新型工业絮凝酵母的构建与乙醇耐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
絮凝是工业酿酒酵母的重要特征,利用絮凝分离菌体,替代离心分离,可显著降低菌体分离成本,但国内外研究较多的组成型絮凝对生长有抑制作用,如果使用诱导型絮凝菌株,在发酵前期保持游离状态,而发酵结束后开始絮凝沉降,既能保证细胞通过自沉降采收,又可减轻组成型絮凝带来的内扩散效应。此外,选育胁迫耐受性提高的工业酿酒酵母菌株,可以使其在高浓度乙醇等胁迫条件下具有良好的活性,从而提高发酵终点的乙醇浓度,节省下游过程如乙醇精馏和废糟液处理等的能耗。本论文的主要研究目的是构建新型诱导絮凝的工业酿酒酵母,并寻找关键的乙醇耐性相关基因,为选育高效乙醇发酵工业酵母奠定基础。
     酵母的絮凝表型可以通过表达絮凝基因来获得。本文克隆了来源于自絮凝酵母SPSCO1的絮凝基因FLO1,并将其整合到工业酿酒酵母菌株Sc4126染色体上,通过SPSCO1中克隆的海藻糖6-磷酸合酶TPS1启动子调控其表达,从而构建了遗传稳定的诱导型絮凝酵母,其絮凝性状可以响应乙醇浓度变化,在发酵前期乙醇浓度较低时絮凝较弱,因此保证酵母细胞能良好生长,在发酵后期乙醇浓度高时絮凝增强,从而实现发酵结束后酵母自沉降采收。所构建的诱导型絮凝酵母的乙醇发酵性能与组成型絮凝酵母相比显著改善,其生长和发酵接近游离酵母宿主。进一步通过模式菌株S288c来源的TPS1启动子对絮凝性状实现精细调控,由于模式酵母S288c的TPSI启动子胁迫响应原件STRE个数比SPSCO1中克隆的TPS1启动子少,所构建的絮凝酵母对乙醇的响应得以弱化,延迟了絮凝的发生并降低了絮凝强度,从而进一步提高了发酵效率,而且在发酵终点酵母可以完全沉降实现菌体与产物的自动分离。
     酵母细胞的乙醇耐受性由多基因调控,改造转录因子是提高酵母细胞乙醇耐受性的有效策略。前期研究发现,培养基中添加锌离子可以显著提高酵母细胞的乙醇耐性。因此进一步深入研究了锌离子提高酵母细胞乙醇耐性的机理,从而寻找关键的代谢调控基因进行耐性菌株的构建。利用150g/L葡萄糖的培养基进行乙醇连续发酵,在培养基中添加0.05g/L的硫酸锌后,酵母细胞的乙醇耐受性提高,乙酸和丙酮酸等副产物及胞内活性氧水平下降,絮凝性也下降,但细胞的氮和麦角固醇含量提高。转录组与蛋白组分析共检测到330个转录表达差异基因和71个蛋白表达差异基因,表明锌离子可能通过调节细胞全局基因表达水平对代谢产生影响。转录组分析和蛋白组分析结果不完全一致,说明存在大量转录与翻译水平不一致的情况,推测锌对细胞代谢的调控存在转录和翻译后水平的修饰。受锌离子调控的主要代谢通路包括核糖体合成、糖酵解与乙醇生成、磷脂与麦角固醇合成、ROS响应及相关的氧化还原系统、细胞絮凝、胞内锌离子平衡及转录因子激活或抑制等。可以考虑选取这些途径中的相关酶和差异表达的转录因子作为后续乙醇耐性改造的靶点。还发现了94个功能未知的基因响应锌离子的添加,为进一步探讨锌离子提高酵母菌乙醇耐性的机理,并对关键的调控基因进行代谢工程改造奠定了基础。最后利用人工锌指蛋白技术进行了基因组工程改造,证明人工转录因子技术可以有效选育乙醇耐性提高的工业酿酒酵母。本论文的研究为进一步选育高效乙醇发酵的工业酿酒酵母、提高乙醇发酵效率奠定了基础。
Flocculation of Saccharomyces cerevisiae strains has raised great interest in industry due to its advantage in biomass recovery by sedimentation instead of centrifugation that is required by regular non-flocculating yeast, which consequently saves capital investment on centrifuges and energy consumption on centrifuge operation. However, constitutive flocculation of yeast cells has the disadvantage of slow growth and ethanol fermentation caused by mass transfer limitation. Therefore, inducible flocculation of yeast cells with the flocculation onset near the end of the fermentation is preferred. Moreover, improved ethanol tolerance ensures high yeast viability under high gravity fermentation conditions, and thus is important for fuel ethanol production to improve ethanol titer and save energy consumption for downstream processes such as ethanol distillation and stillage treatment. In this work, a platform for developing inducible flocculating yeast strains was established, and molecular mechanism underlying improved ethanol tolerance by zinc supplementation was investigated by transcriptomic and proteomic analysis, through which key genes involved in stress tolerance were proposed for developing robust industrial yeast strains for efficient ethanol fermentation.
     The flocculation phenotypes of S. cerevisiae were controlled by the expression of FLO genes, and thus the gene FLO1was cloned from the self-flocculating yeast SPSC01by PCR amplification, which was subsequently integrated into the chromosome of a non-flocculating industrial yeast Sc4126under the control of the trehalose-6-phosphate synthase1(TPS1) promoter from SPSC01, endowing the genetically modified strain an inducible flocculating phenotype in response to ethanol concentration. As a result, the flocculation of the recombinant strain was weak at low ethanol concentration, but was improved with ethanol accumulation. Almost all yeast cells flocculated at the end of the fermentation, which were recovered by sedimentation. Compared to the constitutive flocculation developed with the same host, no mass transfer limitation was observed with the inducible flocculating strain, which significantly improved its growth and ethanol fermentation performance. When TPS1cloned from the model yeast strain S288c with less STREs (stress response element) in the promoter region than that from SPSC01was employed, the response of the transformant's flocculation to ethanol stress was attenuated, retarding the occurrence of yeast flocculation, and in the meantime the flocculation strength was weakened, which further improved its growth and ethanol fermentation.
     Ethanol tolerance of yeast cells is regulated by multiple genes, and thus can be improved by engineering global transcriptional factors. In the previous studies, it was found that zinc supplementation improved ethanol tolerance of the self-flocculating yeast SPSC01. Further study was performed in this work to reveal the mechanism underlying this phenomenon, providing potential targets in the key pathways for metabolic engineering. When continuous ethanol fermentation with the medium containing150g/L glucose was performed under0.05g/L zinc sulfate supplementation conditions, improved yeast viability to ethanol-shock treatment was observed, and production of by-products such as acetic acid and pyruvate acid was decreased. It was also found that the intracellular ROS level was down-regulated, and nitrogen and ergosterol contents were both increased. Transcriptomic and proteomic analysis revealed a total of330differentially expressed genes in transcriptional levels and71differentially expressed genes in translational levels, indicating the global effect of Zn2+on the metabolism of yeast cells. The inconsistency of the transcriptional and translational variations provides insights on the abundant post-transcriptional or post-translational regulations of genes affected by Zn2+, which include the synthesis of ribosome proteins, glycolysis, ergosterol synthesis and phospholipids metabolism. On the other hand, ROS response and intracellular redox balance, as well as zinc homeostasis were also identified to be impacted by the zinc supplementation. Activation or repression of several transcriptional factors was proposed as potential targets for engineering yeast cells with improved ethanol tolerance. Moreover,94genes with unknown functions associated with the response of Zn2were also identified, which will be further studied for their roles in ethanol tolerance.
     Finally, artificial transcription factor technique employing zinc finger protein was proved to efficiently alter the global network of yeast metabolism, which results in breeding stable industrial yeasts with improved ethanol tolerance, and provides basis for further developing robust industrial yeasts for more efficient ethanol fermentation.
引文
[1]Kerr R. A. Climate change:global warming is changing the world [J]. Science,2007,316: 188-190.
    [2]王萌,陈章和.藻类生物柴油研究现状与展望[J].生命科学,2011,23:121-126.
    [3]Sanchez O. J., Cardona C. A. Trends in biotechnological production of fuel ethanol from different feedstocks [J]. Bioresource Technology,2008,99:5270-5295.
    [4]Balat M., Balat H. Recent trends in global production and utilization of bio-ethanol fuel [J]. Applied Energy,2009,86:2273-2282.
    [5]Chisti Y. Biodiesel from microalgae [J]. Biotechnology Advances,2007,25:294-306.
    [6]李志军.生物燃料乙醇发展现状,问题与政策建议[J].中国生物工程杂志,2008,28:139-142.
    [7]Maiorella B. L., Blanch H. W., Wilke C. R. Eeconomic evaluation of alternative ethanol fermentation processes [J]. Biotechnology and Bioengineering,1984,26:1003-1025.
    [8]靳胜英.世界燃料乙醇产业发展态势[J].石油科技论坛,2011,30:52-54.
    [9]U.S. Department of Energy. Current state of the US ethanol industry [R]. Washington, DC, 2010.
    [10]张福琴,边思颖,边钢月,等.燃料乙醇行业面临的形势及其技术展望[J].石油科技论坛,2010,29:15-19.
    [11]曹俐,吴方卫.中美生物燃料乙醇补贴政策比较研究[J].中国软科学,2011:16-26.
    [12]赵黛青,余颖琳,万英.我国能源的现状与发展[J].科学对社会的影响,2006,2:25-29.
    [13]张宁,蒋剑春,李翔宇,等.我国非粮燃料乙醇产业发展现状及前景展望[J].生物质化学工程,2011,45:47-50.
    [14]Zabaniotou A., loannidou O., Skoulou V. Rapeseed residues utilization for energy and 2nd generation biofuels [J]. Fuel,2008,87:1492-1502.
    [15]闫强,陈毓川,王安建,等.我国新能源发展障碍与应对:全球现状评述[J].地球学报,2010,31:759-767.
    [16]韦永贡.我国燃料乙醇的发展与对策[J].轻工科技,2012:145-147.
    [17]粱靓.生物质能源的成本分析[D].南京:南京林业大学,2008.
    [18]Thomas K. C., Hynes S. H., Ingledew W. M. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation [J]. Process Biochemistry,1996,31:321-331.
    [19]Thomas K., Hynes S., Jones A., et al. Production of fuel alcohol from wheat by VHG technology [J]. Applied Biochemistry and Biotechnology,1993,43:211-226.
    [20]Bai F. W., Chen L. J., Zhang Z., et al. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions [J]. Journal of Biotechnology,2004,110:287-293.
    [21]Jones A. M., Ingledew W. M. Fermentation of very high gravity wheat marsh prepared using fresh yeast autolysate [J]. Bioresource Technology,1994,50:97-101.
    [22]Jones A. M., Ingledew W. M. Fuel alcohol production:appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation [J]. Process Biochemistry,1994,29: 483-488.
    [23]Smogrovicova D., Patkova J., Domeny Z., et al. Improvement in beer fermentation under very high gravity conditions by entrapped yeast [J]. Minerva Biotecnologica,2000,12: 331-335.
    [24]Li F., Zhao X., Ge X., et al. An innovative consecutive batch fermentation process for very high gravity ethanol fermentation with self-flocculating yeast [J]. Applied Microbiology and Biotechnology,2009,84:1079-1086.
    [25]Bai F. W., Anderson W. A., Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks [J]. Biotechnology Advances,2008,26:89-105.
    [26]Kierstan M., Bucke C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels [J]. Biotechnology and Bioengineering,1977,19: 387-397.
    [27]Norton S., D'Amore T. Physiological effects of yeast cell immobilization:Applications for brewing [J]. Enzyme and Microbial Technology,1994,16:365-375.
    [28]Wang F. Z., Shen W., Rao Z. M., et al. Construction of a flocculating yeast for fuel ethanol production [J]. Biotechnology Letters,2008,30:97-102.
    [29]Stratford M. Yeast flocculation:Calcium specificity [J]. Yeast,1989,5:487-496.
    [30]Verstrepen K. J., Klis F. M. Flocculation, adhesion and biofilm formation in yeasts [J]. Molecular Microbiology,2006,60:5-15.
    [31]Verstrepen K., Derdelinckx G., Verachtert H., et al. Yeast flocculation:what brewers should know [J]. Applied Microbiology and Biotechnology,2003,61:197-205.
    [32]Verstrepen K. J., Jansen A., Lewitter F., et al. Intragenic tandem repeats generate functional variability [J]. Nature genetics,2005,37:986-990.
    [33]Smukalla S., Caldara M., Pochet N., et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast [J]. Cell,2008,135:726-737.
    [34]Bidard F., Bony M., Blondin B., et al. The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein [J]. Yeast,1995,11:809-822.
    [35]Stratford M. Yeast flocculation:Reconciliation of physiological and genetic viewpoints [J]. Yeast,1992,8:25-38.
    [36]Kapteyn J. C., Van Den Ende H., Klis F. M. The contribution of cell wall proteins to the organization of the yeast cell wall [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1426:373-383.
    [37]Verstrepen K. J., Reynolds T. B., Fink G. R. Origins of variation in the fungal cell surface [J]. Nature Reviews Microbiology,2004,2:533-540.
    [38]Straver M. H., Smit G., Kijne J. W. Purification and partial characterization of a flocculin from brewer's yeast [J]. Applied and Environmental Microbiology,1994,60:2754-2758.
    [39]Dranginis A. M., Rauceo J. M., Coronado J. E., et al. A biochemical guide to yeast adhesins:glycoproteins for social and antisocial occasions [J]. Microbiology and Molecular Biology Reviews,2007,71:282-294.
    [40]Guo B., Styles C. A., Feng Q., et al. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating [J]. Proceeding of National Academy Sciences of United States of America,2000,97:12158-12163.
    [41]Bony M., Thines-Sempoux D., Barre P., et al. Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flolp [J]. Journal of bacteriology,1997, 179:4929-4936.
    [42]Liu N., Wang D., Wang Z. Y., et al. Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae [J]. FEMS Yeast Research,2007,7:1362-1370.
    [43]Lo W. S., Dranginis A. M. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin [J]. Journal of Bacteriology,1996,178:7144-7151.
    [44]Bayly J. C, Douglas L. M., Pretorius I. S., et al. Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae [J]. FEMS Yeast Research,2005,5:1151-1156.
    [45]Fichtner L., Schulze F., Braus G. H. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c [J]. Molecular Microbiology,2007,66:1276-1289.
    [46]Tanner W., Lehle L. Protein glycosylation in yeast [J]. Biochimica et Biophysica Acta, 1987,906:81.
    [47]Stratford M. Yeast flocculation:a new perspective [J]. Adv Microb Physiol,1992,33: 71.
    [48]Halme A., Bumgarner S., Styles C., et al. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast [J]. Cell,2004,116:405-415.
    [49]Claro F. B., Rijsbrack K., Soares E. V. Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress [J]. Journal of Applied Microbiology,2007,102: 693-700.
    [50]曹晓霞,金玉来.外部因素对酵母凝聚性影响的初步探讨[J].江苏农业研究,2000,21:60-63.
    [51]Eddy A., Rudin A. The structure of the yeast cell wall. I. Identification of charged groups at the surface [J]. Proceedings of the Royal Society of London Series B-Biological Sciences,1958,148:419-432.
    [52]Sieiro C., Reboredo N. M., Villa T. G. Flocculation of industrial and laboratory strains of Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology,1995,14:461-466.
    [53]Stratford M., Assinder S. Yeast flocculation:Flo1 and NewFlo phenotypes and receptor structure [J]. Yeast,2004,7:559-574.
    [54]Cunha A. F., Missawa S. K., Gomes L. H., et al. Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production [J]. FEMS Yeast Research,2006, 6:280-287.
    [55]Stratford M. Yeast flocculation:calcium specificity [J]. Yeast,2004,5:487-496.
    [56]葛旭萌.自絮凝酵母颗粒在线表征与发酵过程动力学[D].大连:大连理工大学,2005.
    [57]Wickramasinghe S. R., Leong Y.-K., Mondal S., et al. Influence of cationic flocculant properties on the flocculation of yeast suspensions [J]. Advanced Powder Technology, 2010,21:374-379.
    [58]Stratford M., Assinder S. Yeast flocculation:Flol and NewFlo phenotypes and receptor structure [J]. Yeast,1991,7:559-574.
    [59]张博润,任健,刘玉方.酵母菌絮凝机理研究进展及应用前景[J].微生物学通报,1996,23:307-311.
    [60]Jin Y. L., Speers R. A. Effect of enviromnental conditions on the flocculation of Saccharomyces cerevisiae [J]. Journal of the American Society of Brewing Chemists, 2000,58:108-116.
    [61]Reynolds T. B., Jansen A., Peng X., et al. Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients [J]. Eukaryot Cell,2008,7:122-130.
    [62]Fernandes P., Moradas-Ferreira P., Sousa M. Flocculation of Kluyveromyces marxianus is induced by a temperature upshift [J]. Yeast,2004,9:859-866.
    [63]Sampermans S., Mortier J., Soares E. Flocculation onset in Saccharomyces cerevisiae: the role of nutrients [J]. Journal of Applied Microbiology,2004,98:525-531.
    [64]Sosa O. A., Farias M. E. Influence of culture and nutritional conditions on self-flocculation of a Kloeckera apiculata wine strain [J]. Food Technology and Biotechnology,2012,50:66.
    [65]Teunissen A., Holub E., Van Der Hucht J., et al. Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae [J]. Yeast,2004,9:423-427.
    [66]Ogata T. Nitrogen starvation induces expression of Lg-FLO1 and flocculation in bottom-fermenting yeast [J]. Yeast,2012.
    [67]Straver M. H., vd Aar P. C., Smit G., et al. Determinants of flocculence of brewer's yeast during fermentation in wort [J]. Yeast,1993,9:527-532.
    [68]Kamada K., Murata M. On the mechanism of brewer's yeast flocculation [J]. Agricultural and Biological Chemistry,1984,48:2423.
    [69]Teunissen A. W., Van Den Berg J. A., Yde Steensma H. Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae [J]. Yeast,2004,11:435-446.
    [70]Powell C. D., Quain D. E., Smart K. A. The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation [J]. FEMS Yeast Research,2003, 3:149-157.
    [71]Barker M. G., Smart K. A. Morphological changes associated with the cellular aging of a brewing yeast strain [J]. Journal of the American Society of Brewing Chemists,1996,54: 121-126.
    [72]Soares E. V., Mota M. Flocculation onset, growth phase, and genealogical age in Saccharomyces cerevisiae [J]. Canadian Journal of Microbiology,1996,42:539-547.
    [73]Powell C. D., Van Zandycke S. M., Quain D. E., et al. Replicative ageing and senescence in Saccharomyces cerevisiae and the impact on brewing fermentations [J]. Microbiology, 2000,146:1023-1034.
    [74]Rhymes M. R., Smart K. A. Effect of storage conditions on the flocculation and cell wall characteristics of an ale brewing yeast strain [J]. Journal of the American Society of Brewing Chemists,2001,59:32-38.
    [75]Wilcocks K. L., Smart K. A. The importance of surface charge and hydrophobicity for the flocculation of chain-forming brewing yeast strains and resistance of these parameters to acid washing [J]. FEMS Microbiology Letters,1995,134:293-297.
    [76]Speers R. A., Wan Y. Q., Jin Y. L., et al. Effects of fermentation parameters and cell wall properties on yeast flocculation [J]. Journal of the Institute of Brewing,2006,112: 246-254.
    [77]Van Holle A., Machado M. D., Soares E. V. Flocculation in ale brewing strains of Saccharomyces cerevisiae:re-evaluation of the role of cell surface charge and hydrophobicity [J]. Applied Microbiology and Biotechnology,2012,93:1221-1229.
    [78]Miki B. L., Poon N. H., James A. P., et al. Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae [J]. Journal of Bacteriology,1982,150:878-889.
    [79]Singh R., Bhari R., Kaur H. P. Characteristics of yeast lectins and their role in cell-cell interactions [J]. Biotechnology Advances,2011.
    [80]Teunissen A. W., Steensma H. Y. Review:the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family [J]. Yeast,1995,11: 1001-1013.
    [81]Watari J., Takata Y., Ogawa M., et al. Breeding of flocculent industrial Saccharomyces cerevisiae strains by introducing the flocculation gene FLO1 [J]. Agric Biol Chem,1991, 55:1547-1552.
    [82]Teunissen A. W., van den Berg J. A., Steensma H. Y. Localization of the dominant flocculation genes FLOS and FLOS of Saccharomyces cerevisiae [J]. Yeast,1995,11: 735-745.
    [83]Bidard F., Blondin B., Dequin S., et al. Cloning and analysis of a FLO5 flocculation gene from S. cerevisiae [J]. Current Genetics,1994,25:196-201.
    [84]Soares E. V. Flocculation in Saccharomyces cerevisiae:a review [J]. Journal of Applied Microbiology,2011,110:1-18.
    [85]Zara S., Bakalinsky A. T., Zara G., et al. FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae [J]. Applied Environmental Microbiology, 2005,71:2934-2939.
    [86]Braus G. H., Grundmann O., Bruckner S., et al. Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae [J]. Molecular Biology of the Cell,2003,14:4272-4284.
    [87]Rupp S., Summers E., Lo H. J., et al. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene [J]. EMBO J, 1999,18:1257-1269.
    [88]Bester M. C., Pretorius I. S., Bauer F. F. The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+ -dependent flocculation by Flo8p and Mssllp [J]. Current Genetics,2006,49:375-383.
    [89]Kobayashi O., Yoshimoto H., Sone H. Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae [J]. Curr Genet,1999,36:256-261.
    [90]Van Mulders S. E., Christianen E., Saerens S. M., et al. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae [J]. FEMS Yeast Research, 2009,9:178-190.
    [91]Govender P., Domingo J. L., Bester M. C., et al. Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology,2008,74:6041-6052.
    [92]Marquez J. A., Pascual-Ahuir A., Proft M., et al. The Ssn6-Tupl repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and-independent genes [J]. The EMBO Journal,1998,17:2543-2553.
    [93]Stratford M. Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae [J]. Yeast,1989,5 Spec No:S441-445.
    [94]Fleming A. B., Pennings S. Antagonistic remodelling by Swi-Snf and Tupl-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation [J]. EMBO J, 2001,20:5219-5231.
    [95]Liu H., Styles C. A., Fink G. R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth [J]. Genetics,1996,144:967.
    [96]Zheng W., Zhao H., Mancera E., et al. Genetic analysis of variation in transcription factor binding in yeast [J]. Nature,2010,464:1187-1191.
    [97]Verstrepen K. J., Fink G. R. Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi [J]. Annual Review of Genetics,2009,43:1-24.
    [98]Zupancic M. L., Frieman M., Smith D., et al. Glycan microarray analysis of Candida glabrata adhesin ligand specificity [J]. Molecular Microbiology,2008,68:547-559.
    [99]Martinez-Lopez R., Monteoliva L., Diez-Orejas R., et al. The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans [J]. Microbiology,2004,150:3341-3354.
    [100]Verstrepen K. J., Derdelinckx G., Delvaux F. R., et al. Late fermentation expression of FLO1 in Saccharomyces cerevisiae [J]. Journal of American Society of Brewing Chemists, 2001,59:69-76.
    [101]Nonklang S., Ano A., Abdel-Banat B. M., et al. Construction of flocculent Kluyveromyces marxianus strains suitable for high-temperature ethanol fermentation [J]. Bioscience, Biotechnology and Biochemistry,2009,73:1090-1095.
    [102]Wang F. Z., Shen W., Rao Z. M., et al. Construction of a flocculating yeast for fuel ethanol production [J]. Biotechnology Letters,2008,30:97-102.
    [103]Chambers P., Issaka A., Palecek S. P. Saccharomyces cerevisiae JEN1 promoter activity is inversely related to concentration of repressing sugar [J]. Applied Environmental Microbiology,2004,70:8-17.
    [104]Berry D. B., Gasch A. P. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast [J]. Molecular Biology of the Cell,2008,19: 4580-4587.
    [105]Bai F. W., Ge X. M., Anderson W. A., et al. Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation [J]. Biotechnology and Bioengineering,2009,102:113-121.
    [106]D'Amore T., Stewart G. G. Ethanol tolerance of yeast [J]. Enzyme and Microbial Technology,1987,9:322-330.
    [107]D'amore T., Panchal C. J., Russell I., et al. A study of ethanol tolerance in yeast [J]. Critical Reviews in Biotechnology,1989,9:287-304.
    [108]Gibson B. R., Lawrence S. J., Leclaire J. P. R., et al. Yeast responses to stresses associated with industrial brewery handling [J]. FEMS Microbiology Reviews,2007,31: 535-569.
    [109]Ma M., Liu Z. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae [J]. Microbial Stress Tolerance for Biofuels,2012:77-115.
    [110]Ma M., Liu L. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae [J]. BMC microbiology, 2010,10:169.
    [111]Xiao D., Wu S., Zhu X., et al. Effects of soya fatty acids on cassava ethanol fermentation [J]. Applied Biochemistry and Biotechnology,2010,160:410-420.
    [112]You K. M., Rosenfield C. L., Knipple D. C. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content [J]. Applied and Environmental microbiology,2003,69:1499-1503.
    [113]Shobayashi M., Mitsueda S.-I., Ago M., et al. Effects of culture conditions on ergosterol biosynthesis by Saccharomyces cerevisiae [J]. Bioscience, Biotechnology and Biochemistry,2005,69:2381-2388.
    [114]Swan T. M., Watson K. Stress tolerance in a yeast sterol auxotroph:role of ergosterol, heat shock proteins and trehalose [J]. FEMS Microbiology Letters,2006,169:191-197.
    [115]林晓珊,江宏文,张毅.酵母麦角固醇生物合成及其基因调控的研究[J].生物学杂志,2010:83-86.
    [116]徐桂红.锌对自絮凝酵母乙酸胁迫的保护作用及分子机理研究[D].大连:大连理工大学,2012.
    [117]Cartwright C. P., Verzey F. J., Rose A. H. Effect of ethanol on activity of the plasma-membrane ATPase in, and accumulation of glycine by Saccharomyces cerevisiae [J]. Journal of General Microbiology,1987,133:857-865.
    [118]Fernandes A. R., Sa-Correia I. Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase [J]. Yeast,2003,20:207-219.
    [119]Hirasawa T., Yoshikawa K., Nakakura Y., et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis [J]. Journal of Biotechnology,2007,131:34-44.
    [120]Terao Y., Nakamori S., Takagi H. Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology,2003,69:6527-6532.
    [121]Takagi H., Takaoka M., Kawaguchi A., et al. Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2005,71:8656-8662.
    [122]胡纯铿,白凤武,安利佳.膜蛋白氨基酸组成通过改变膜流动性影响粟酒裂殖酵母和酿酒酵母融合株耐酒精能力[J].生物工程学报,2005,21.
    [123]Ma M., Liu Z. L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology,2010,87:829-845.
    [124]Ogawa Y., Nitta A., Uchiyama H., et al. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast [J]. Journal of Bioscience and Bioengineering,2000,90:313-320.
    [125]Gomes F. C., Pataro C., Guerra J. B., et al. Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaca [J]. Canadian Journal of Microbiology,2002,48:399-406.
    [126]Glover J. R., Lindquist S. Hsp104, Hsp70, and Hsp40:a novel chaperone system that rescues previously aggregated proteins [J]. Cell,1998,94:73-82.
    [127]Craig E. A., Gambill B. D., Nelson R. J. Heat shock proteins:molecular chaperones of protein biogenesis [J]. Microbiological Reviews,1993,57:402-414.
    [128]Watson K., Cavicchioli R. Acquisition of ethanol tolerance in yeast cells by heat shock [J]. Biotechnology Letters,1983,5:683-688.
    [129]Piper P., Talreja K., Panaretou B., et al. Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold [J]. Microbiology,1994,140:3031-3038.
    [130]Piper P. W., Ortiz-Calderon C., Holyoak C., et al. Hsp30, the integral plasma membrane heat shock protein of Saccharmyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase [J]. Cell stress & chaperones,1997,2:12.
    [131]Seymour I. J., Piper P. W. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors [J]. Microbiology,1999,145:231-239.
    [132]Quan X., Rassadi R., Rabie B., et al. Regulated nuclear accumulation of the yeast hsp70 Ssa4p in ethanol-stressed cells is mediated by the N-terminal domain, requires the nuclear carrier Nmd5p and protein kinase C [J]. The FASEB Journal,2004,18:899-901.
    [133]Inoue T., Wang Y., Jefferies K., et al. Structure and regulation of the V-ATPases [J]. Journal of Bioenergetics and Biomembranes,2005,37:393-398.
    [134]Aguilera A., Benitez T. Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae [J]. Archives of Microbiology,1985,142:389-392.
    [135]Costa V., Amorim M., Reis E., et al. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase [J]. Microbiology,1997,143:1649-1656.
    [136]Teixeira M. C., Raposo L. R., Mira N. P., et al. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol [J]. Applied and Environmental Microbiology,2009,75:5761-5772.
    [137]Estruch F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast [J]. FEMS Microbiology Reviews,2006,24:469-486.
    [138]Cabiscol E., Piulats E., Echave P., et al. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae [J]. Journal of Biological Chemistry,2000,275: 27393-27398.
    [139]Kobayashi N., McEntee K. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology,1993,13:248-256.
    [140]Schuller C, Brewster J., Alexander M., et al. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene [J]. The EMBO journal,1994,13:4382.
    [141]Martinez-Pastor M., Marchler G., Schuller C., et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE) [J]. The EMBO journal,1996,15:2227.
    [142]Pelet S., Peter M. Dynamic processes at stress promoters regulate the bimodal expression of HOG response genes [J]. Gene Expression,2011,332:732-735.
    [143]Pina C., Antonio J., Hogg T. Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation [J]. Biotechnology Letters,2005, 26:1521-1527.
    [144]Nguyen D. T., Alarco A. M., Raymond M. Multiple Yaplp-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents [J]. Journal of Biological Chemistry,2001,276:1138-1145.
    [145]Ferguson S. B., Anderson E. S., Harshaw R. B., et al. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsflp-dependent manner in Saccharomyces cerevisiae [J]. Genetics,2005,169: 1203-1214.
    [146]Lee P., Cho B. R., Joo H. S., et al. Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsfl and Msn2/Msn4 [J]. Molecular Microbiology, 2008,70:882-895.
    [147]Nicholls S., Straffon M., Enjalbert B., et al. Msn2-and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans [J]. Eukaryotic Cell,2004,3:1111-1123.
    [148]Frand A., Kaiser C. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum [J]. Molecular Cell,1998,1:161.
    [149]Walker G. M., Maynard A. Accumulation of magnesium ions during fermentative metabolism in Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology & Biotechnology,1997,18:1-3.
    [150]De Freitas J., Wintz H., Hyoun Kim J., et al. Yeast, a model organism for iron and copper metabolism studies [J]. Biometals,2003,16:185-197.
    [151]薛闯.锌离子添加和颗粒尺度调控对自絮凝酵母SPSC01乙醇耐性的影响及其作用机制[D].大连:大连理工大学,2010.
    [152]薛闯,赵心清,葛旭萌,等.研究论文锌离子对自絮凝酵母乙醇耐性和絮凝颗粒大小的影响[J].化工学报,2008,59.
    [153]Stephanopoulos G., Aristidou A. A., Nielsen J. H., et al. Metabolic engineering: principles and methodologies, Academic Press,1998.
    [154]李荣杰.微生物诱变育种方法研究进展[J].河北农业科学,2009,13:73-76.
    [155]Haynes R. H., Kunz B. A. DNA repair and mutagenesis in yeast [J]. Cold Spring Harbor Monograph Archive,1981,11:371-414.
    [156]顾蕾,陆玲,袁生.红酵母原生质体制备及其紫外诱变育种的研究[J].食品工业科技,2004,25:60-62.
    [157]王璞,田沈,王丹,等.高耐毒性酿酒酵母的紫外诱变选育[J].可再生能源,2007,25.
    [158]郭继平,马莺.紫外诱变选育米曲霉高产蛋白酶菌株[J].微生物学通报,2007,34:246-250.
    [159]陈慧黠.介质阻挡放电等离子体对酵母细胞作用机理及诱变研究[D].大连:大连理工大学,2010.
    [160]董晓宇,李爽,侯英敏,等.大气压冷等离子体诱变产1,3-丙二醇菌株Klebsiella pneumoniae [J]过程工程学报,2008,8:555-560.
    [161]于鹏,张兰威,许倩,等.亚硝基胍诱变选育丁二酮高产菌株[J].乳业科学与技术,2006,28:218-220.
    [162]文铁桥,赵学慧.克鲁维酵母与酿酒酵母属间原生质体融合构建高温酵母菌株[J].菌物系统,1999,18:89-93.
    [163]KoжиHa T.,梁志国.酵母原生质体在遗传工程上的应用[J].中国生物工程杂志,1982,1:006.
    [164]李洁,李凡,刘晨光,等.高效发酵木糖生产乙醇酵母菌株的构建[J].中国生物工程杂志,2009,29:74-78.
    [165]何秀良,鞠京丽,蔡崇光,等.用原生质体融合构建高产酒精酵母株[J].微生物工程学报,1996,12:163-167.
    [166]Zhang Y.-X., Perry K., Vinci V. A., et al. Genome shuffling leads to rapid phenotypic improvement in bacteria [J]. Nature,2002,415:644-646.
    [167]史晓昆,王秀然,刘东波Genome shuffling技术在微生物遗传育种中的应用[J].农业与技术,2005,25:145-147.
    [168]Stemmer W. P. Molecular breeding of genes, pathways and genomes by DNA shuffling [J]. Journal of Molecular Catalysis B:Enzymatic,2002,19:3-12.
    [169]李洁.高效发酵木糖生产乙醇酵母菌株的构建[D].大连理工大学,2010.
    [170]Stephanopoulos G. Metabolic engineering by genome shuffling [J]. Nature Biotechnology,2002,20:666-668.
    [171]Alper H., Stephanopoulos G. Global transcription machinery engineering:a new approach for improving cellular phenotype [J]. Metab Eng,2007,9:258-267.
    [172]Santos C. N. S., Stephanopoulos G. Combinatorial engineering of microbes for optimizing cellular phenotype [J]. Current opinion in chemical biology,2008,12: 168-176.
    [173]赵心清,姜如娇,李宁,等.利用SPT3的定向进化提高工业酿酒酵母乙醇耐受性[J].生物工程学报,2010,26:159-164.
    [174]姜如娇.SPT3定向进化提高酿酒酵母乙醇耐性的研究[D].大连:大连理工大学,2009.
    [175]Sera T. Zinc-finger-based artificial transcription factors and their applications [J]. Advanced Drug Delivery Reviews,2009,61:513-526.
    [176]Park K., Lee D., Lee H., et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors [J]. Nature Biotechnology,2003,21: 1208-1214.
    [177]Brown S., Oliver S., Harrison D., et al. Ethanol inhibition of yeast growth and fermentation:differences in the magnitude and complexity of the effect [J]. Applied Microbiology and Biotechnology,1981,11:151-155.
    [178]van Voorst F., Houghton-Larsen J., Jφnson L., et al. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress [J]. Yeast, 2006,23:351-359.
    [179]Rossignol T., Dulau L., Julien A., et al. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation [J]. Yeast,2003,20:1369-1385.
    [180]Voth W. P., Richards J. D., Shaw J. M., et al. Yeast vectors for integration at the HO locus [J]. Nucleic Acids Res,2001,29:e59.
    [181]Burke D., Dawson D., Stearns T. Methods in yeast genetics:a Cold Spring Harbor Laboratory course manual, CSHL Press,2000.
    [182]Kobayashi O., Hayashi N., Kuroki R., et al. Region of Flol proteins responsible for sugar recognition [J]. Journal of bacteriology,1998,180:6503-6510.
    [183]He L., Zhao X., Bai F.-W. Engineering industrial Saccharomyces cerevisiae strain with the FZO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production [J]. Applied Energy,2012.
    [184]张秋美.酿酒酵母乙醇响应报告载体的构建和研究[D].大连:大连理工大学,2009.
    [185]Moskvina E., Schuller C., Maurer C., et al. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements [J]. Yeast,1998,14: 1041-1050.
    [186]Hottiger T., Boller T., Wiemken A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts [J]. FEBS Letters,1987,220:113-115.
    [187]Steen E. J., Chan R., Prasad N., et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol [J]. Microbial Cell Factories,2008,7.
    [188]李凡.絮凝酵母重复批次高浓度乙醇发酵的研究[D].大连理工大学,2010.
    [189]Blazeck J., Garg R., Reed B., et al. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters [J]. Biotechnology and Bioengineering,2012,109:2884-2895.
    [190]Mulet J. M., Leube M. P., Kron S. J., et al. A novel mechanism of ion homeostasis and salt tolerance in yeast:the Hal4 and Hal5 protein kinases modulate the Trkl-Trk2 potassium transporter [J]. Molecular and Cellular Biology,1999,19:3328-3337.
    [191]Batiza A. F., Schulz T., Masson P. H. Yeast respond to hypotonic shock with a calcium pulse [J]. Journal of Biological Chemistry,1996,271:23357-23362.
    [192]Foury F. Low iron concentration and aconitase deficiency in a yeast frataxin homologue deficient strain [J]. FEBS Letters,1999,456:281-284.
    [193]Wu Y., Xue C., Chen L., et al. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum [J]. Journal of Biotechnology,2013,10,165(1):18-21.
    [194]雷娟娟.粒径分布对絮凝酵母SPSC01乙醇耐受能力的影响及其生化基础研究[D].大连理工大学,2007.
    [195]Allen S. A., Clark W., McCaffery J. M., et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae [J]. Biotechnol Biofuels, 2010,3:1-10.
    [196]Bloch K. E. Sterol, structure and membrane function [J]. Critical Reviews in Biochemistry and Molecular Biology,1983,14:47-92.
    [197]Mishra P., Kaur S. Lipids as modulators of ethanol tolerance in yeast [J]. Applied Microbiology and biotechnology,1991,34:697-702.
    [198]Swan T. M., Watson K. Stress tolerance in a yeast sterol auxotroph:role of ergosterol, heat shock proteins and trehalose [J]. FEMS Microbiology Letters,1998,169:191-197.
    [199]Madden K., Snyder M. Cell polarity and morphogenesis in budding yeast [J]. Annual Reviews in Microbiology,1998,52:687-744.
    [200]卢庄,王京兰,隋少卉,等.还原烷基化反应对肽段质谱鉴定影响的初步研究[C].2005,中国生物化学与分子生物学会.中国蛋白质组学第三届学术大会论文摘要.
    [201]Gasch A. P., Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation [J]. Functional & Integrative Genomics,2002,2:181-192.
    [202]Biswas S., Chida A. S., Rahman I. Redox modifications of protein-thiols:emerging roles in cell signaling [J]. Biochemical Pharmacology,2006,71:551.
    [203]Warner J. R. The economics of ribosome biosynthesis in yeast [J]. Trends in Biochemical Sciences,1999,24:437-440.
    [204]Martin D. E., Soulard A., Hall M. N. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1 [J]. Cell,2004,119:969.
    [205]D'Autreaux B., Toledano M. B. ROS as signalling molecules:mechanisms that generate specificity in ROS homeostasis [J]. Nature Reviews Molecular Cell Biology,2007,8: 813-824.
    [206]Keyse S. M., Emslie E. A. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase [J].1992, Nature,15,359(6396):644-647.
    [207]Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing [J]. Nature,2000:239-247.
    [208]Jamieson D. J. Oxidative stress responses of the yeast Saccharomyces cerevisiae [J]. Yeast,1998,14:1511-1527.
    [209]Tan S., Greetham D., Raeth S., et al. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae [J]. Journal of Biological Chemistry,2010,285:6118-6126.
    [210]Wood Z. A., Schroder E., Robin Harris J., et al. Structure, mechanism and regulation of peroxiredoxins [J]. Trends in Biochemical Sciences,2003,28:32-40.
    [211]Raitt D. C., Johnson A. L., Erkine A. M., et al. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsfl in vivo and is required for the induction of heat shock genes by oxidative stress [J]. Molecular Biology of the Cell,2000,11: 2335-2347.
    [212]Shenton D., Smirnova J. B., Selley J. N., et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis [J]. Journal of Biological Chemistry,2006,281:29011-29021.
    [213]Iwanyshyn W. M., Han G., Carman G., Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc [J]. Journal of Biological Chemistry,2004,279: 21976-21983.
    [214]Eide D. J. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae [J]. Journal of Biological Chemistry,2009,284:18565-18569.
    [215]Wu C. Y., Bird A., Chung L., et al. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae [J]. BMC genomics,2008,9: 370.
    [216]Zhao H., Butler E., Rodgers J., et al. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements [J]. Journal of Biological Chemistry,1998,273:28713-28720.
    [217]Park K. S., Lee D., Lee H., et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors [J]. Nature biotechnology,2003,21: 1208-1214.
    [218]董晓宇.大气压冷等离子体对Klebsiella pneumoniae火菌机制和诱变研究[D].大连:大连理工大学,2010.
    [219]李倩,赵心清,贺雷雨,等.自絮凝工业酒精酵母营养缺陷型的筛选和鉴定[J].工业微生物,2009,39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700