Sn-Co合金复合负极材料的制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属锡具有理论容量高(992mAh/g)、密度大等优点,成为高容量锂离子电池负极材料研究的热点,但金属锡在充放电过程中体积膨胀显著,容易导致结构破坏,循环性能变差,不能满足实际应用的需求。因此,提高Sn基材料的循环性能成亟待解决的关键技术问题。
     本文采用适合产业化生产的固相烧结法和球磨法制备了Sn-Co合金复合负极材料,对Sn-Co纳米晶合金粉、石墨的粉碎提纯以及Sn-Co/C和Sn-Co/G两大体系复合材料的制备、结构和电化学性能等方面进行了较为系统的探讨。
     在Sn-Co二元合金方面,合金的相结构对电化学性影响显著,四方晶系的CoSn_2相具有很高的放电容量和充放电效率,而正交晶系的Co_3Sn_2相具有很高的循环性能,六方晶系的CoSn相具有适当的容量和循环性能。将Sn-Co合金继续球磨使颗粒晶粒细化,可以提升合金的容量和循环性能。
     在Sn-Co/C(C为炭黑的简写)体系方面,添加第4组元Zn制备的新型Sn-Co-Zn/C复合材料具有优异的电化学性能,C的复合和使颗粒晶粒细化,Zn的固溶强化以及CoSn与CoSn_2、Co_3Sn_2、Zn、Sn的多相合金复合等多种作用共同提高了Sn-Co合金的结构稳定性和电化学性能,首次放电容量和充放电效率分别为440mAh/g和76.2%,经过25次循环后的容量保持率达88.6%,该复合材料适用于高容量锂离子电池。
     在Sn-Co/G(G为石墨的简写)体系方面,首先将人造石墨颗粒进行粉碎和提纯除杂,再采用球磨法将Sn-Co合金嵌入石墨制备了Sn-Co/G复合材料,研究了表面活性剂、球磨时间、球磨转速和物料配比对Sn-Co/G复合材料结构和电化学性能的影响规律;并对复合材料进行热处理提高了Sn-Co合金与石墨的结合强度,经过500℃热处理后的Sn-Co/G复合材料的首次放电容量和充放电效率分别为362mAh/g和83.6%,经过25次循环后的容量保持率高达92.8%,找到了一条适合制备长循环寿命的锂离子电池电极材料的技术途径。
     在Sn-Co/B(B为硼的简写)体系方面,将与Sn-Co合金复合的非金属元素选择范围拓宽至B,研究了B对Sn-Co合金结构和电化学性能的影响规律和机理。B的复合作用和颗粒晶粒细化作用提高了复合材料的电化学性能,首次放电容量和充放电效率分别为216mAh/g和51.1%,经过25次循环后的容量保持率为82.9%,但过量的B导致CoSn相基础上形成更多的CoSn2相,使循环性能降低。
Because of its high theoretical capacity (992mAh/g) and high density, tin has become ahighlighted topic in high capacity anode material for lithium ion battery. However, its structureis suffered from pulverization which is resulted from the large volume expansion during thecharge-discharge, leading to the deterioration of the cycle performance and thus losing itspractical value. Therefore, improving the cycle performance of Sn-based has become key scienceproblem.
     In this paper, the Sn-Co alloy composite was prepared by solid-state sintering method andball milling method, which is appropriate for industrial production. The structures andelectrochemical properities of nano Sn-Co alloy powder, graphite, Sn-Co/C and Sn-Co/Gcomposite were investigated systematically.
     In the Sn-Co alloy, the phase structure has significantly influence on the electrochemicalproperities. The CoSn2phase alloy with tetragonal crystal has high discharge capacity andcharge-discharge efficiency, the Co3Sn2phase alloy with orthorhombic crystal has high cycleperformance and the CoSn phase alloy with hexagonal crystal has appropriate discharge capacityand cycle performance. Besides, the refinement of particle size and grain size of Sn-Co alloyresults in the improvement of capacity and cycle performance.
     In the Sn-Co/C system, the novel Sn-Co-Zn/C composite prepared by adding the forthelement Zn into Sn-Co/C composite exhibis excellent electrochemical properities. The compositeeffect and the refinement of paticle size and grain size by adding C, the solid solution strengtheneffect and the multiphase compound effect of CoSn, CoSn2, Co3Sn2, Zn and Sn by adding Znimprove together the structure stabilities and electrochemical properities. The discharge capacityand charge-discharge efficiency of Sn-Co-Zn/C composite is440mAh/g and76.2%espectivelyand the capacity retention is88.6%after25cycles. So, the Sn-Co-Zn/C composite is appropriatefor application in lithium ion battery with high capacity.
     In the Sn-Co/G system, the artificial graphite is crushed and pickled firstly, and then makeSn-Co alloy into graphite by ball milling. The influence of surfactant, balling time and speed,alloy content on the structures and electrochemical properities of Sn-Co/G composite isinvestigated. Then, the integrate degree of Sn-Co alloy and graphite is improved by heattreatment. The discharge capacity and charge-discharge efficiency of Sn-Co/G composite after500℃heat treatment is362mAh/g and83.6%espectively and the capacity retention is92.8% after25cycles. Therefore, a technology approach to prepare the anode material for lithiumbattery with long cycle life has been found.
     In the Sn-Co/B system, the scope of nonmetal element which is compound with Sn-Co alloyextends to B element, the influence of B element on the structures and electrochemicalproperities of Sn-Co/B composite is investigated. The composite effect and the refinement ofpaticle size and grain size by adding B improve together the electrochemical properities ofcomposite. The discharge capacity and charge-discharge efficiency of Sn-Co/B composite is216mAh/g and51.1%espectively and the capacity retention is82.9%after25cycles. Howerer,more CoSn2phase forms by adding excessive B, which leads to the decreasing of cycleperformance.
引文
[1] Novak P, Panitz J C, Joho F, et al. Advanced in situ methods for the characterization of practicalelectrodes in lithium ion batteries[J]. J Power Sources,2000,90:52-58.
    [2] Peterson S, Apt J, Whitacre J. Lithium-ion battery cell degradation resulting from realisticvehicle and vehicle-to-grid utilization[J]. J Power Sources,2010,195(8):2385-2392.
    [3] Harris W S. Ph. D. Thesis UCRL-8381[D]. University of California, Berkeley,1958.
    [4]郭炳昆,李新海,杨松青.化学电源-电池原理及制造技术[M].长沙:中南工业大学出版社,2000.
    [5] Whittingham M S. Electrical energy storage and intercalation chemistry[J]. Science,1976,192:1126-1127.
    [6] Rao B M L, Francis R W, Christopher H A. Lithium-aluminium electrodes[J]. J ElectrochemSoc,1977,124:1490-1492.
    [7] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2(0    [8] Armand M. Materials for advanced batteries[D]. D. W. Murphy, J. Broodhead, B. C. H, Steele,NewYork: Plenum Press,1980:145.
    [9] Nagaura T, Tozawa K. Lithium ion rechargeable battery. Prog Batteries Solar Cells,1990,9:209.
    [10]郭炳馄,徐徽,王先友,等.锂离子电池[M].第一版.长沙:中南大学出版社:2002.
    [11] Tarascon J M, Gozdz A S, Schmutz C, et al. Performance of Bellcore's plastic rechargeableLi-ion batteries[J]. Solid State Ionics,1996,86(8):49-54.
    [12] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrodematerials for rechargeable lithium batteries[J]. J Electrochem Soc,1997,144:1188-1194.
    [13] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+redoxcouple in iron phosphates[J]. J Electrochem Soc,1997,144:1609-1613.
    [14] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy incapacitors[J]. Carbon,2001,39:937-950
    [15] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Rev,2004,104(10):4303-4418.
    [16] Scrosati B. Challenge of portable power[J]. Nature,1996,381:499-500.
    [17] Tarascon J M, Armand M. Issues and challenges facing reachable lithium batteries. Nature,2001,414:359-367.
    [18]冯淑波.动力型锂离子二次电池市场发展的前景[J].河北能源职业技术学院学报,2006,19(2):56-59.
    [19] Borthomieu Y, Brussely M, Planchat J P. VES140s Li-ion cell GEO life test results lithium-ionbatteries for space[A]. Pro-ceedings of the six European Space Power Conference[C]. Porto,Por-tuga1,2002,679-684.
    [20] Spurrett R, Thawaite C, Slimm M, et aL. Lithium-ion batteries for space[A]. Proceedings ofthe six European Space Power Conference[C]. Porto, Portuga1,2002,477-482.
    [21]安晓雨,谭玲生.空间飞行器用锂离子蓄电池储能电源的研究进展[J].电源技术,2006,30(1):70-73.
    [22] Dider L, Henri B. Lithium-ion battery cell balancing in LEO[A]. Proceedings of the sixEuropean Space Power Conference[C]. Porto, Poituga1,2002,507-512.
    [23]林美云.日本新阳光计划中的锂二次电池开发概况[J].工业材料,1999,146:162-169.
    [24]艾新平,杨汉西.电动汽车与动力电池[J].电化学,2011,17(2):123-133.
    [25]王金良.动力锂离子电池发展及技术路线探讨[J].电池工业,2010,15(4):234-238.
    [26]杨萍,苏金然.锂离子电池技术与应用发展[J].电源技术,2009,33(11):1037-1039.
    [27]马学美,崔毅.动力锂电池技术发展趋势和投资策略研究[J].华南理工大学学报(社会科学版),2011,13(1):5-8.
    [28] Lowe M, Tokuaka S, Trigg T, et al. Lithium-ion batteries for electric vehicles: the U.S. valuechain[EB/OL]. http://www.cggc.duke.edu/pdfs/CGGC_Lithium-Ion_Batteries.pdf
    [29]吴宇平,戴晓兵,马军旗,等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004.
    [30]李建保,李敬锋.新能源材料及其应用技术:锂离子电池、太阳能电池及温差电池[M].2005,北京,清华大学出版社.
    [31] Fujimoto H, Mabuchi A, Tokumitsu K. Effect of crystallite size on the chemical compositionof stage metal-graphite intercalation compounds [J]. Carbon,1994,32(2):193-202.
    [32] Brooks J D, Taylor G H. Chemistry and physics of carbon[M]. Dekker, New Yok: Marcel DekkerInc,1968:243.
    [33] Mabuchi A, Tokimitsu T, Fujimoto H, et al. Charge-discharge characteristics of themesocarbon microbeads heat-treated at different temperature[J]. J Electrochem Soc,1995,142(4):1041-1046.
    [34] Takami N, Satoh A, Hara M, et al. Rechargeable lithium-ion cells using graphitizedmesophase-pitch-based carbon fiber anodes[J]. J Electrochem Soc,1995,142:2564-2571.
    [35] Kikuch M, Ikezawa Y, Takamurr M, et al. Surface modification of pitch based carbon fiber forimprovement of electrochemical intercalation[J], J Electrochem Soc,1995,396:451-455
    [36]何永祥,赵海鹏.锂离子二次电池碳负极材料的研究进展[J].平顶山工学院学报,2007,16(3):40-43.
    [37] Hu J, Li J, Huang X J. Influence of micropore structure on Li-storage capacity in hard carbonspherules[J]. Solid State Ionics,2005,176(11-12):1151-1159.
    [38] Adamson A W. Physical Chemistry of Srufaces.(5th Ed.) New York: John Wiley and Sons, Inc.1990.
    [39] Michio I, Kang F. Carbon materials science and engineering[M], Beijing: Tsinghua UniversityPress,2006:32.
    [40]王先友,张允什,阎杰,等.锂离子蓄电池碳负极研究新方向[J].电源技术,1999,23(4):233-237.
    [41]唐致远,庄新国,翟玉梅.锂离子蓄电池负极材料的研究进展[J].电源技术,2000,24(2):108-111.
    [42]杨玉芬,陈湘彪,盖胜国,等.天然石墨球形化工艺研究[J].过程工程学报,2004,增4:309-313.
    [43] Wakayama H, Mizuno J, Fukushima Y, et al. Structural defects in mechanically groundgraphite[J]. Carbon,1999,37(6):947-952.
    [44]李哲.鳞片石墨浮选特征及工艺研究[D].北京:中国矿业大学,2010.
    [45]刘长江,杨云川.气流磨粉碎颗粒分析[J].中国粉体技术,2000,6(1):31-33.
    [46]孙鸿亮.微粉分级技术研究[J].中国粉体技术,2000,6(1):140-146.
    [47]赵敏,卢亚平,潘英民.粉碎理论与粉碎设备发展评述[J].矿冶,2001,10(2):36-41.
    [48]张清岑,刘建平,肖奇.隐晶质石墨提纯工艺中硅的焙烧动力学研究[J].中南大学学报(自然科学版),2004,36(1):29-33.
    [49]孙旺,郑诗礼,张亦飞,等. NaOH亚熔盐法处理拜尔法赤泥的铝硅行为[J].过程工程学报,2008,8(6):1148-1152.
    [50]肖奇,张清岑,刘建平.某地隐晶质石墨高纯化试验研究[J].矿产综合利用,2005(1):3-6.
    [51]邱冠周,袁明亮,杨华明,等.矿物材料加工学[M].长沙:中南大学出版社,2003.
    [52]张向军,陈斌,高欣明.高温石墨化提纯晶质(鳞片)石墨[J].炭素技术,2001,113(2):39-40.
    [53] Wu Y P, Jiang C P, Wan C R, et al. Effects of catalytic oxidation on the electrochemicalperformance of common graphite as an anode material for lithium ion batteries[J]. ElectrochemCommun,2000,2(4):272-275.
    [54] Wang H, Yoshioa M. Erect of iodine treatment on the electrochemical performance of naturalgraphite as an anode material for lithium-ion batteries[J]. J Power Sources,2001,101:35-41.
    [55] Shim J, Striebel K A. Electrochemical characterization of thermally oxidized natural graphiteanodes in lithium-ion batteries[J]. J Power Sources,2007,164(2):862-867.
    [56] Wu Y P, Jiang C, Wan C, et al. Modified natural graphite as anode material for lithium ionbattereies[J]. J Power Sources,2002,111:329-334.
    [57] Menachem C, Peled E, Burstein L, et al. Characterization of modified NG7graphite as animproved anode for lithium ion batteries[J]. J Power Sources,1997,68:227-282.
    [58] Kuribayashi I, Yokoyama M, Yamashita M. Battery characteristics with various carbonaceousmaterials[J]. J Power Sources,1995,54(1):1-5.
    [59]王勇,杨绍斌.热解炭包覆石墨材料的研究进展[J].电池工业,2007,12(5):357-360.
    [60]杨绍斌,费晓飞,綦瑞萍.石油沥青包覆对石墨负极电化学性能的影响[J],电源技术,2008,32(11):745-757.
    [61]杨书廷,刘立君,吕庆章,等.修饰石墨用作锂离子电池负极材料的研究[J].功能材料,2000,3(4):436-435.
    [62] Sumiya K, Suzuki J, Takasu R, et al. Enhancement of the electrochemical Li doping/indopingreaction rate of a graphitic material by an evaporated film of Sn, Zn or Pb[J]. JElectroanalytical Chemistry,1999,462:150-156.
    [63] Tanaka U, Sogabe T, Sakagoshi H, et al. Anode property of boron-doped graphite materials forrechargeable lithium-ion batteries[J]. Carbon,2001,39(6):931-936.
    [64] Alexandrov V N, Wu Y P, Fang S B, et al. Carbon anodes for a lithium seccondary batterybased on polyacrylonitrile[J]. J Power Sources,1998,75(2):201-206.
    [65]张静,郑永平,邹麟,等. GICs技术改性包覆天然鳞片石墨的研究[J].电池,2006,36(4):257-259.
    [66]杨绍斌,费晓飞,蒋娜.增大层间距对天然石墨可逆储锂性能的影响研究[J].化学学报,2009,67(17):1995-2000.
    [67] Broussely M, Axehdale G. Li-ion batteries and portable power source prospects for the nexts5-10years[J]. J Power Sources,2004,136(2):386-394.
    [68]侯贤华,胡社军,李伟善,等. Li2Sn合金负极材料的嵌脱锂机理研究[J].物理学报,2008,57(4):2374-2379.
    [69]矫云超.锂离子电池负极材料Sn基合金的制备与研究[D].黑龙江:哈尔滨工业大学,2006.
    [70] Yang J, Wachtler M, Winter M, et al. Will advanced lithium-alloy anodes have a chance inlithium-ion batteries[J]. Electrochem Solid State Lett,1999,2(4):161-163.
    [71] Rom I, Wachtler M, Papst I, et al. Electron microscopicalcharacterization of Sn/SnSbcomposite electrodes for lithium-ion secondary batteries[J]. Solid State Ionics,2001,143:329-336
    [72] Chen W X, Le J Y, Liu Z L. The nanocomposites of carbon nanotube with Sb and SnSb0.5asLi-ion battery anodes[J]. Carbon,2003,41(5):959-966.
    [73] Wachtler M, Besenhard J O, Winter M. Tin and tin-based intermetallics as new anode materialsfor lithium-ion cells[J]. J PowerSources,2001,94(2):189-193.
    [74] Zhao H L, Ng D H L, Lu Z Q, et al. Synthesis of SnxSb anode material for secondarylithium-ion battery [J]. J Alloys and Compounds,2005,395:192-200.
    [75]侯贤华,胡社军,余洪文.锂离子电池Sn-Al合金负极材料的嵌锂机理研究.电源技术,2011,35(4):372-373.
    [76] Wang L B, Kitamura S, Sonod T, et al. Electroplated Sn-Zn alloy electrode for Li secondarybatteries[J]. J Electrochem Soc,2003,150(10): A1346-A1350.
    [77] Roberts G A, Cairns E J, Reimer J A. An Electrochemical and XRD study of lithium insertioninto mechanically alloyed magnesium stannide[J]. J Electrochem Soc,2003,150(7):A912-A916
    [78] Thackeray M M, Johnson C S, Kahaian A J, et al. Stabilization of insertion electrodes forlithium batteries[J]. J Power Sources,1999,81/82:60-66.
    [79] Kepler K D, Vaughey J T, Thackeray M M. Copper–tin anodes for rechargeable lithiumbatteries: an example of the matrix effect in an intermetallic system[J]. J Power Sources,1999,81:383-387.
    [80] Wang G X, Sun L, Bradhurst D H, et al. Lithium storage properties of nanocrystallineeta-Cu6Sn5alloys prepared by ball-milling[J]. J Alloys and Compounds,2000,299:12-15.
    [81] Wolfenstine J, Campos S, Foster D, et al. Nano-scale Cu6Sn5anodes[J]. J Power Sources,2002,109(1):230-233.
    [82] Noriyuki T, Ryuji O, Masahisa F, et al. Study of the anode behavior of Sn and Sn-Cu alloythin-film electrodes[J]. J Power Sources,2002,107(1):45-48.
    [83] Mao O, Dahn J R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ionbatteries-the SnFe2: SnFe3C active/inactive system[J]. J Electrochem Soc,1999,146(2):423-427.
    [84] Beaulieu L, Larcher D, Dunlap R A. Nanocomposites in the Sn-Mn-C system produced bymechanical alloying[J]. J Alloys and Compounds,2000,297:122-128.
    [85] Wang G X, Sun L, Brandhurst D H, et al. Nanocry stalline NiSi alloy as an anode material forlithium-ion batteries[J]. J Alloysand Compounds,2000,306:249-52.
    [86] Mukaibo H, Momma T, Osaka T. Changes of electro-deposited Sn-Ni alloy thin film forlithium ion battery anodes during charge discharge cycling[J]. J Power Sources,2005,146(1):457-463.
    [87] Chen C M, Chen S W. Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactionsat various temperatures[J]. Acta Materialia,2002,50(9):2461-2469.
    [88] Dahn J R, Mar R E. Combinatorial study of Sn1xCox(0    [89] Tod A D W, Mar R E, Dahn J R. Combinatorial study of tin-transition metal alloys as negativeelectrodes for lithium-ion batteries[J]. J Electrochem Soc,2006,153(10): A1998-A2005.
    [90] Tod A D W, Mar R E, Dahn J R. Tin-transition metal-carbon systems for lithium-ion batterynegative electrodes[J]. J Electrochem Soc,2007,154(6): A597-A604.
    [91] Vassilev G P, Lilova K I, Gachon J C. Calorimetric and phase diagram studies of the Co-Snsystem[J]. Intermetallics,2007,10:1016-1023.
    [92] Ionica-Bousquet C M, Lippens P, Aldon E, et al. In situ119Sn mossbauer effect study ofLi-CoSn2electrochemical system[J]. Chem Mater,2006,18:6442-6447.
    [93] Guo H, Zhao H L, Jia X D, et al. A novel micro-spherical CoSn2/Sn alloy composite as highcapacity anode materials for Li-ion rechargeable batteries[J]. Electrochimica Acta,2007,52:4853-4857.
    [94]李求忠,杨同欢,郭永榔. Ni-Sn-Co合金电极材料的制备及性能[J].电池,2009,39(5):251-253.
    [95] El-Sharif M, Chisholm C U, Kuzmann E, et al. The structure and composition of novelelectrodeposited Sn-Fe and Sn-Co-Fe alloys from a flow circulation cell system[J]. Hyperfineinteractions,2009,192(1-3):1-12.
    [96]谢健,赵新兵,佘红明,等.纳米Co-Sn金属间化合物的合成、表征及电化学吸放锂行为[J].物理化学学报,2006,22(11):1409-1412.
    [97] Taumra N, Fujimoto M, Kamino M, et al. Mechanical stability of Sn-Co alloy anodes forlithium secondary batteries[J]. Electrochimica Acta,2004,49:1949-1956.
    [98] Tamura N, Kato Y, Kamino M, et al. Study on Sn-Co alloy electrodes for lithium secondarybatteries II. nanocomposite system[J]. J Electrochem Soc,2006,153(12): A2227-A2231.
    [99]刘平,钱江峰,肖利芬,等. Sn-Co合金作为锂离子二次电池负极材料的研究[J].武汉大学学报(理学版),2006,52(6):681-684.
    [100]黄令,江宏宏.新型三维网状锡-钴合金负极材料的结构与性能[J].物理化学学报,2006,22(12):1537-1541.
    [101]索尼公司.负极活性材料和电池[P].中国,200510003491.6,2005.
    [102]索尼公司.负极活性材料和使用该负极活性材料的电池[P].中国,200510107024.1,2005.
    [103]索尼公司.电池[P].中国,200510120124.4,2005.
    [104]索尼公司.负极活性材料和使用该负极活性材料的电池[P].中国,200510128393.5,2005.
    [105] Hassoun J, Mulas G, Panero S, et al. Ternary Sn-Co-C Li-ion battery electrode materialprepared by high energy ball milling[J]. Electrochemistry Communications,2007,9(8):2075-2081.
    [106]闫润宝,任建国,赵海雷,等.锂离子电池Sn-Co-C复合负极材料的合成与研究[J].电源技术,2010,134(8):803-806.
    [107]蔡金书,黄令,柯福生,等.纳米Sn-Co/石墨复合材料的制备、结构和电化学性能[J].电化学,2009,15(1):79-82.
    [108] Ortiz G F, Alcantara R, Rodriguez I, et al. New tin-based materials containing cobalt andcarbon for lithium-ion batteries[J]. J Electroamal Chem,2007,3(22):1-11.
    [109] Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4forrechargeable lithium cells[J]. J Electrochem Soc,1995,142(5):1431-1435.
    [110] Scrosati B, Panero S, Reale P, et al. Investigation of new types of lithium-ion batterymaterials[J]. J Power Sources,2002,105(2):161-168.
    [111] Prosini P P, Petrucci L, Contini V, et al. Li4Ti5O12as anode in all-solid-state plastic,lithium-ion batteries for low-power applications[J]. Solid State Ionics,2001,144(1-2):185-192.
    [112] Marten G B, Alexander J B, Peter P E, et al. Novel layered lithium nitridon nickelates: effectof Li vacancy concentration on N co-ordination geometry and Ni oxidation state[J]. ChemCommum,1999,1187-1188.
    [113] Yang J, Takeda Y, Imanishi N, et a1. Novel composite anodes based on nano-oxides andLi2.6Co0.4N for lithium ion batteries[J]. Electrochimica Acta,2001,46(17):2659-2664.
    [114] Gordon A G, Gregory D H, Blake AJ, et a1. Ternary lithium nitridocuprates, Li3-x-yCuxN:crystal growth, bulk synthesis, structure and magnetic properties[J]. Intemational Joumal ofInorganic Materials,2001,3(7):973-981.
    [115]张淑凯.锂离子电池Sn-Co合金负极材料充放电性能[D].阜新:辽宁工程技术大学,2009.
    [116] Yang J, Takeda Y, Imanishi N, et al. Ultrafine Sn and SnSb0.14powders for lithium storagematrices in lithium-Ion batteries[J]. J Electrochem Soc,1999,146(11):4009-4013.
    [117]张宁,于维平.电沉积制备锡钴碳复合负极材料的结构与性能[J].材料热处理学报,2008,29(6):5-8,13.
    [118] Larcher D, Beaulieul Y, Mao O, et al. Study of the reaction of lithium with isostructural A2Band various AlxB alloys[J]. J Electrochem Soc,2000,147:1703-1708.
    [119]任榕,吴玉程,汤文明,等.退火诱导机械合金化Fe42.5A142.5Ti5B10合金的结构演变与晶粒生长动力学[J].物理学报,2008,57:5774-5781.
    [120]王忠,田文怀,李星国. Sn-Sb合金的氢电弧等离子体法制备及其电化学性能[J].物理化学学报,2006,22(6):752-755.
    [121] He J C, Zhao H L, Wang M W, et al. Preparation and characterization of Co-Sn-C anodes forlithium-ion batteries[J]. Materials Science and Engineering B,2010,171(1-3):35-39.
    [122] Dean J A. Lange's Handbook of Chemistry[M].12th ed, New York: McGraw-Hill,1992:2-2.
    [123] Huang L, Cai J S, HeY, et al. Structure and electrochemical performance of nanostructuredSn-Co alloy/carbon nanotube composites as anodes for lithium ion batteries[J].Electrochemistry Communications,2009,11(5):950-953.
    [124]翟玉梅,唐致远,王双元,等.制备方法对石墨粉结构及嵌锂性能的影响[J].天津大学学报,2001,34(1):57-62.
    [125] Yoshio M, Wang H Y, Fukuda K, et al. Improvement of natural graphite as a lithium-ionbattery anode material, from raw flake to carbon-coated sphere[J]. J Mater Chem,2004,14,1754-1758.
    [126]郝向阳,盖国胜,杨玉芬,等.锂离子电池用天然石墨颗粒的整形[J].稀有金属材料与工程,2005,34(增1):167-169.
    [127]洪泉,何月德,刘洪波,等.纯化处理对天然微晶石墨电化学性能影响的研究[J].非金属矿,2010,33(3):45-48.
    [128]刘曦,雷新荣,吴红丹,等.大田细鳞片石墨的提纯试验研究[J].非金属矿,2009,32(1):53-55.
    [129]柳召刚,杨启山,刘铃声.碳酸钠焙烧盐酸浸出分解氟碳铈矿精矿工艺的研究[J],稀土,2004,25(2):20-25.
    [130] Huang Z W, Hu S J, Hou X H, et al. Dead lithium phase investigation of Sn-Zn alloy as anodematerial for lithium ion battery[J]. Chinese Science Bulletin,2009,54(6):1003-1008.
    [131]周向阳,李劼,肖劲,等.杂质对天然石墨电化学嵌/脱锂性能的影响[J].电池,2003,33(1):3-5.
    [132]董建,沈万慈,顾家琳,等.球磨对石墨形态及插锂性能影响的研究[J].碳素技术,2000,38(4):1-4.
    [133] Rubino R S, Tkeuehi E S. The study of irreversible capaeity inlithium-ionanodes preparedwith thermally oxidized graphite[J]. Journal of Power Sources,1999,81-82:373-377.
    [134]张敬君,夏永姚. Co-Sn合金作为锂离子电池负极材料的研究[J].高等高校化学学报,2006,10(27):1923-1926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700