酿酒酵母ALD4基因敲除与GPD1基因沉默研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙酸与甘油是酿酒酵母乙醇发酵过程主要的副产物。本研究通过敲除酿酒酵母Y01乙醛脱氢酶ALD4基因,获得了ALD4基因缺失的突变体DY01;通过构建反义表达载体抑制酿酒酵母甘油脱氢酶关键基因GPD1的转录,以促进乙醇发酵。结果如下:
     1.采用以PCR为基础的loxP-KanMX-loxP序列组件和Cre/loxP删除系统删除了酿酒酵母工程菌Y01乙醛脱氢酶ALD4基因,获得突变株DY01;酿酒酵母ALD4缺失菌株DY01发酵液乙醇比出发菌株酿酒酵母Y01提高了6.88%。
     2.通过构建酿酒酵母实验菌株INVScl甘油脱氢酶GPD1基因5'UTR反义表达载体pYES2.0-GPD1,实验组比对照组的3-磷酸甘油脱氢酶(GPDH)的比活力最大下降了24.03%;甘油产量含量下降幅度最大达到了25.43%,而且甘油含量的下降滞后于3.磷酸甘油脱氢酶活性的下降。
     3.通过构建酿酒酵母突变株DY01甘油脱氢酶GPD1基因5'UTR反义表达载体pYES2.0-GPD1/KanMX,获得酿酒酵母DRY01菌株;酿酒酵母DRY01菌株的甘油脱氢酶(GPDH)的比活力比出发菌株DY01下降了20.04%;甘油含量下降幅度最大达到了19.14%;同时,酿酒酵母DRY01发酵液乙醇含量比酿酒酵母DY01提高了9.74%,比原始菌株Y01乙醇含量提高了14.01%。
     建立在酵母高效同源重组机制的loxP-KanMX.loxP删除组件与Cre/loxP系统是进行酿酒酵母基因改良育种与酿酒酵母基因功能相关研究的有效方法,突破了工业酿酒酵母缺乏有效选择标记与遗传多样性的限制。酿酒酵母ALD4基因的缺失,有利于乙醇代谢途径。酿酒酵母工程菌株DY01 GPD1基因mRNA 5'UTR的反义RNA能够有效的抑制酿酒酵母工程菌株DY01GPD1基因的转录,触发沉默该基因的表达;为提高甘蔗等生物质发酵燃料乙醇效率迈出重要一步,为酿酒酵母工程菌的基因改良奠定了基础。
Acetic acid and glycerol are the major by-product in Saccharomyces cerevisiae ethanol fermentation.In this paper,S.cerevisiae Y01 aldehyde dehydrogenase ALD4 gene was disrupted.ALD4 gene deletion mutants DY01 was obtained.The production of S.cerevisiae ethanol was increased by GPDl silenced via antisense expression vector. The results were described as follows:
     1, PCR-based loxP-KanMX-loxP and Cre/loxP system apply to delete the industrial strain S.cerevisiae Y01 aldehyde dehydrogenase ALD4 gene.The production of ethanol was improved with 6.88% compared to the original strain Y01.
     2, Glycerol dehydrogenase GPDl gene 5'UTR Antisense expression vector pYES2.0-GPD1 was constructed for S.cerevisiae INVScl. When compared to the original strain, glycerol phosphate dehydrogenase (GPDH) activity 24.03% reduction and glycerol formation 25.43% reduction respectively.
     3, Antisense expression vector pYES2.0-GPDl/KanMX was constructed for glycerol dehydrogenase GPD1 gene 5'UTR of S.cerevisiae mutant strain DY01.When compared to the original strain DY01, S.cerevisiae DRY01glycerol dehydrogenase (GPDH) activity 20.04% reduction, glycerol formation 19.14% reduction respectively. At same time, the production of S.cerevisiae DRY01 ethanol fermentation increased by 9.74% compared with DY01.
     LoxP-KanMX-loxP gene disruption cassette and Cre/loxP system is an effective way to genetically modified via homologous integration,which breaks through difficulties of genetic engineers in industrial S.cerevisiae. We are confornted with lacking effective selectable marker and genetic diversity in industrial S.cerevisiae strain. ALD4 gene deleting is good for ethanol metabolism pathway in industrial S.cerevisiae.Antisence RNA complementary the 5'UTR of GPD1 mRNA triggers effective silencing in S.cerevisiae industrial strain DY01.
引文
[1]袁振宏,罗文,吕鹏梅,et al.生物质能产业现状与发展前景[J].化工进展.2009,28(10):1687-1692.
    [2]司晶星,赵文甲,金晶.燃料乙醇的研究进展[J].硅谷.2009,(11).
    [3]柳羽丰,王滨生,王佳祥.非粮燃料乙醇发展综述[J].化学工程师.2009,166(07):53-55.
    [4]Steen EJ, Chan R, Prasad N, et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol[J]. Microb Cell Fact.2008,7:36.
    [5]Cordier H, Mendes F, Vasconcelos I, et al. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production[J]. Metab Eng.2007, 9(4):364-378.
    [6]Kong QX, Gu JG, Cao LM, et al. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae[J]. Biotechnol Lett.2006, 28(24):2033-2038.
    [7]Oldenburg KR, Vo KT, Michaelis S, et al. Recombination-mediated PCR-directed plasmid construction in vivo in yeast[J]. Nucleic acids research.1997,25(2):451-452.
    [8]Norbeck J, Blomberg A. Metabolic and Regulatory Changes Associated with Growth of Saccharomyces cerevisiae in 1.4 M NaCl. EVIDENCE FOR OSMOTIC INDUCTION OF GLYCEROL DISSIMILATION VIA THE DIHYDROXYACETONE PATHWAY[J]. Journal of Biological Chemistry.1997,272(9):5544.
    [9]Boubekeur S, Bunoust O, Camougrand N, et al. A Mitochondrial Pyruvate Dehydrogenase Bypass in the Yeast Saccharomyces cerevisiae[J]. Journal of Biological Chemistry.1999, 274(30):21044-21048.
    [10]刘擎,余龙.酵母:一种模式生物[J].生命的化学2000,20(002):61-65.
    [11]Saint-Prix F, Bonquist L,Dequin S. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose:the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation[J]. Microbiology.2004,150(Pt 7):2209-2220.
    [12]Hou J, Vemuri GN, Bao X, et al. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol.2009,82(5):909-919.
    [13]Navarro-Avino JP, Prasad R, Miralles VJ, et al. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes[J]. Yeast.1999,15(10A):829-842.
    [14]Boubekeur S, Camougrand N, Bunoust O, et al. Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae[J]. European journal of biochemistry/FEBS.2001,268(19):5057-5065.
    [15]White WH, Skatrud PL, Xue Z, et al. Specialization of Function Among Aldehyde Dehydrogenases The ALD2 and ALD3 Genes Are Required for (3-Alanine Biosynthesis in Saccharomyces cerevisiae[J]. Genetics.2003,163(1):69-77.
    [16]Kurita O, Nakabayashi T,Saitho K. Isolation and characterization of a high-acetate-producing sake yeast Saccharomyces cerevisiae[J]. J Biosci Bioeng.2003,95(1):65-71.
    [17]Wang Z, Zhuge J, Fang H, et al. Glycerol production by microbial fermentation A review[J]. Biotechnology Advances.2001,19(3):201-223.
    [18]Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology.1994,14(6):4135-4144.
    [19]Kajiwara Y, Ogawa K, Takashita H, et al. Enhanced glycerol production in Shochu yeast by heat-shock treatment is due to prolonged transcription of GPD1[J]. Journal of Bioscience and Bioengineering.2000,90(1):121-123.
    [20]Michnick S, Roustan JL, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase[J]. Yeast.1997,13(9):783-793.
    [21]Remize F, Cambon B, Barnavon L, et al. Glycerol formation during wine fermentation is mainly linked to GPD1p and is only partially controlled by the HOG pathway[J]. Yeast.2003, 20(15):1243-1253.
    [22]Ostergaard S, Olsson L,Nielsen J. Metabolic Engineering of Saccharomyces cerevisiae[J]. Microbiology and Molecular Biology Reviews.2000,64(1):34-50.
    [23]Cambon B, Monteil V, Remize F, et al. Effects of GPD1 Overexpression in Saccharomyces cerevisiae Commercial Wine Yeast Strains Lacking ALD6 Genes[J]. Applied and Environmental Microbiology.2006,72(7):4688-4694.
    [24]Remize F, Roustan JL, Sablayrolles JM, et al. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in By-product formation and to a stimulation of fermentation rate in stationary phase[J]. Appl Environ Microbiol.1999,65(1):143-149.
    [25]Taherzadeh MJ, Adler L,Liden G. Strategies for enhancing fermentative production of glycerol—a review[J]. Enzyme and Microbial Technology.2002,31(1-2):53-66.
    [26]Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, et al. Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of 1-Arabinose[J]. Applied and Environmental Microbiology.2007,73(15):4881-4891.
    [27]Watanabe S, Saleh AA, Pack SP, et al. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase[J]. JBiotechnol.2007,130(3):316-319.
    [28]Hauf J, Zimmermann FK,Muller S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae[J]. Enzyme Microb Technol.2000, 26(9-10):688-698.
    [29]Overkamp KM, Bakker BM, Kotter P, et al. Metabolic engineering of glycerol production in Saccharomyces cerevisiae[J]. Appl Environ Microbiol.2002,68(6):2814-2821.
    [30]Geertman JM, van Maris AJ, van Dijken JP, et al. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production[J]. Metab Eng.2006,8(6):532-542.
    [31]Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev.2008,72(3):379-412.
    [32]Webster KA. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia[J]. J Exp Biol.2003,206(Pt17):2911-2922.
    [33]Verho R, Londesborough J, Penttila M, et al. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae[J]. Appl Environ Microbiol. 2003,69(10):5892-5897.
    [34]Heinisch J. Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast[J]. Mol Gen Genet.1986,202(1):75-82.
    [35]von Jagow G,Klingenberg M. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis[J]. European journal of biochemistry/FEBS.1970,12(3):583-592.
    [36]Larsson C, Pahlman IL, Ansell R, et al. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae[J]. Yeast.1998,14(4):347-357.
    [37]Brock RD. Prospects and perspectives in mutation breeding[J]. Basic Life Sci.1976, 8:117-132.
    [38]卢翠文,陈睿.假丝酵母的诱变育种[J].安徽农业科学2009,37(10):4453-4455.
    [39]Tantirungkij M, Izuishi T, Seki T, et al. Fed-batch fermentation of xylose by a fast-growing mutant of xylose-assimilating recombinant Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology.1994,41(1):8-12.
    [40]高瑞伦,周丽萍,张盛东,et al.细胞融合重组子酵母的研究[J].酿酒科技.2005,(4):38-39.
    [41]张远平,梁磊,黄恩,et al.利用细胞融合技术选育生产燃料乙醇的耐高温酵母[J].甘蔗糖业.2007,(5):39-42,20.
    [42]Jin YS, Alper H, Yang YT, et al. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach[J]. Appl Environ Microbiol.2005,71(12):8249-8256.
    [43]Takuma S, Nakashima N, Tantirungkij M, et al. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae[J]. Appl Biochem Biotechnol.1991, 28-29:327-340.
    [44]Eliasson A, Christensson C, Wahlbom CF, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures[J]. Appl Environ Microbiol.2000,66(8):3381-3386.
    [45]袁振宏,潘亚平,刘继开,et al代谢木糖和葡萄糖的重组酿酒酵母的构建[J].微生物学通报.2006,33(003):104-108.
    [46]洪剑辉.应用于纤维素同步糖化发酵(SSF)产酒精的重组酿酒酵母的构建[M].江南大学硕士学位论文,2006.
    [47]张梁,洪剑辉,章克昌, et al.在GPD1中整合表达bgl Ⅱ 基因改善酒精发酵[J].微生物学通报.2006,33(004):15-20.
    [48]Lorenz MC, Muir RS, Lim E, et al. Gene disruption with PCR products in Saccharomyces cerevisiae[J]. Gene.1995,158(1):113-117.
    [49]Guldener U, Heck S, Fielder T, et al. A new efficient gene disruption cassette for repeated use in budding yeast[J]. Nucleic acids research.1996,24(13):2519-2524.
    [50]Gueldener U, Heinisch J, Koehler GJ, et al. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast[J]. Nucleic Acids Research.2002, 30(6):e23.
    [51]宋浩雷,郭晓贤,王艳尊,et al.敲除sfa1基因提高酿酒酵母乙醇合成能力的研究[J].微生物学通报.2007,34(003):421-425.
    [52]王艳尊,雷娟娟,江贤章,et al.酿酒酵母adh2和ald6双基因缺失突变株的构建[J].微生物学通报.2009,(002):211-216.
    [53]Remize F, Andrieu E,Dequin S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae:role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and ALD4p in acetate formation during alcoholic fermentation[J]. Appl Environ Microbiol. 2000,66(8):3151-3159.
    [54]Camblong J, Iglesias N, Fickentscher C, et al. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae[J]. Cell.2007, 131(4):706-717.
    [55]Ringner M,Krogh M. Folding free energies of 5'-UTRs impact post-transcriptional regulation on a genomic scale in yeast[J]. PLoS Comput Biol.2005,1(7):e72.
    [56]Pickering BM,Willis AE. The implications of structured 5'untranslated regions on translation and disease[J]. Semin Cell Dev Biol.2005,16(1):39-47.
    [57]Kuersten S,Goodwin EB. The power of the 3'UTR:translational control and development[J]. Nat Rev Genet.2003,4(8):626-637.
    [58]Mignone F, Gissi C, Liuni S, et al. Untranslated regions of mRNAs[J]. Genome Biol.2002, 3(3):REVIEWS0004.
    [59]van der Velden AW,Thomas AA. The role of the 5'untranslated region of an mRNA in translation regulation during development[J]. Int JBiochem Cell Biol.1999,31(1):87-106.
    [60]Hughes MJQAndrews DW. A single nucleotide is a sufficient 5'untranslated region for translation in an eukaryotic in vitro system[J]. FEBS letters.1997,414(1):19-22.
    [61]Law RH,Devenish RJ. Expression in yeast of antisense RNA to ADE1 mRNA[J]. Biochem Int. 1988,17(4):673-679.
    [62]Bonoli M, Graziola M, Poggi V, et al. RNA complementary to the 5'UTR of mRNA triggers effective silencing in Saccharomyces cerevisiae[J]. Biochem Biophys Res Commun.2006, 339(4):1224-1231.
    [63]Hulzink RJ, de Groot PF, Croes AF, et al. The 5'-untranslated region of the ntp303 gene strongly enhances translation during pollen tube growth, but not during pollen maturation[J]. Plant Physiol.2002,129(1):342-353.
    [64]Bashirullah A, Cooperstock RL,Lipshitz HD. Spatial and temporal control of RNA stability[J]. Proc Natl Acad Sci USA.2001,98(13):7025-7028.
    [65]Kozak M. Emerging links between initiation of translation and human diseases[J]. Mammalian genome.2002,13(8):401-410.
    [66]Moor CH, Meijer H,Lissenden S. Mechanisms of translational control by the 3'UTR in development and differentiation[J]. Semin Cell Dev Biol.2005,16(1):49-58.
    [67]Zheng H, Lin S, Zhang Q, et al. Functional analysis of 5'untranslated region of a TIR-NBS-encoding gene from triploid white poplar[J]. Mol Genet Genomics.2009, 282(4):381-394.
    [68]Bunimov N, Smith JE, Gosselin D, et al. Translational regulation of PGHS-1 mRNA:5' untranslated region and first two exons conferring negative regulation[J]. Biochim Biophys Acta.2007,1769(2):92-105.
    [69]Amberg DC, Botstein D,Beasley EM. Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction[J]. Yeast.1995, 11(13):1275-1280.
    [70]Gietz D, St Jean A, Woods RA, et al. Improved method for high efficiency transformation of intact yeast cells[J]. Nucleic acids research.1992,20(6):1425.
    [71]Cheng HR,Jiang N. Extremely Rapid Extraction of DNA from Bacteria and Yeasts[J]. Biotechnology Letters.2006,28(1):55-59.
    [72]Cheng TH, Chang CR, Joy P, et al. Controlling gene expression in yeast by inducible site-specific recombination[J]. Nucleic acids research.2000,28(24):E108.
    [73]Curie C, McCormick S. A strong inhibitor of gene expression in the 5'untranslated region of the pollen-specific LAT59 gene to tomato[J]. Plant Cell.1997,9(11):2025-2036.
    [74]Cannons AC, Cannon J. The stability of the Chlorella nitrate reductase mRNA is determined by the secondary structure of the 5'-UTR:implications for posttranscriptional regulation of nitrate reductase[J]. Planta.2002,214(3):488-491.
    [75]Brenet F, Dussault N, Delfino C, et al. Identification of secondary structure in the 5'-untranslated region of the human adrenomedullin mRNA with implications for the regulation of mRNA translation[J]. Oncogene.2006,25(49):6510-6519.
    [76]Conne B, Stutz A,Vassalli JD. The 3'untranslated region of messenger RNA:A molecular 'hotspot'for pathology?[J]. NatMed.2000,6(6):637-641.
    [77]Heinrich AJ, Langridge P,Henschke PA. Fermentation properties of a wine yeast over-expressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2)[J]. Australian Journal of Grape and Wine Research.2000,6:208-215.
    [78]Remize F, Barnavon L,Dequin S. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae[J]. Metab Eng.2001,3(4):301-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700