煤层巷道底板冲击机理及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层巷道底板冲击是冲击矿压灾害的一种,许多矿井发生过底板冲击现象。由于底板冲击发生位置的特殊性,很难采取针对性的防冲措施,造成的危害较大。论文在大量调研资料的基础上,采用理论分析、相似模拟试验、数值模拟和工程实践等手段,对煤层巷道底板冲击矿压发生的影响因素、开挖卸荷过程中底板应力变化规律、底板冲击的孕育过程、动载扰动下底板冲击显现规律进行了研究。在此基础上建立了底板冲击危险的力学模型和底板冲击危险的判别准则,提出了底板减冲和支护控制的技术,并在现场进行实践应用。
     相似模拟和数值模拟研究了底板冲击矿压的影响因素和冲击发生前的孕育过程。巷道底板冲击受煤层埋深、顶底板条件、巷道施工布置方式等多方面影响。在上覆巨厚坚硬岩层作用下,本工作面开采增加了相邻工作面的应力水平,在厚煤层中沿顶板布置巷道留底煤时,巷道开挖后,巷道底板煤层中的水平应力升高,垂直应力降低,增加了煤层失稳破坏的有利条件;巷道开挖卸荷过程中,底板的塑性区范围大于两帮,并在塑性区变化过程中产生了明显的拉伸破坏,容易使底板成为冲击破坏的突破口。
     对微震监测记录的冲击矿压波形进行分析,波形的频谱特征表明动力扰动是冲击矿压发生的重要条件。采用FLAC2D软件的Dynamic模块模拟研究了动载扰动作用下底板冲击显现的规律,研究结果表明处于极限应力状态下的底板煤体在动应力波扰动作用下,水平应力、垂直应力、应力差先上升后瞬间大幅度降低,随后底板煤体拉伸破坏的层裂破坏范围和垂直位移瞬间增加。在此过程中,底板水平应力集中现象逐渐消失。
     理论分析了底板冲击破坏的原因,建立了巷道底板冲击危险的力学模型。认为巷道底板发生破坏与巷道埋深、巷道宽度、巷道底板易发生层裂破坏的结构厚度、底板煤岩层的弹模、泊松比、水平构造应力及巨厚坚硬老顶等因素有关。提出了底板冲击危险性系数Kfb,建立了底板冲击危险的判别准则,即当Kfb≥1时,巷道底板煤岩层容易发生破坏。根据底板煤层冲击破坏的临界厚度和跃进煤矿发生冲击矿压的实例,将底板冲击矿压危险性分为三类:无底板冲击危险、弱底板冲击危险和强底板冲击危险。
     对底板冲击矿压的防治,数值模拟和现场实践研究认为,采用爆破法对巷道两帮煤体进行强度弱化,可间接减小底板水平应力,起到了诱冲为主、减冲为辅的作用,而采用断底爆破对底板煤体进行强度弱化能明显降低底板的高水平应力,是底板冲击危险解危的有效方法。
     为了控制巷道底板冲击灾害,设计了锚网+“O”型棚联合支护形成的封闭柔性支护结构,通过数值模拟分析和现场实践表明,该支护结构虽然不能从根本上消除冲击危险,但具有抑制底板冲击显现规模和程度、降低冲击灾害的作用。
     根据以上研究成果,对冲击严重的跃进煤矿23130面下巷和25110面下巷采取了针对性的控制措施,取得了明显效果,验证了煤层巷道底板冲击机理和控制理论对防冲实践具有较好的指导性。
     本论文有图90幅,表13个,参考文献115篇。
Floor burst is one kind of the rock bursts, and it often seriously happens during the coal seam excavation and roadway driving in some coal mines. As the special burst position and no prevention measures are used, floor bursts have caused seriously damages. According to lots of research data and excavation and mining conditions of Yuejin Coal Mine, theory analysis, numerical simulation, similar simulation and industry practice are used to research the influence factors, the stress and physical and mechanical parameters preparatory process of floor burst during excavation, floor burst appearing laws under dynamic loads, floor burst hazard discriminatory, intensity weakening measures and support structures. The research results are applied to burst control practice in order to verify correctness of the theory.
     Through numerical simulation and similar simulation methods, the influence factors and preparatory process are researched. The results show that the conditions have great influence on floor burst, such as mining depth, roof condition and roadway drifting and layout ways.On the influence of the heave hard roof, the mining of working face will increase the stress of adjacent coal seam of working face. In high coal seam, roadway is cut along roof of the coal seam, so the floor is coal seam. After roadway is cut, there are areas of vertical stress rising and horizontal stress reducing in the floor, and this raises the burst hazard of floor failure. During the roadway is cutting, the plastic zone of floor is bigger than the two sides, and tensile failure zone distributes in the floor obviously, and this is the sally port of floor burst.
     Fourier transform is used to analyze the frequency spectrum characters of microseismic signals of rock bursts induced by dynamic disturbance , the results show that dynamic disturbance is necessary condition for rock bursts. The dynamic module of FLAC2D soft is used to analyze the rock burst appearing laws under dynamic loads. The results show that the stress and physical mechanical parameters have changed greatly under dynamic loads. In the dynamic loads process, horizontal stress ,vertical stress and stress difference increase in a small extent and decrease substantially, and the floor velocity and accelerate change rapidly soon after. At the same time, the plastic zone expands, and tensile failure zone appears obviously in the floor with the vertical displacement increases subsequently. After the process, horizontal concentrated stress disappears, and this is the floor burst process under dynamic loads.
     According to the theory analysis and characteristics of floor burst, a mechanical model is set up, and the dangerous coefficient of floor burst is also initially given. The research results show that the depth, the elastic modulus of rock, the thickness of soft rock in the floor, the horizontal tectonic stress, and the heave hard roof are seriously relevant to the floor burst. The dangerous coefficient of floor burst Kfb is also initially given to evaluate the floor burst hazard .As the dangerous coefficient of floor burst is more than or equal to 1, the floor failure will happen. Based on the critical thickness of floor failure and floor bursts data of Yuejin Coal Mine, floor burst hazard is classified into three categories: no floor burst dangerous, weak floor burst dangerous and strong floor burst dangerous.
     According to numerical simulation, the two sides intensity weakening can indirectly decrease the horizontal stress of floor. In practical application, the two sides blasting can weaken floor burst dangerous indirectly, and can induce floor burst directly. Based on the numerical simulation results and field application, the floor intensity weakening can remove the horizontal concentrated stress, and it is an effective method to weaken the floor burst dangerous.
     In order to solve the support technique of floor burst of coal seam roadway, theoretical analysis and numerical simulation is used to research the control function of closed compressible supporting structure made up of anchor net and“O”type shed on floor burst. The research results show that closed flexible supporting structure can not remove shock hazard entirely, however, it can reduce the rock burst extent. The results provide theoretical foundation for roadway support in the same coal mine conditions.
     According to the research results, the appropriate measures for floor burst prevention are applied in the lower gateway of 25110 coal face and 23130 coal face in Yuejin Coal Mine, and has gained good effect, and this proves the theory of mechanism and controlling technology of floor burst in coal seam roadway is correct.
引文
[1]钱鸣高,许家林.煤炭工业发展面临几个问题的讨论[J].采矿与安全工程学报,2006,23(2):127-132.
    [2]赵生才.深部高应力下的资源开采与地下工程—香山会议第175次综述[J].地球科学进展,2002,17 (2):295-298.
    [3]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学,2001.
    [4]孙学会.复杂开采条件下冲击地压及其防治技术[M].北京:冶金工业出版社,2009.4:3-4.
    [5]潘立友,钟亚平.深井冲击地压及其防治[M].北京:煤炭工业出版社,1997: 57.
    [6] Bieniawski A T,Denkhaus H G,vogler U W.Failure of Fracture Rock[J].Int. JRock Mech. Min. Sci,1969, 6:323-341.
    [7] Cook N G W.A note on rock bursts considered as a problem of stability. J .South Afr. Int. Min. and Metallurgy, 1965, 65: 437-446.
    [8] Wawersik W K and Fairhurst C A. A study of brittle rock fracture in laboratory compression experiments. Int. J. Rock Mech. Min. Sci. & Geomech.1970,7:561-575.
    [9] Hudson J A ,Croush S L , Fairhurst C .Soft, stiff, and servo-controlled testing machines : a review with reference to rock failure. Eng.Geo,1972, 6 :1 55-189.
    [10] Cook N G W, Hoek E, Pretorius J P G etal, Rock Mechanics applied to the study of rock bursts. J. S .A fr. Inst. M in. Metall,1965,66:4 35-528.
    [11] Bieniawski Z T, Denkhaus H G,Vogler U W. Failure of Fracture Rock. Int. J Rock Mech. Min. Sci,1969, 6:323-341.
    [12] Bieniawski Z T ,Mechanism of brittle fracture of rocks. P art I, II and III. Int. J. Rock Mech. Min. Sci., 1967, 6: 395-430.
    [13]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报.1987 (3):197-204.
    [14]章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论[J].煤炭学报.1991(4): 48-53.
    [15]齐庆新,史元伟,刘天泉.冲击地压粘滑失稳机理的实验研究[J].煤炭学报.1997,22 (2)144-148.
    [16]李新元.围岩一煤体系统失稳破坏及冲击地压预测的探讨[J].中国矿业大学学报.2000,29(6):63 3-636.
    [17]尹光志,李贺,鲜学福,冯涛.煤岩体失稳的突变理论模型[J].重庆大学学报.1994(1):23-28.
    [18]张玉祥,陆士良.矿井动力现象的突变机理及控制研究[J].岩土力学.1997,18(1): 88-92.
    [19]潘一山,章梦涛.用突变理论分析冲击发生的物理过程[J].阜新矿业学院学报.1992(1): 12-18.
    [20]费鸿禄,徐小荷.岩爆的动力失稳[M].东方出版中心,上海:1998.4.
    [21]徐曾和,徐小荷,唐春安.坚硬顶板条件下煤柱岩爆的尖点突变理论分析[J],煤炭学报.1995(5):485- 491.
    [22]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社, 1991.
    [23] Xie Heping, Pariseau W C.Fr actal Character and Mechanism of Rock Burst.Int.J, Rock Mech. M in, Sci.& Geomech.Abstr,1 993,30( 4):343-350.
    [24]李廷芥,王耀辉,张梅英,等.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学与工程学报, 2000, (1):6-10.
    [25]李玉,黄梅,张连城,关杰.冲击地压防治中的分数维[J].岩土力学,1994(4):34-38.
    [26]李玉,黄梅,廖国华.冲击地压发生前微震活动时空变化的分形特征[J].北京科技大学学报, 1995 (l): 10-13.
    [27]张晓春,缪协兴,翟明华,杨挺青.三河尖煤矿冲击矿压发生机制分析[J].岩石力学与工程学报, 1998 (5):508-513.
    [28]张晓春,缪协兴,杨挺青.冲击矿压的层裂板模型及试验研究[J].岩石力学与工程学报, 1999(5):497 -502.
    [29]张晓春,杨挺青,缪协兴.冲击矿压的模拟实验研究[J].岩土工程学报, 1999(1):66-70.
    [30]缪协兴,安里千,翟明华,张晓春,杨挺青.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,28(2): 113-117.
    [31]黄庆享,高召宁.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2001(2):15 6-159.
    [32]秦昊.巷道围岩失稳机制及冲击矿压机理研究[D].徐州:中国矿业大学,2008.
    [33]卢爱红.应力波诱发冲击矿压的动力学机理研究[D].徐州:中国矿业大学,2005.
    [34]康政虹,高正夏,丁向东,等.基于扰动响应判据的洞室岩爆分析[J].河海大学学报(自然科学版), 2003,31(2):187-192.
    [35] Zhang Xiaochun,YangTingqing. A time-depended study for rock burst in coal mines.In the 1st International Conference on Advanced in Structural Engineering& Mechanics,1999,9:10-13.
    [36]徐曾和,徐小荷,等.粘弹性顶板岩层下煤柱岩爆的尖点突变与滞后[J].力学与实践,1996,18( 3):47-50.
    [37]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001:1-17.
    [38]潘立友,杨慧珠.冲击地压前兆信息识别的扩容理论[J],岩石力学与工程学报,2004, 23(增1): 4528 - 4530.
    [39]姜耀东,赵毅鑫,何满潮.冲击地压机制的细观实验研究[J],岩石力学与工程学,2007,26(5):902-907.
    [40]牟宗龙.顶板岩层诱发冲击的冲能原理及其应用研究[D].徐州:中国矿业大学博士论文,2007.6.
    [41]李志华.采动影响下断层滑移诱发煤岩冲击机理研究[D].徐州:中国矿业大学博士论文,2009.6.
    [42] LI Zhi-hua, DOU Lin-ming, LU Cai-ping.Study on fault induced rock bursts[J], China Univ Mining & Technol 18 (2008) 0321–0326.
    [43]陈国祥.最大水平应力对冲击矿压的作用机制及其应用研究[D].徐州:中国矿业大学博士论文,2009.6.
    [44]李忠华,潘一山.煤柱冲击地压的解析分析[J].地质灾害与环境保护,2001,12(2):62-65.
    [45]潘岳,王志强.狭窄煤柱冲击地压的折迭突变模型[J].岩十力学,2004,25(1):23-30.
    [46]徐曾和,李刚常.狭窄煤柱冲击地压发生的判别准则[J].力学与实践,1993,15(1):45-47.
    [47]巴图金娜,M佩图霍夫.地质动力区划方法指南[M].莫斯科:矿藏,1990.
    [48]张宏伟,等.矿井动力现象区域预测研究[J].煤炭学报1999.8 Vol.42 (4):38 3-397.
    [49]巩思园.矿震震动波波速层析成像原理及其预测煤矿冲击危险应用实践.徐州:中国矿业大学博士论文,2010.6.
    [50]姜福兴,杨淑华,XUN Luo.微地震监测揭示的采场围岩空间破裂形态[J].煤炭学报,2003,28(4): 357-360.
    [51]李玉,黄梅,燎国华,等.冲击地压发生前微震活动时空变化的分形特征[J].北京科技大学学报, 1995, 17 (1):10-13.
    [52]邴邵丹,潘一山.矿山微震定位方法及应用研究[J] .煤矿开采,2007,12(5):1-4.
    [53]杨承祥,罗周全,唐礼忠.基于微震监测技术的深井开采地压活动规律研究[J].岩石力学与工程学报, 2007,26(4):819-824.
    [54]曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,24(2):146 -154.
    [55]陆菜平,窦林名,吴兴荣.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    [56] Jan ?íleny, Alexander Milev. Source mechanism of mining induced seismic events- Resolution of double couple and non double couple models[J]. Tectonophysics 456 (2008) 3–15.
    [57] C.SRINIVASAN,S.K.ARORAS,R.K.YAJQ. Use of Mining and Seismological Parameters as Premonitors ofRockbursts[J]. Int. J. Rock Mech. Min. Sci,1997, 34(6) 1001-1008.
    [58] Mariana Eneva. In search for a relationship between induced microseismicity and larger events in mines[J]. Tectonophysics 289 (1998) 91-104.
    [59]茅献彪,吴祥彬,缪协兴,等.用钻屑法监测巷道围岩冲击危险[J].矿山压力与顶板管理, 1998, (1) 1: 75-78.
    [60]李秋林,吕贵春.声发射预测冲击地压技术研究[J].矿业安全与环保,2007,34(5):4-6.
    [61]窦林名,何学秋.冲击矿压危险预测的电磁辐射原理[J],地球物理学进展, 2005,20(2): 427-431.
    [62]窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(6):690-694.
    [63]高明仕,窦林名,张农.冲击矿压巷道围岩控制的强弱强力学模型几其应用分析[J].岩土力学,2008,29 (2),359-364.
    [64]薛亚东,张世平,康天合.回采巷道锚杆动载响应的数值分析[J].岩石力学与工程学报, 2003,22(11): 1903-1906.
    [65]姚精明,窦林名,王成胜.巷道冲击矿压的锚杆支护机理及实践[J].煤炭科学技术,2004,32(4).
    [66]赵兴东,杨天鸿,唐春安等.冲击地压下煤巷锚杆支护机理数值模拟研究[J].中国矿业,2004,13 (3) :58-60.
    [67]姜耀东,赵毅鑫,刘文岗,等.煤岩冲击失稳的机理和实验研究[M].北京:科学出版社,2009.
    [68]鞠文君.冲击矿压巷道锚杆支护原理分析[J].煤矿开采,2009,14(3):59-61.
    [69] E. I. Shemyakin, M. V. Kurlenya, G. I. Kulakov. CLASSIFICATION OF ROCK BURSTS[J]. Institute of Mining, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk.Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,1986,. 5:3-12.
    [70] DRIAD-LEBEAU L,LAHAIE F,AL HEIB M, et al. Seismic and geotechnical investigations following arock burst in a complex French mining district[J].International Journal of Coal Geology,2005,64: 66-78.
    [71] A. N. Zorin. THE PHYSICAL PRINCIPLES OF ROCK BURSTS[J].Translated from Fiziko- Tekhnicheskie Probemy Razrabotki Poleznykh,1972, 5:34-41.
    [72] G.布霍衣诺,李玉生译.矿山压力和冲击地压[M].北京:煤炭工业出版社,1985.
    [73]潘立友.深井冲击地压及其防治[M].北京:煤炭工业出版社, 1997: 20-22.
    [74]徐方军,毛德兵.华丰煤矿底板冲击地压发生机理[J].煤炭科学技术,2001,29(4):41-45.
    [75]牛宝林,邸建友,唐绍琴.底板冲击矿压发生机理与防治[J].煤矿开采, 1999,1:20-23.
    [76]王本强.构造应力下坚硬底板冲击地压机理分析[J].煤炭科技,2009,1:79-83.
    [77]邰英楼,王来贵,张明海.顶底板受拉应力型冲击地压及数学模型[J].辽宁工程技术大学(自然科学版),1999, 18(5): 553-556.
    [78]陈学华.构造应力型冲击地压发生条件研究[D].阜新:辽宁工程技术大学,2004.
    [79]何满潮,苗金丽,李德建,等.深部花岗岩岩爆过程实验研究[J].岩石力学与工程学报,2007,(5):563-571.
    [80]许家林,线鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [81]潘一山.冲击地压发生和破坏过程分析[D].北京:清华大学博士学位论文,1999.4.
    [82]魏小文,纪洪广,李文.巨厚岩浆岩下部开采时的破坏机理分析[J].中国矿业,2007,16(6):91-93.
    [83] LU Ai-hong, MAO Xian-biao, LIU Hai-shun. Physical simulation of rock burst induced by stress waves[J]. Journal of China University of Mining & Technology, 2008 ,18(3):401-405.
    [84]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [85]顾大钊.相似材料和相似模型[M].徐州:中国矿业大学出版社,1995,5:91-97.
    [86]姜福兴.采场覆岩空间结构观点及其应用研究[J].采矿与安全工程学报, 2006, 23(1): 30-33.
    [87]徐学锋,窦林名,曹安业等.覆岩结构对冲击矿压的影响及其微震监测[J],采矿与安全工程学报, 2011, 28(1): 11-15.
    [88]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [89]赵兴东,杨天鸿,唐春安等.冲击地压下煤巷锚杆支护机理数值模拟研究[J].中国矿业, 2004, 13 (3):58:59.
    [90]熊祖强,贺怀建.冲击地压应力状态及卸压治理数值模拟[J].采矿与安全工程学报, 2006, 23 (4) :489- 493.
    [91]周林生,樊克恭,刘军.冲击地压工作面爆破卸压效果的数值模拟[J].山东科技大学学报(自然科学版),2005,24(4):77-80.
    [92]刘波韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [93]赵本钧,藤学军.冲击地压及其防治[M],1994.10,北京,煤炭工业出版社.
    [94] Jianchun Li,Guowei Ma.. Analysis of Blast Wave Interaction with a Rock Joint[J]. Rock Mech Rock Eng, Published online, 2009.9.
    [95] R. Q. Huang 7 X. N. Wang. Analysis of dynamic disturbance on rock burst[J]. Bull Eng Geol Env (1999) 57:281-284.
    [96]姜耀东,赵毅鑫,宋彦琦,刘文岗等.放炮震动诱发煤矿巷道动力失稳机理分析[J].岩石力学与工程学报,2005,24(17):3131-3136.
    [97]谢勇谋,李天斌.爆破对岩爆产生作用的初步探讨[J].中国地质灾害与防治学报,2004, 15(1) :61:64.
    [98]成云海,姜福兴,程久龙等.关键层运动诱发矿震的微震探测初步研究[J].煤炭学报,2006,31(3):273- 277.
    [99]陆菜平,窦林名,吴兴荣.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005 , 27(7): 772 -775.
    [100] LU Cai-ping,DOU Lin-ming,CAO An-ye, WU Xing-rong. Research on microseismic activity rules in Sanhejian Coal Mine[J], Journal of Coal Science & Engineering, 2008,14 (3) : 373-377.
    [101]曹安业,窦林名,秦玉红等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007, 24(2): 146-154.
    [102] Cao A Y , Dou L M , Chen G X, GONG Si-yuan, WANG Yu-gang, LI Zhi-hua. Focal mechanism caused by fracture or burst of a coal pillar.Journal of China University of Mining & Safety Engineering, 2008,18(2):153-158.
    [103] Xu,Xufeng,Dou,Linming, Lu Caiping.Frequency spectrum analysis on micro-seismic signal of rock bursts induced by dynamic disturbance.Mining Science and Technology(China),2010,20(5):682-685.
    [104]左宇军,李夕兵,赵国彦.洞室层裂屈曲岩爆的突变模型[J].中南大学学报(自然科学版),2005, 36 (2):311-316.
    [105]赵翔.某水泥矿山爆破震动信号小波分析与研究[D].武汉:武汉理工大学,2007:1-2.
    [106]雷光宇,卢爱红,茅献彪.应力波作用下巷道层裂破坏的数值模拟研究[J].2005,9: 1477-1480.
    [107]高明仕.冲击震动巷道围岩强弱强结构控制机理[D].徐州:中国矿业大学博士学位论文2007.
    [108]曹安业.采动煤岩冲击破裂的震动效应及其应用研究[D].徐州:中国矿业大学博士学位论文2009.
    [109]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学博士学位论文2009.
    [110]彭维红,卢爱红.应力波作用下巷道围岩层裂失稳的数值模拟[J].采矿与安全工程学报,2008,25 (2) :213-216.
    [111]倪兴华.地应力研究与应用[M].北京:煤炭工业出版社, 2006:137-160.
    [112]徐学锋,窦林名,刘军,等.煤矿巷道底板冲击矿压发生的原因及控制研究.岩土力学, 2010, 31 (6): 1977-1982.
    [113]曹胜根,田京城,蒲海.巷道围岩卸压预防冲击矿压的数值模拟研究[J].矿山压力与顶板管理,2005,3:86-88.
    [114] Baoyao Tang. Rock burst control using distress blasting[D].Department of ming and Metallurgical Engineering McGill University,Montreal,Canada, 2000.2.
    [115]陈小强.浅埋强风化地下硐室支护形式及参数[D].成都:四川大学硕士学位论文,2006.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700