsackievirus Diabetogenic Phenotype Correlates with Replication Efficiency [J]. J. Virol., 2006, 80: 5637-5643.
    [90]黄红兰,李凡.柯萨奇B4病毒感染对人胚胰岛的影响[J].吉林大学学报(医学版), 2004, 30(1): 108-110.
    [91] Flodstrom M, Horwitz M S, Maday A, et al. A critical role for inducible nitric oxide synthasein host survival following coxsackievirus B4 infection [J]. Virology, 2001, 281(2): 205-215.
    [92] O’Brien BA, Harmon BV, Cameron DP, et al. Apoptosis is the mode of beta-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse [J]. Diabetes, 1997, 46(1): 750-757.
    [93] Kaufman DL, Clare-Salzler M, Tian J. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes [J]. Nature, 1993, 366 (6450): 69-72.
    [94] Lee D S, Tian J, Phan T, et al. Cloning and sequence analysis of a murine cDNA encoding glutamate decarboxylase (GAD65 ) [J]. Biochem Biophys Acta, 1993, 1216 (1): 157-160.
    [95] Varela-Calvino R, Sgarbi G, Arif S, et al. T-Cell reactivity to the P2C nonstructural protein of a diabetogenic strain of coxsackievirusB4 [J]. Virology, 2000, 274(1): 56-64.
    [96]毛琳,李向群,王翔,等.柯萨奇B组病毒感染与儿童胰岛素依赖型糖尿病的相关性研究[J].基础医学与临床, 2001, 21(7): 250-252.
    [97] Daley AJ, Isaacs D, Dwyer DE, et al. A cluster of cases of neonatal coxsackievirus B meningitis and myocarditis [J]. J Paediatr Child Health, 1998, 34: 196-198.
    [98]宋文英,郦忆文,蒋惠荷,等.柯萨奇B组病毒所致神经系统病变临床探讨[J].中国人兽共患病杂志, 1997, 13: 29-31.
    [99]邓爱琼,蒋惠荷,芦艳,等.柯萨奇B致神经系统病变11例[J].蚌埠医学院学报,1997, 22: 390.
    [100] Romero JR. Pediatric group B coxsackievirus infections [J]. Curr Top Microbiol Immunol. 2008, 323: 223-239.
    [101] Euscher E, Davis J, Holzman I, et al. Coxsackie virus infection of the placenta associated with neurodevelopmental delays in the newborn [J]. Obstet Gynecol, 2001, 98: 1019-1026.
    [102] Feuer R, Pagarigan R R, Harkins S, et al. Coxsackievirus Targets Proliferating Neuronal Progenitor Cells in the Neonatal CNS [J]. The Journal of Neuroscience, 2005, 25(9): 2434-2444.
    [103]李英欣,蒋惠荷,陈艺琳,等.柯萨奇B组病毒所致面神经麻痹及神经系统病变[J].河北医学, 1999, 5(2): 5-7.
    [104] Ahn J, Choi J, Joo CH, et al. Susceptibility of mouse primary cortical neuronal cells to coxsackievirus B [J]. J Gen Virol. 2004, 85(6): 1555-1564.
    [105] Pasch A, Frey FJ. Coxsackie B viruses and the kidney-a neglected topic [J]. Nephrol Dial Transplant, 2006, 21: 1184-1187.
    [106] Burch GE, Colcolough HL. Progressive Coxsackie viral pancarditis and nephritis [J]. Ann Intern Med 1969, 71: 963-970.
    [107] Bayatpour M, Zbitnew A, Dempster G, et al. Role of coxsackievirus B4 in the pathogenesis of acute glomerulonephritis [J]. Can Med Assoc J, 1973, 109: 873 passim.
    [108] Benyesh-Melnick M, Rosenberg HS, Watson B. Viruses in cell cultures of kidneys of children with congenital heart malformations and other diseases [J]. Proc Soc Exp Biol Med,1964, 117: 452-459.
    [109] Aronson MD, Phillips CA. Coxsackievirus B5 infections in acute oliguric renal failure [J]. J Infect Dis, 1975, 132: 303-306.
    [110] Page Y, Serrange C, Revillard JP, et al. Letter: Coxsackie B virus infections in kidney transplantation [J]. Nouv Presse Med, 1976, 5: 1587-1588.
    [111] Sun SC, Lai CH, Chen ST, Schaeffer BT. Evolution of chronic glomerulonephritis induced in mice by ECHO-9 and Coxsackie B1 viruses [J]. J Pathol, 1971, 104: 53-57.
    [112] Kamiyama S. Experimental glomerulonephritis induced by Coxsackie B4 virus in mice-glomerular changes associated with intermittent viral inoculations [J]. Nippon Jinzo Gakkai Shi, 1990, 32: 939-948.
    [113] Burch GE, Chu KC, Soike KF. Coxsackievirus B4 nephritis in the squirrel monkey [J]. Br J Exp Pathol, 1982, 63: 680-685.
    [114] Mutoh S, Kumada K, Kume K, et al. Detection of coxsackie B4 virus RNA in infected mouse kidneys by in situ hybridization [J]. Nephron, 1994, 67: 340-345.
    [115] Isome M, Yoshida K, Suzuki S, et al. Experimental glomerulonephritis following successive inoculation of five different serotypes of group B coxsackieviruses in mice. [J] Nephron, 1997, 77: 93-99.
    [116] Conaldi PG, Biancone L, Bottelli A, et al. Distinct pathogenic effects of group B coxsackieviruses on human glomerular and tubular kidney cells [J]. J Virol, 1997, 71: 9180-9187.
    [117]杨秀敏,孙瑞宗,孙宝符,等.过敏性紫癜循环免疫复合物及其与柯萨奇B组病毒感染的关系[J].中华皮肤科杂志, 1991, 24: 8.
    [118]刘新颜,王晓刚,沈娟,等.柯萨奇病毒感染与过敏性紫癜的关系[J].实用儿科临床杂志, 2006, 21(10): 602-603.
    [119]欧阳建华,方凤,路江平,等.柯萨奇B组病毒与过敏性紫癜的发病及免疫指标的变化[J].中华风湿病学杂志, 1999, 3(1): 54.
    [120] Frisk G, Diderholm H. Increased frequency of coxsackie B virus IgM in women with spontaneous abortion [J]. J Infect. 1992, 24(2):141-145.
    [121] Konstantinidou A, Anninos H, Spanakis N, et al. Transplacental infection of Coxsackievirus B3 pathological findings in the fetus [J]. J Med Virol. 2007, 79(6): 754-757.
    [122]申元英,杨占秋,邱雨石.柯萨奇B组病毒感染与妇女自然流产的关系探讨[J].大理医学院学报, 2001, 10(2): 38-40.
    [123] Axelsson C, Bondestam K, Frisk G, Bergstr?m S, Diderholm H. Coxsackie B virus infections in women with miscarriage [J]. J Med Virol. 1993, 39(4): 282-285.
    [124] Ouellet A, Sherlock R, Toye B, et al. Antenatal diagnosis of intrauterine infection with coxsackievirus B3 associated with live birth [J]. Infect Dis Obstet Gynecol. 2004, 12(1): 23-26.
    [125] Modlin JF, Crumpacker CS. Coxsackievirus B infection in pregnant mice and transplacental infection of the fetus [J]. Infect Immun. 1982, 37(1): 222-226.
    [126]季伟,刘继贤,张亚,等.支气管肺炎的柯萨奇病毒B组感染[J].实用儿科临床杂志, 1998, 13(3): 142-143.
    [127]黄丽萍,方凤,蒋瑾瑾.柯萨奇病毒B组感染哮喘患儿的临床特点[J].实用儿科临床杂志, 2005, 20(10): 990-992.
    [128] Read RB, Ede RJ, Morgan-Capner P, et al. Myocarditis and fulminant hepatic failure from coxsackievirus B infection [J]. Postgrad Med J, 1985, 61: 749.
    [129] Ray CG, Portman JN, Stamm SJ, et al. Hemolytic-uremic syndrome and myocarditis. Association with coxsackievirus B infection [J]. Am J Dis Child, 1971, 122: 418.
    [130]Selinka HC, Huber M, Pasch A, et al. Coxsackie B virus and its interaction with permissive host cells [J]. Clin Diagn Virol. 1998, 9(2-3): 115-123.
    [131] Mistchenko AS, Viegas M, Latta MP, et al. Molecular and epidemiologic analysis of enterovirus B neurological infection in Argentine children [J]. J Clin Virol, 2006, 37(4): 293-299.
    [132]张素兰.柯萨奇病毒感染98例临床分析[J].浙江医学, 2007, 29(6) : 566-567.
    [133]魏杰. 93例儿童病毒性心肌炎的临床分析[J].中国医药导报, 2006, 3 (3): 3-5.
    [134]成焕吉,刘丽,鲁继荣,等.一起病毒性心肌炎暴发流行的病原学调查研究[J].白求恩医科大学学报, 2001, 27(3): 318-319.
    [135]朱华,韩晓芳,王文兰,等.内蒙古地区柯萨奇B组病毒及分型与病毒性心肌炎的相关性研究[J].内蒙古医学杂志, 2006, 38(4): 315-316.
    [136] Lindberg AM, Stalhandske P. O., Pettersson U. Genome of coxsackievirus B3 [J]. Virology, 1987, 156(1): 50-63.
    [137] Pallansch, M., and R. P. Roos. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses [M], 2001, p. 723–776 In D. M. Knipe and P. M. Howley (ed.), Fields virology. Lipincott Williams and Wilkins, Philadelphia, PA.
    [138] Zell, R., and A. Stelzner. Application of genome sequence information to the classification of bovine enteroviruses: the importance of 5’- and 3’-nontranslated regions [J]. Virus Res. 1997. 51: 213–229.
    [139] Nicholson R, Pelletier J, Le SY, et al. Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies [J]. J. Virol. 1991. 65: 5886–5894.
    [140] Gamarnik AV, Andino R. Switch from translation to RNA replication in a positive-stranded RNA virus [J]. Genes Dev. 1998. 12: 2293–2304.
    [141] Lyons T, Murray KE, Roberts AW, et al. Poliovirus 5’terminal cloverleaf RNA is required in cis for VPg uridylation and the initiation of negative-strand RNA synthesis [J]. J. Virol.2001. 5: 10696–10708.
    [142] Murray KE, Steil BP, Roberts AW, et al. Replication of poliovirus RNA with complete internal ribosome entry site deletions [J]. J. Virol. 2004. 78: 1393–1402.
    [143] Barton DJ, O’Donnell BJ, Flanegan JB. 5’cloverleaf in poliovirus RNA is a cis-acting replication element required for negativestrand RNA synthesis [J]. EMBO J. 2001. 20: 1439–1448.
    [144] Ohlenschla¨ger O, Wohnert J, Bucci E, et al. The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C [J]. Structure. 2004. 12: 237–248.
    [145] Stewart, S. R., and B. L. Semler. RNA structure adjacent to the attenuation determinant in the 5’-non-coding region influences poliovirus viability [J]. Nucleic Acids Res. 1998. 26: 5318–5326.
    [146] Liu Z, Carthy CM, Cheung P, et al. Structural and functional analysis of the 5’untranslated region of coxsackievirus B3 RNA: In vivo translational and infectivity studies of full-length mutants[J]. Virology, 1999, 265(2): 206–217.
    [147] Isabelle P. Hunziker, Christopher T. et al. Deletions within the 5’UTR of coxsackievirus B3: consequences for virus translation and replication [J]. Virology, 2007, 360(1): 120–128.
    [148] Jennifer M. Bailey and William E. Tapprich. Structure of the 5' Nontranslated Region of the Coxsackievirus B3 Genome: Chemical Modification and Comparative Sequence Analysis [J]. Jorunal of Virology, 2007, 81(2): 650–668.
    [149] Dunn, J. J., Chapman N. M., Tracy S., et al. Natural genetics of cardiovirulence in coxsackievirus B3 clinical isolates: Localization to the 5’nontranslated region [J]. J. Virol. 2000. 74: 4787-4794.
    [150] Lee, C.-K., Kono K., Haas E., et al. Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate [J]. J. Gen. Virol. 2005. 86: 197-210.
    [151] Bradrick, S. S., Lieben E. A., Carden B. M., et al. A predicted secondary structure domain within the internal ribosome entry site of echovirus 12 mediates a cell-type specific block to viral replication [J]. J. Virol. 2001. 75: 6472–6481.
    [152] Willian, S., Chapman N. M., Leser J. S., et al. Mutations in a conserved enteroviral RNA sequence: correlation between predicted RNA structural alteration and diminished viability [J]. Arch. Virol. 2000.145: 2061-2086.
    [153] Shiroki, K., Ishii T., Aoki T., et al. Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA [J]. J. Virol. 1997. 71: 1-8.
    [154] Tu, Z., Chapman N., Hufnagel G., et al. The cardiovirulent phenotype of coxsackievirus B3is determined at a single site in the genomic 5’nontranslated region [J]. J. Virol. 1995. 69: 4607–4618.
    [155] Chapman, N. M., J. R. Romero, M. A. Pallansch, and S. Tracy. Sites other than nucleotide 234 determine cardiovirulence in natural isolates of coxsackievirus B3 [J]. J. Med. Virol. 1997. 52: 258–261.
    [156] Romero, J. R., C. Price, and J. J. Dunn. Genetic divergence among the group B coxsackieviruses, In S. Tracy, N. M. Chapman, and B. W. J. Mahy (ed.), The coxsackie B viruses [M]. Springer-Verlag, Berlin, Germany. 1997. p. 97–152.
    [157] Lee, C., Maull E., Chapman N., et al. Genomic regions of coxsackievirus B3 associated with cardiovirulence [J]. J. Med. Virol. 1997. 52:341–347.
    [158] Zhang HY, Yousef GE, Cunningham L, et al. Attenuation of a reactivated cardiovirulent coxsackievirus B3: the 5’-nontranslated region does not contain major attenuation determinants [J]. J. Med. Virol. 1993. 41:129–137.
    [159] Gauntt, C. J., and M. A. Pallansch. Coxsackievirus B3 clinical isolates and murine myocarditis [J]. Virus Res. 1996. 41:89–99.
    [160] Dunn JJ, Bradrick SS, Chapman NM, et al. The stem loop II within the 5' nontranslated region of clinical coxsackievirus B3 genomes determines cardiovirulence phenotype in a murine model [J]. J Infect Dis. 2003, 187(10): 1552-1561.
    [161] Ehrenfeld, E. Initiation of translation by picornavirus RNAs, In J. W. B. Hershey, M. B. Mathews, and N. Sonenberg (ed.), Translational control [M]. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1996. p. 549–573.
    [162] Muckelbauer JK, Kremer M., Minor I., et al. The structure of coxsackievirus B3 at 3.5A resolution [J]. Structure. 1995, 3(7): 653-667.
    [163] Maghsoudi N, Khalilpour A, Kamali M, et al. Cloning and expression of coxsakievirus B3 viral protein-1 in E. coli [J]. Iran Biomed J. 2007, 11(3): 147-152.
    [164] Minor, P. D. Antigenic structure of picornaviruses [J]. Curr. Top. Microbiol. Immunol. 1990. 161: 121–154.
    [165] Mateu, M. G. Antibody recognition of picornaviruses and escape from neutralization: a structural view [J]. Virus Res. 1995. 38: 1–24.
    [166]闻玉梅.现代医学微生物学[M].上海:上海医科大学出版社. 1999, 1205-1244.
    [167]黄孝天.柯萨奇B3病毒VP1与人细胞蛋白直接作用的研究[D].上海第二医科大学博士学位论文. 2005.05.
    [168] Henke A, Launhardt H., Klement K., et al. Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva [J]. J Virol. 2000, 74(9): 4284-4290.
    [169] Martin U, Nestler M, Munder T, et al. Characterization of coxsackievirus B3-causedapoptosis under in vitro conditions [J]. Med Microbiol Immunol. 2004, 193(2-3): 133-139.
    [170] Chehadeh W, Lobert PE, Sauter P, et al. Viral Protein VP4 Is a Target of Human Antibodies Enhancing Coxsackievirus B4- and B3-Induced Synthesis of Alpha Interferon [J]. J. Virol. 2005, 79(22): 13882–13891.
    [171] Schmidtke M, Selinka H.C., Heim A., et al. Attachment of coxsackievirus B3 variants to various cell lines: mapping of phenotypic differences to capsid protein VP1 [J]. Virology. 2000, 275(1): 77-88.
    [172] Cameron-Wilson CL, Pandolfno Y. A., Zhang H. Y., et al. Nucleotide sequence of an attenuated mutant of coxsackievirus B3 compared with the cardiovirulent wildtype: assessment of candidate mutations by analysis of a revertant to cardiovirulence [J]. Clin Diagn Virol. 1998, 9(2-3): 99-105.
    [173]Knowlton, K. U., E. Jeon, N. Berkley, et al. A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3[J]. J. Virol. 1996. 70:7811-7818.
    [174] Wessely R. Coxsackieviral replication and pathogenicity: lessons from gene modified animal models [J]. Med Microbiol Immunol. 2004; 193: 71-74.
    [175] Merl S, Michaelis C, Jaschke B, et al. Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice [J]. Circulation. 2005, 111(13): 1583-1592.
    [176] Zhao X, Lamphear BJ, Xiong D, et al. Protection of cap-dependent protein synthesis in vivo and in vitro with an eIF4G-1 variant highly resistant to cleavage by coxsackievirus 2A protease [J]. J Biol Chem. 2003; 278: 4449-4457.
    [177] Badorff C, Lee GH, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy [J]. Nat Med. 1999, 5: 320-326.
    [178] Chau DH, Yuan J, Zhang H, et al. Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1 [J]. Apoptosis. 2007, 12(3): 513-524.
    [179] Van kuppeveld FJ, Melchers WJ, Kirkegaard K, et al. Structure-function analysis of coxsackie B3 virus protein 2B [J]. Virology. 1997, 227(1): 111-118.
    [180] van Kuppeveld FJ, van den Hurk PJ, Schrama IW, et al. Trans-complementation of a genetic defect in the coxsackie B3 virus 2B protein [J]. J Gen Virol. 2002, 83(2): 341-350.
    [181] de Jong AS, Visch HJ, de Mattia F, et al. The coxsackievirus 2B protein increases efflux of ions from the ER and Golgi, thereby inhibiting protein trafficking through the Golgi [J]. J Biol Chem. 2006, 281(20): 14144-14150.
    [182] de Jong AS, de Mattia F, Van Dommelen MM, et al. Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking [J]. J Virol. 2008, 82(7): 3782-3790.
    [183] van Ooij MJ, Vogt DA, Paul A, et al. Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis [J]. J Gen Virol. 2006, 87(Pt1): 103-113.
    [184]Morasco BJ, Sharma N, Parilla J, et al. Poliovirus cre(2C)-dependent synthesis of VPgpUpU is required for positive- but not negative-strand RNA synthesis [J]. J Virol. 2003. 77(9): 5136-5144.
    [185] Murray KE, Barton DJ. Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis [J]. J Virol. 2003. 77(8), 4739-4750.
    [186] Wessels, E., Notebaart, R. A., Duijsings, D., et al. Structure-Function Analysis of the Coxsackievirus Protein 3A [J]. J. Biol. Chem. 2006. 281(38): 28232–28243.
    [187] Wessels, E., Duijsings, D., Notebaart, R. A., et al. A proline-rich region in the coxsackievirus 3A protein is required for the protein to inhibit endoplasmic reticulum-to-golgi transport [J]. J. Virol. 2005, 79(8): 5163–5173
    [188] Wessels, E., Duijsings, D., Lanke KH, et al. Molecular determinants of the interaction between coxsackievirus protein 3A and guanine nucleotide exchange factor GBF1 [J]. J Virol. 2007, 81(10): 5238-5245.
    [189] Dodd DA, Giddings TH, Jr., and Kirkegaard, K. Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection [J]. J. Virol. 2001, 75(17): 8158-8165.
    [190] Deitz SB, Dodd DA, Cooper S, et al. MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A [J]. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(25): 13790-13795.
    [191] Cornell CT, Kiosses WB, Harkins S, et al. Inhibition of protein trafficking by coxsackievirus B3: multiple viral proteins target a single organelle [J]. J. Virol. 2006, 80: 6637-6647.
    [192] Cornell CT, Kiosses WB, Harkins S, et al. Coxsackievirus B3 proteins directionally complement each other to downregulate surface major histocompatibility complex class I [J]. J Virol. 2007, 81(13): 6785-6797.
    [193] Molla A, Harris KS, Paul AV, et al. Stimulation of poliovirus proteinase 3Cpro-related proteolysis by the genome-linked protein VPg and its precursor 3AB [J]. J. Biol. Chem. 1994, 269(43): 27015-27020
    [194] Lyle JM, Bullit E, Bienz K, et al. Visualization and functional analysis of RNA-dependent RNA polymerase lattices [J]. Science. 2002, 296(5576): 2218-2222.
    [195] Schein CH, Volk DE, Oezguen N, et al. Novel, structure-based mechanism for uridylylation of the genome-linked peptide (VPg) of picornaviruses [J]. Proteins. 2006, 63(4): 719-726.
    [196] Gruez A, Selisko B, Roberts M, et al. The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases [J]. J Virol. 2008,82(19): 9577-9590.
    [197] Tellez AB, Crowder S, Spagnolo JF, et al. Nucleotide channel of RNA-dependent RNA polymerase used for intermolecular uridylylation of protein primer. J Mol Biol. 2006, 357(2): 665-675.
    [198] Shen M, Reitman ZJ, Zhao Y, et al. Picornavirus genome replication. Identification of the surface of the poliovirus (PV) 3C dimer that interacts with PV 3Dpol during VPg uridylylation and construction of a structural model for the PV 3C2-3Dpol complex. [J] J Biol Chem. 2008, 283(2): 875-888.
    [199] Klingel K, Selinka HC, Huber M, et al. Molecular pathology and structural features of enteroviral replication. Toward understanding the pathogenesis of viral heart disease [J]. Herz. 2000, 25(3): 216-220.
    [200] Dougherty WG, Semler BL. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes [J]. Microbiol Rev. 1993. 57, 781-822.
    [201] Palmenberg, A. C. Proteolytic processing of picornaviral polyprotein [J]. Annu Rev Microbiol. 1990. 44, 603–623.
    [202] Ohlenschl?ger O, W?hnert J, Bucci E, et al. The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C [J]. Structure. 2004. 12(2): 237-248
    [203] Zell R, Sidigi K, Bucci E, et al. Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C [J]. RNA. 2002. 8(2): 188-201.
    [204] Mirmomeni MH, Hughes PJ, Stanway G. An RNA tertiary structure in the 3’untranslated region of enteroviruses is necessary for efficient replication [J]. Journal of Virology. 1997. 71, 2363-2370.
    [205] Wang A, Cheung PK, Zhang H, et al. Specific inhibition of coxsackievirus B3 translation and replication by phosphorothioate antisense oligodeoxynucleotides [J]. Antimicrob Agents Chemother. 2001. 45(4): 1043-1052.
    [206] Wang J, Bakkers JMJE, Galama JMD, et al. Structural requirements of the higher order RNA kissing element in the enteroviral 3’UTR [J]. Nucleic Acids Research. 1999. 27, 485-490.
    [207] Melchers W J G, Hoenderop J G J, Bruinsslot H J, et al. Kissing of the two predominant hairpin loops in the coxsackie B virus 3′untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis [J]. J Virol. 1997. 71(1): 686-696.
    [208] Rohll J B, Moon D H, Evans D J, et al. The 3′untranslated region of picornavirus RNA: features required for efficient genome replication [J]. J Virol. 1995. 69(12): 7835-7844.
    [209] Cheung P, Lim T, Yuan J, et al. Specific interaction of HeLa cell proteins with coxsackievirus B3 3'UTR: La autoantigen binds the 3' and 5'UTR independently of thepoly(A) tail [J]. Cell Microbiol. 2007. 9(7): 1705-1715.
    [210] Klump WM, Bergmann I, Muller BC, et al. Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5′uridine residues are regained during plus-strand RNA synthesis [J]. J Virol.1990. 64: 1573-1583.
    [211] van Ooij MJ, Glaudemans DH, Heus HA, et al. Structural and functional integrity of the coxsackievirus B3 oriR: spacing between coaxial RNA helices [J]. J Gen Virol. 2006. 87: 689-695.
    [212] Chung SK, Kim JY, Kim I B, et al. Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells [J]. Virology. 2005, 333(1): 31-40.
    [213] Andino R, Boddeker N, Silvera D, et al. Intracellular determinants of picornavirus replication [J]. Trends Microbiol. 1999. 7: 76–82.
    [214] Belsham GJ, Sonenberg, N. Picornavirus RNA translation: roles for cellular proteins [J]. Trends Microbiol. 2000. 8: 330–335.
    [215] Jacobson A, Peltz SW. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells [J]. Annu Rev Biochem. 1996. 65: 693–739.
    [216] Jacobson SJ, Konings DA, Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3′terminus of the poliovirus RNAgenome and its role in viral RNA amplification [J]. J Virol. 1993. 67: 2961–2971.
    [217]龚志锦,詹镕洲.病理组织制片和染色技术[M].上海:上海科学技术出版社.1994,48-53.
    [218]王雷,夏咸柱,卫广森,等.犬腺病毒、犬细小病毒联合PCR方法的建立与应用[J].病毒学报, 2003, 19(3): 262-266.
    [219]葛淑敏,金宁一,尹革芬,等. O型口蹄疫病毒不同基因型联合RT-PCR检测方法的建立[J].中国兽医学报, 2005, 25(1): 25-27.
    [220]宋婕萍,刘建军,杨占秋,等.柯萨奇B组病毒逆转录聚合酶链反应检测方法的建立[J].湖北医科大学学报, 1998, 19(4): 291-294.
    [221] Brewer LA, Lwamba HC, Murtaugh MP, et al. Porcine encephalomyocarditis virus persists in pig myocardium and infects human myocardial cells [J]. Journal of Virology, 2001, 75(23): 11621-11629.
    [222]陆慧君.猪血凝性脑脊髓炎病毒的分离鉴定及其受体的筛选[D].吉林大学博士学位论文. 2008.06
    [223] 2008 IUCN Red List of Threatened Species, http://www.iucnredlist.org/details/19596.
    [224] Kleiman A , Thompson L. Wild Mammals in Captivty Principles and Techniques[M]. Chicago: The University of Chicago Press, 1996. 277-281
    [225] DeSa DJ. Isolated myocarditis as a cause of sudden death in the first year of life[J]. Forensic Sci Int. 1986, 30:113-117.
    [226]贾文祥.医学微生物学[M].北京:人民卫生出版社, 2006.06
    [227]单玉.病毒性心肌炎临床研究探要[J].实用中医内科杂志, 2009, 23(7): 7-8.
    [228]高丰,贺文琦.动物病理解剖学[M].北京:科学出版社, 2008, 08.
    [229]侯龙才,邓世全.一起病毒性心肌炎爆发流行的病原血清学调查[J].地方病通报, 2000, 15(1):50-51
    [230]黄文丽,自登云,施华芳,等.一起病毒性心肌炎爆发流行的调查分析[J].大理医学院学报. 1999, 8(1): 63-64
    [231]于起福,张淑芹,孙非,等.长春地区1992-1996年病毒性心肌炎柯萨奇B组病毒感染情况的调查[J].中国地方病防治杂志, 1997, 12(4): 228-229
    [232] Fujioka S, Koide F, Kitaura Y, Molecular detection and differentiation of enterovirus in endomyocardial biopsy and pericardical effusions from dilated cardiomyopathy and myocarditis [J]. Am heart J, 1996, 131(5): 760-765.
    [233] Burch GE, Sun SC, Chu KC, et al. Interstitial and coxsackievirus B myocarditis in infants and children. A comparative histologic and immunofluorescent study of 50 autopsied hearts [J]. JAMA, 1968, 203: 1.
    [234]秦礼让,毛鸿甫.家畜系统病理解剖学[M].北京:农业出版社, 1992, 250-293
    [235] Feuer R, Mena I, Pagarigan RR, et al. Coxsackievirus B3 and the Neonatal CNS: The Roles of Stem Cells, Developing Neurons, and Apoptosis in Infection, Viral Dissemination, and Disease [J]. Am. J. Pathol., 2003, 163(4): 1379-1393.
    [236]徐耀先,周晓峰,刘立德.分子病毒学[M].武汉:湖北科学技术出版社, 2000. 01
    [237]殷震,刘景华.动物病毒学(第二版)[M].北京:科学出版社,1997.
    [238] Platt JL, Michael AF. Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine [J]. J Histochem Cytochem, 1983, 31: 840-842.
    [239]刘明宇,孟庆文,吴东来,等.柯萨奇B组3型病毒中国分离株VP4、3D基因序列及系统发生树分析[J].中华微生物学和免疫学杂志,2005, 25(10) : 823-827.
    [240]高丰,贺文琦,陆慧君,等.疑似病毒感染金丝猴死亡病例报告[J].中国兽医学报,2006, 26(5): 484.
    [241] Hsiung GD, Wang Jen-Ren. Enterovirus infections with special reference to enterovirus 71 [J]. J Microbiol Immunol Infect, 2000, 33: 1-8.
    [242]梁荣,曹殿军,阎丽辉,等.新城疫病毒分离株的蚀斑纯化及影响蚀斑形成的主要因素[J].中国兽医学报, 2003, 23(6): 533-534.
    [243]李玉娟,王殿柱,高艳华,等.采用蚀斑技术克隆纯化口蹄疫病毒的研究[J].中国畜牧兽医, 2008, 35(12):71-73.
    [244]杨素,黄青云,瘳明,等. H5N1亚型禽流感病毒鸡胚分离株蚀斑克隆及生物学特性比较[J].中国畜牧兽医, 2007, 34(11): 54-60.
    [245]董关木,安祺,刘文雪,等. SARS-CoV蚀斑形成技术的建立[J].中华实验和临床病毒学杂志, 2004, 18(4): 383.
    [246]张馨予,李晓眠,杨洁.医学免疫学研究中激光共聚焦显微镜的应用[J].天津医科大学学报, 2008, 14(2): 267-273.
    [247]程勇前,聂青和,周永兴,等.透射电镜及激光共聚焦技术观察体外丙型肝炎病毒感染的人胎盘滋养层细胞[J].世界华人消化杂志. 2003, 11(2): 151-156.
    [248]尉超.川金丝猴源CVB3荧光定量PCR检测方法的建立及初步应用[D].吉林大学硕士学位论文. 2009.06.
    [249] Combet C., Blanchet C., Geourjon C, et al.. NPS@: Network Protein Sequence Analysis. TIBS, 2000, 25 (3):147-150.
    [250] Oprisan G, Combiescu M, Guillot S, et al. Natural genetic recombination between co-circulating heterotypic enteroviruses [J]. Journal of General Virology, 2002, 83: 2193–2200.
    [251] Lukashev AN, Lashkevich VA, Koroleva GA, et al. Recombination in uveitis-causing enterovirus strains [J]. Journal of General Virology, 2004, 85: 463–470.
    [252] Oberste MS. Comparative genomics of the coxsackie B viruses and related enteroviruses [J]. Curr Top Microbiol Immunol. 2008, 323: 33-47.
    [253] Tracy S, Gauntt C. Group B coxsackievirus virulence[J]. Curr Top Microbiol Immunol. 2008, 323:49-63.
    [254]谢同炳,周月朋.小儿柯萨奇病毒性脑炎l17例临床分析[J].现代医学. 2007, 35(4): 311- 312.
    [255] Huber S, Ramsingh AI. Coxsackievirus-induced pancreatitis [J]. Viral Immunol, 2004; 17(3): 358-69.
    [256]刘莹,薛晓玲,刘郁明,等.柯萨奇病毒感染与自然流产128例分析[J].中国妇幼保健, 2007, 22: 182.
    [257] Bopegamage S, Kovacova J, Vargova A, et al. Coxsackie B virus infection of mice: inoculation by the oral route protects the pancreas from damage, but not from infection [J]. Journal of General Virology, 2005, 86, 3271-3280.
    [258]陈洪岩,夏长友.简明实验动物学[M].哈尔滨:哈尔滨出版社, 2006. 209-216。
    [259]韦献飞,朱永红,唐荣兰,等. 4a亚型猪戊型肝炎病毒对猕猴致病性[J].中国公共卫生, 2009, 25(1): 69-70.
    [260]庞荣清,何占龙,王惠萱,等.实验性猕猴1型糖尿病模型的建立及评价[J].中国兽医学报, 2007, 27(2): 234-236.
    [261]张高红,李明华,郑永唐. AIDS猕猴模型在HIV疫苗研究中的应用[J].动物学研究, 2007, 28 (5): 556-562.
    [262]唐志佼,代明,包容,等. SHIV-B whu感染中国猕猴的组织病理学观察[J],实验动物与比较医学, 2008,28(2): 99-101.
    [263]张涛,王树声,黄果勇,等.猕猴感染人乙肝病毒动物模型病理学研究[J].广西预防医学, 2001, 7(1): 12-16.
    [264]盖显英,孙景辉,贺文琦,等.柯萨奇B3病毒川金丝猴分离毒株实验性感染BALB/c小鼠的病理学研究[J].吉林大学学报(医学版). 2009, 35(1): 39-42.
    [265]高玉峰,郑纪宁,张风英,等.柯萨奇病毒性心肌炎小鼠的自然病程观察[J].中国人兽共患病学报. 2006, 22(8): 767-769.
    [266]郭定宗.兽医临床检验技术[M].北京:化学工业出版社. 2006.09.
    [267]李岳春,杨占秋.柯萨奇病毒B3致病毒性心肌炎动物模型的建立[J].温州医学院学报. 2007, 37(5): 481-482.
    [268]上海市卫生局、中华医学会上海分会.实验室诊断与基础治疗常规[M].上海:上海科学技术出版社, 1999.08:114-116.
    [269]盖显英.利用BALB/C小鼠及其原代培养心肌细胞研究川金丝猴源CVB3的致病性[D].吉林大学博士论文, 2009.06
    [270]林隆,汤宏峰.肝脏汇管区炎症伴小胆管增生[J].中华病理学杂志, 2006, 35(11): 695-696.
    [271]宋继谒.病理学[M].北京:科学出版社, 2002, 01.
    [272]王文龙,唐晓鹏,杨旭,等.慢性重型肝炎肝内胆管增生的初步研究[J].中日友好医院学报, 2004, 20(4): 211-214.
    [273] CHEN Yao-kai, QIAN Yi-dan, WANG Yu-ming. Immunohistochemical study of ductular proliferation in patients with hepatitis B virus induced end-stage chronic liver disease[J]. China Journal of Modern Medicine, 2005, 15(20): 3041-3045.
    [274] Fields BN. Virology[M]. Third Edition. Lippincott-Raven Publishers. 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700