Ⅰ-Ⅵ族纳米晶薄膜材料的室温原位合成及在杂化薄膜太阳能电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的太阳能电池器件生产制作过程中,存在着原材料生产能耗高、pn结制备能耗高、生产工艺复杂等缺点,而利用低温软化学制备技术获得一种具有较好光电性能的窄带隙材料,并在低温条件下与有机半导体材料直接构成pn结,进而组装成具有一定光电转化效率的太阳能电池器件是解决上述能耗问题及复杂工艺问题的重要突破口。本文利用低温/室温的软化学合成方法,在金属箔片及ITO导电玻璃等基底表面原位制备出具有纳米片状结构的Ag2S,CuS,Ag3CuS2等I-VI族化合物半导体薄膜材料并对反应机理进行了研究。该合成方法具有低能耗、反应物简单、溶剂可重复使用、后处理容易、绿色环保等优点,克服了传统溅射、溶剂热、热蒸发、热注入等方法所面临的设备昂贵、高能耗、高温高压、后处理繁琐等缺点。本文对所合成的I-VI族化合物半导体薄膜材料进行了系统的光电性能测试,结果表明三种材料都具有较好的近红外区光吸收性质,特别是合成的Ag2S和Ag3CuS2片状纳米晶薄膜具有较好的光电响应,且表现出n型半导体的电流特征。在成功合成I-VI族化合物片状纳米晶半导体薄膜的基础上,首次将红外光区吸收的窄带隙半导体材料Ag2S与有机共轭聚合物半导体材料P3HT杂化,设计并组装了以无机Ag2S纳米晶薄膜为主要光吸收层的有机/无机杂化薄膜太阳能电池器件,并对器件制备过程中多种影响光电转化效率的因素进行了讨论,最终在以氯苯为溶剂的条件下制备出具有ITO/Ag2S:P3HT/Au结构的杂化太阳能电池器件并获得了2.04%的光电转化效率。值得注意的是,该种杂化薄膜太阳能电池可以获得高达20mA/cm2的短路电流密度。在以上Ag2S:P3HT太阳能电池器件的基础上,本文还成功制备出Ag3CuS2三元化合物半导体薄膜材料并初步完成了具有ITO/Ag3CuS2:P3HT/MoO3/Ag结构的有机/无机杂化薄膜太阳能电池器件的组装和相关性能测试,在AM1.5G的模拟太阳光下获得了0.39%的光电转化效率。
     本文创新点主要表现在以下几个方面:(1)利用室温软化学方法,在ITO导电玻璃表面原位制备出具有片状纳米晶阵列结构的Ag2S, CuS, Ag3CuS2等光电半导体薄膜材料;(2)整个材料制备和器件组装过程都在室温下进行,使用的溶剂可以重复利用,几乎无能耗;(3)所得硫化物无机纳米晶薄膜的纳米片状阵列结构有利于同共轭有机分子构建完美的网络互穿结构并形成有序的本体异质结;(4)在目前文献报道的有机/无机杂化薄膜太阳能电池器件中,所组装的以Ag2S:P3HT为活性层的器件具有从紫外区到近红外区最宽的太阳光谱响应和较高的短路电流密度;(5)这种原位构建的太阳能电池器件具有良好的化学和机械稳定性以利于今后工业化生产。
     我们将以此为指导来设计制备各种基于Ⅰ-Ⅵ族纳米晶的微观有序本体异质结薄膜太阳能电池,通过对器件内部界面微结构的调控及优化,进一步提高此类新型低能耗、低成本电池器件的光电转换效率。本课题的开展将对本体异质结薄膜太阳能电池的理论研究和光伏性能提升产生积极的推动作用。
The current production of solar cell devices features complicated manufacturing process, high energy consumption in raw material preparing and p-n junction fabricating. Synthesizing a narrow band gap semiconductor material with a good photoelectric property via a low temperature soft chemical route, then forming p-n junction with organic semiconductor at low temperature, and fabricating a solar cell device that can work under sunlight finally, this line will overcome the high energy consumption and complex device fabrication problems. Sulfide thin films compound semiconductor materials with nano-sheet structure of I-VI group were successfully fabricated via a room or low temperature route, the materials include Ag2S, CuS, Ag3CuS2, these thin films rooted from the metal foil or ITO substrate, and the growth mechanism of the materials have been studied. The approach used for synthesizing nano-sheet thin films possess some good features, such as lower or none energy consumption, solvent recycling, cheaper and ordinary reactant, easy post-treatment and less pollutants, it overcomes the shortcomings of completed after-treatment, high temperature, expensive equipment and high pressure exists in traditional synthetic method, for example sputtering, solvothermal, thermal evaporation and hot-injection. The optical and electrical characteristics of the sulfide thin films materials have been systematically studied, and the results shows that all of the as-synthesized compounds are able to absorb the light in the infrared region, especially Ag2S and Ag3CuS2are n-type semiconductor with good photoelectric response. Based on successfully synthesizing sulfide thin films compound semiconductor materials of I-VI group, we firstly design and fabricate organic-inorganic hybrid thin film solar cells devices using small band gap inorganic semiconductor Ag2S and conjugate organic semiconductor P3HT as active layer materials, and inorganic nanocrystal semiconductor Ag2S is the main absorber. The factors that influence power conversion efficiency had been studied, power conversion efficiency of2.04%have been recorded from a hybrid solar cell device with ITO/Ag2S:P3HT/Au structure using chlorobenzene as solvent. We demonstrate that the short circuit current density as high as20mA/cm2can be obtained from this kind of hybrid thin film solar cell device. On the basis of Ag2S:P3HT solar cell model, the ternary sulfide semiconductor Ag3CuS2had been used for fabricating ITO/Ag3CuS2:P3HT/MoO3/Ag hybrid solar cell devices, and the photoelectric performance had been studied preliminarily, and power conversion efficiency of0.39%was recorded under AM1.5G simulated sunlight at present.
     The major innovation of this research,(1) the photoelectric semiconductor thin film materials Ag2S, CuS, Ag3CuS2with nano sheet structure are firstly synthesized via a room temperature soft chemical route,(2) the synthesis of material and fabrication of solar cell device are all at room, this process will cost very little energy, and the solvent can be used reused,(3) the nano sheet array structure of the sulfide thin film favors the perfect interpenetrating network that formed with inorganic and conjugate organic semiconductors,(4) the solar cell device fabricated with Ag2S:P3HT hybrid layer possesses a higher short circuit current density and the broadest spectral range response character, spectral range response from ultraviolet region to near infrared region,(5) this kind of hybrid solar cell device have good chemical and mechanical stability features, it is better for industrial production.
     In our future research, we will design and fabricate kinds of Ⅰ-Ⅵ group bulk heterojunction solar cells with order microstructure, basing on our obtained technology in fabricating solar cells. We will optimize the interface microstructure of device to increase the power conversion efficiency of this novel, low energy consumption and inexpensive solar cell. This research will play a positive role in theoretical study and performance improving of bulk heterojunction solar cells.
引文
[1]Meng T., Inorganic photovoltaic solar cells:silicon and beyond[J]. Electrochem. Soc. Interface. 2008,17 (4):30-5
    [2]Deligianni H.,Ahmed S.,Romankiw L. T., The Next Frontier:Electrodeposition for Solar Cell Fabrication[J].Electrochem. Soc. Interface.2011,20 (2):47~5353
    [3]Green M. A.,Emery K., Hishikawa Y., et al., Solar cell efficiency tables (version 40)[J]. Progress in Photovoltaics:Research and Applications.2012,20 (5):606~614
    [4]Wendy U. H., Janke J. D., A. Paul A., hybrid nanorod~polymer solar cells[J].Science.2002, 295(5564):2425~2427
    [5]Weickert J., Dunbar R. B.,Hesse H. C.,et al.,Nanostructured Organic and Hybrid Solar Cells[J].Adv. Mater.,2011,23(16):1810~1828
    [6]Reiss P., Couderc E., De Girolamo J., et al.,Conjugated polymers/semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications[J].Nanoscale.2011, 3(2):446-489
    [7]Huang J., Yin Z., Zheng Q.,Applications of ZnO in organic and hybrid solar cells[J]. Energy & Environmental Science.2011,4 (10):3861~3877
    [8]Liu M. Y.,Chang C. H., Chang C. H., et al., Air-stable polymer/ZnO nanorod hybrid solar cell[J].2009 Conference on Lasers& Electro~Optics Europe& 11th European Quantum Electronics Conference (CLEO/EQEC).2009,1
    [9]Prene P., Lancelle Beltran E., Boscher C., et al., All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency[J].Adv. Mater.,2006,18 (19): 2579-2582
    [10]Gerein N. J., Fleischauer M. D.,Brett M. J., Effect of TiO2 film porosity and thermal processing on TiO2-P3HT hybrid materials and photovoltaic device performance[J].Sol. Energ. Mat. Sol. C,2010,94 (12):2343-2350
    [11]llan G., Neil A. F., ChihPing C., et al., Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals [J].Nano. Lett.,2007,7(2): 409-414
    [12]Liao H. C.,Chen S.Y, Liu D. M.,In-Situ Growing CdS Single-Crystal Nanorods via P3HT Polymer as a Soft Template for Enhancing Photovoltaic Performance[J].Macromolecules.2009, 42(17):6558-6563
    [13]Fu W.,Shi Y,Qiu W.,et al., High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols[J].Phys. Chem. Chem. Phys.,2012,14 (35):12094~12098
    [14]Kang Y,Kim D., Well-aligned CdS nanorod/conjugated polymer solar cells[J].Sol. Energ. Mat. Sol. C,2006,90 (2):166~174
    [15]Jiang X., Chen F., Weiming Q., et al., Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells[J].Sol. Energ. Mat. Sol. C.,2010,94 (12): 2223-2229
    [16]Jiang X., Chen F., Xu H., et al., Template-free synthesis of vertically aligned CdS nanorods and its application in hybrid solar cells[J]. Sol. Energ. Mat. Sol. C.,2010,94 (2):338-344
    [17]Leventis H. C., King S. P., Sudlow A., et al., Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks[J]. Nano. Lett.,2010,10 (4):1253-1258
    [18]Cao X., Ning W., Xin K., Mesoporous CdS spheres for high-performance hybrid solar cells[J].Electrochim. Acta.2011,56 (25):9504-9507
    [19]Ren S.,Chang L. Y., Lim S. K., et al., Inorganic-organic hybrid solar cell:bridging quantum dots to conjugated polymer nanowires[J].Nano. Lett.,2011,11 (9):3998~4002
    [20]Gopal K. M., Sanghoon K., Maggie P., et al., Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array-P3HT Based Heterojunction Solar Cells[J]. Nano. Lett.,2009,9(12): 4250~4257
    [21]Baek W. H., Seo I., Yoon T. S.,et al.,Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores[J].Sol. Energ. Mat. Sol. C.,2009,93 (9):1587~1591
    [22]Li S.S., Chang C. P., Lin C. C.,et al., Interplay of Three-Dimensional Morphologies and Photocarrier Dynamics of Polymer/TiO2Bulk Heterojunction Solar Cells[J]. J. Am. Chem. Soc, 2011,133(30):11614~11620
    [23]Dong Q., Yu W., Li Z., et al.,All-water-solution processed solar cells based on PPV and TiO2 nanocrystals[J].Sol. Energ. Mat. Sol. C.,2012,104:75~80
    [24]Beek W. J. E., Wienk M. M.,Janssen R. A. J., Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer[J].Adv. Mater.,2004,16 (12):1009~1013
    [25]Dana C. O.,Lee Y.J., White M. S., et al., Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices[J].J. Phys.Chem. C.2007,111 (44):16640~16645
    [26]Spoerke E. D., Lloyd M. T., McCready E. M., et al., Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide[J].Appl. Phys. Lett.,2009,95 (21):213506
    [27]Johann B.,Henry J. S.,Neil C. G., Simple Approach to Hybrid Polymer/Porous Metal Oxide Solar Cells from Solution-Processed ZnO Nanocrystals[J].J. Phys. Chem. C.2010,114 (8): 3664~3674
    [28]Chen J. Y, Hsu F. C., Sung Y. M., et al., Enhanced charge transport in hybrid polymer/ZnO-nanorod solar cells assisted by conductive small molecules[J].J. Mater. Chem., 2012,22(31):15726~15731
    [29]於黄忠,彭俊标,影响共混结构聚合物光电池性能的因素[J].高分子材料科学与工程.2008,24(9):23-26
    [30]Alexander L. A., Christopher J. T., Sarah H. T., et al.,Reappraising the Need for Bulk Heterojunctions in Polymer-Fullerene Photovoltaics:The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells[J]. J. Phys. Chem. C.2009,113 (46): 20050-20060
    [31]Reiss P., Couderc E., De Girolamo J., et al., Conjugated polymers/semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications[J]. Nanoscale.2011,3 (2):446-89
    [32]李申生.太阳能物理学[M] 北京:首都师范大学出版社,1996.236-244
    [33]朗方,王志国.太阳电池暗电流的研究[J].应用科技.2010,(3):227
    [34]Wang Z. L., Self-Powered Nanosensors and Nanosystems[J].Adv. Mater.,2012,24 (2): 280~285
    [35]Bakke J. R., Pickrahn K. L., Brennan T. P., et al.,Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition[J]. Nanoscale.2011,3 (9):3482~3508
    [36]Fan Z., Razavi H., Do J. w., et al., Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates[J]. Nature Mater.2009,8 (8):648~653
    [37]Gratzel M., Solar energy conversion by dye-sensitized photovoltaic cells[J].Inorg. Chem., 2005,44 (20):6841-6851
    [38]Liu C. Y., Zachary C. H., Uwe R. K., Hybrid Solar Cells from P3HT and Silicon Nanocrystals[J]. Nano. Lett.,2009,9(1):449~452
    [39]Chang J. A., Rhee J. H.,Im S. H., et al., High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells[J]. Nano. Lett.,2010,10 (7):2609~2612
    [40]Todorov T. K., Reuter K. B., Mitzi D. B., High-efficiency solar cell with Earth-abundant liquid-processed absorber[J]. Adv. Mater.,2010,22 (20):156~159
    [41]Jia H. M., He W. W., Chen X. W.,et al., In situ fabrication of chalcogenide nanoflake arrays for hybrid solar cells:the case of In2S3/poly(3-hexylthiophene)[J].J. Mater. Chem.,2011,21 (34): 12824~12828
    [42]Li D. P., Zheng Z., Lei Y., et al., From Nanoplates to Microtubes and Microrods:A Surfactant-Free Rolling Mechanism for Facile Fabrication and Morphology Evolution of Ag2S Films[J]. Chem. Eur J.2011,17 (27):7694-7700
    [43]Yong Xu M. A. A. S., The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist,.2000,85 (3-4):543~556
    [44]Madeline S. L. V., Roberto I., Miguel E. C. R., Nucleation and Growth of Silver Sulfide Nanoparticles[J]. J. Phys. Chem. C.2010,114 (13):5839-5849
    [45]Schaaff T. G, Rodinone A. J., Preparation and Characterization of Silver Sulfide Nanocrystals Generated from Silver(Ⅰ)-Thiolate Polymers[J]. J. Phys. Chem. B.2003,107 (38): 10416~10422
    [46]Wang H.,Qi L., Controlled Synthesis of Ag2S, Ag2Se, and Ag Nanofibers by Using a General Sacrificial Template and Their Application in Electronic Device Fabrication[J].Adv. Funct. Mater., 2008,18(8):1249-1256
    [47]El. Nahass M. M.,Farag A. A. M., Ibrahim E. M.,et al.,Structural, optical and electrical properties of thermally evaporated Ag2S thin films[J].Vacuum.2004,72 (4):453~460
    [48]Wang D., Hao C., Zheng W., et al., Ultralong Single-Crystalline Ag2S Nanowires:Promising Candidates for Photoswitches and Room-Temperature Oxygen Sensors[J]. Adv. Mater.,2008,20 (13):2628~2632
    [49]Dang M. T., Wantz G., Bejbouji H., et al., Polymeric solar cells based on P3HT:PCBM:Role of the casting solvent[J]. Sol. Energ. Mat. Sol. C.,2011,95 (12):3408~3418
    [50]Avasthi S., Lee S., Loo Y. L., et al., Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells[J]. Adv. Mater.,2011,23(48):5762-6
    [51]Zhang W., Zhu R., Li F., et al., High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter[J].J. Phys. Chem. C.2011,115 (14):7038~7043
    [52]Gur I., Fromer N. A., Chen C. P., et al., Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals[J]. Nano. Lett.,2007,7 (2): 409~414
    [53]Hu Y., Zheng Z., Jia H., et al., Selective synthesis of FeS and FeS2 nanosheet films on iron substrates as novel photocathodes for tandem dye-sensitized solar cells[J]. J. Phys. Chem. C.2008, 112(33):13037~13042
    [54]Ye Y.,Dai L., Wen X., et al.,High-Performance Single CdS Nanobelt Metal-Semiconductor Field-Effect Transistor-Based Photodetectors[J].Acs Applied Materials& Interfaces.2010,2(10): 2724~2727
    [55]Hyun B. R., Zhong Y. W., Bartnik A. C.,et al., Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles[J]. Acs Nano.2008,2 (11):2206~2212
    [56]Lu M. Y.,Song J., Lu M. P., et al., ZnO-ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation[J].Acs Nano.2009,3 (2):357~362
    [57]Tahir A. A.,Ehsan M. A., Mazhar M.,et al., Photoelectrochemical and Photoresponsive Properties of Bi2S3 Nanotube and Nanoparticle Thin Films[J].Chem. Mater.,2010,22(17): 5084~5092
    [58]Nair M. T. S.,Nair P. K., Chemical Bath Deposition Of Cuxs Thin-Films And Their Prospective Large Area Applications[J]. Semicond. Sci. Technol.,1989,4 (3):191~199
    [59]Malyarevich A. M., Yumashev K. V.,Posnov N. N., et al., Nonlinear optical properties of CuxS and CuInS2 nanoparticles in sol-gel glasses[J]. J. Appl. Phys.,2000,87 (1):212~216
    [60]Chung J. S.,Sohn H. J., Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J].J. Power Sources.2002,108 (1-2):226~231
    [61]Galdikas A.,Mironas A., Strazdiene V., et al.,Room-temperature-functioning ammonia sensor based on solid-state CuxS films[J].Sensor Actuat B. Chem.2000,67 (1-2):76~83
    [62]Thongtem T., Phuruangrat A., Thongtem S., Formation of CuS with flower-like, hollow spherical, and tubular structures using the solvothermal-microwave process[J]. Curr. Appl. Phys. 2009,9(1):195~200
    [63]Chu L., Zhou B., Mu H., et al., Mild hydrothermal synthesis of hexagonal CuS nanoplates[J]. J. Cryst. Growth.2008,310 (24):5437~5440
    [64]Chen Y. C.,Bin Shi J., Wu C.,et al., Fabrication and optical properties of CuS nanowires by sulfuring method[J]. Mater. Lett.,2008,62 (8-9):1421-1423
    [65]Puspitasari I., Gujar T. P., Jung K. D., et al., Simple chemical preparation of CuS nanowhiskers[J]. Mater. Sci. Eng. B. Solid.2007,140 (3):199~202
    [66]Gong J. Y, Yu S. H., Qian H. S., et al., Acetic acid-assisted solution process for growth of complex copper sulfide microtubes constructed by hexagonal nanoflakes[J]. Chem. Mater.,2006, 18(8):2012~2015
    [67]Mao G.Z.,Dong W. F., Kurth D. G., et al., Synthesis of copper sulfide nanorod arrays on molecular templates[J].Nano. Lett.,2004,4(2):249~252
    [68]Gorai S., Ganguli D., Chaudhuri S., Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process[J]. Crystal Growth& Design.2005,5 (3):875~877
    [69]Li F., Bi W., Kong T.,et al., Optical, photocatalytic properties of novel CuS nanoplate-based architectures synthesised by a solvothermal route[J].Cryst. Res. Technol.,2009,44 (7):729~735
    [70]Wang K. J., Li G.D.,Li J. X., et al., Formation of single-crystalline CuS nanoplates vertically standing on flat substrate[J].Crystal Growth&Design.2007,7(11):2265~2267
    [71]Yu X., Cao C., Zhu H., et al., Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties[J].Adv. Funct. Mater.,2007,17 (8):1397~1401
    [72]Zhang X., Guo Y.,Liu W., Self-generation of three-dimensional hierarchical Cu2S architectures at room temperature[J]. Mater. Lett.,2009,63 (12):982~984
    [73]Yao Z., Zhu X., Wu C., et al.,Fabrication of micrometer-scaled hierarchical tubular structures of CuS assembled by nanoflake-built microspheres using an in situ formed Cu(I) complex as a self-sacrificed template[J].Crystal Growth& Design.2007,7 (7):1256~1261
    [74]Zou J., Zhang J., Zhang B.,et al., Low-temperature synthesis of copper sulfide nano-crystals of novel morphologies by hydrothermal process[J].Mater. Lett.,2007,61 (28):5029~5032
    [75]Xu H. L.,Wang W.Z.,Zhu W., Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route[J]. Mater.Lett.,2006,60(17-18):2203~2206
    [76]Trots D. M., Senyshyn A., Mikhailova D. A.,Phase Transitions in Jalpaite, Ag3CuS2[J].J. Phys.:Condens. Matter.2008,20 (45):455204
    [77]Kadrgulov R. F., Yakshibaev R. A., Khasanov M. A., Phase Relations, Ionic Transport and Diffusion in the Alloys of Cu2S-Ag2S Mixed Conductors[J]. Ionics.2001,7 (1-2):156~160.
    [78]Chen Z., Zhang W., Yang Z.,Synthesis and ammonia sensing property of Ag3CuS2 nanocages obtained from Cu7S4 18-facet hollow nanopolyhedra[J]. J. Cryst. Growth.2009,311(12): 3347~3351
    [79]Heijne G J. M., Van Der Linder W. E., The formation of mixed copper sulfide-silver sulfide membranes for copper(Ⅱ)-selective electrodes:Part II. Relation between structure and electrochemical behaviour of the electroactive material[J].Anal. Chim. Acta.1977,93(1):99~ 110
    [80]Hu J. Q., Deng B.,Zhang W. X.,et al., A convenient hydrothermal route to mineral Ag3CuS2 nanorods[J].Int. J. Inorg. Mater.,2001,3(7):639~642
    [81]Trots D. M., Senyshyn A., Mikhailova D. A., et al., High-temperature thermal expansion and structural behaviour of stromeyerite, AgCuS[J]. J. Phys.:Condens. Matter.2007,19 (13):136204
    [82]Yoshimi T., Keitaro T., Yue J. S., et al., Syntheses of complex sulfides AgCuS and Ag3CuS2 from the elements under hydrothermal conditions[J].J. Ceram. Soc. Jpn.,2009,117 (3):359~ 362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700