大直径砼顶管工程中土与结构的相互作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新技术和设备的不断开发和采用,顶管逐渐向直径大型化的趋势发展。大直径顶管施工对土体的影响与小口径的顶管必然有所不同,因此传统的管道设计方法已不再适用,并且对提供顶力的工作井也提出了更高的要求。本文结合上海市污水治理南线工程,采用数值模拟方法,对顶管施工中管土相互作用、沉井工作井与土的相互作用进行研究。主要工作和研究成果如下:
     (1)考虑上海软粘土的弹塑性特性,对内径4m的大直径钢筋混凝土顶管管道的受力特性进行了分析。研究了施工过程中管土接触压力的变化及土体参数对管道外土压力的影响,并与现有的计算方法对比,总结管土界面土压力的变化规律。计算结果表明:在上海软土地基中,钢筋混凝土顶管属于刚性管,施工过程中的土拱效应使管道上方和下方土体应力减小,而左右两侧应力增大;土拱效应随覆土厚度的增加逐渐增强,管土接触压力分布比较平均;规范中对侧向土压力采用主动土压力计算偏于保守,将主动土压力系数改为静止土压力系数计算较为合理。
     (2)对顶力作用下的矩形和圆形沉井的受力特性进行了分析,指出现有计算方法的不足,并研究不同受力状态下的土压力分布规律。计算结果表明:矩形沉井后座墙在顶进力反力作用下的变形表现为抛物线形,墙后土体全部受压,对后背土体采用考虑位移的土压力计算方法来计算土体反力;在极限状态时,沉井后背土体产生整体位移,全部达到被动状态,土体反力按朗肯被动土压力计算。矩形沉井后背滑动体呈圆弧状楔形体,平面形状为椭圆;圆形沉井后背和前壁的滑动破坏体形状也为楔形体,平面形状为半圆。
     (3)对比各种国内外设计方法的不同之处及其设计依据,并结合有限元分析结果,对直线顶管施工过程中管道和沉井的土压力计算方法进行优化。在中国顶管设计规范的基础上,分别对垂直土压力、侧向土压力和地基反力的取值和土压力分布模式进行调整,提出了两种新的管道设计模式。两者都更符合管道受力的实际性状,并使管道的计算弯矩大为减小,配筋也能相应减小。提出在极限状态时,矩形和圆形沉井水平方向上的土压力分布为:矩形沉井在偏心受力时后背反力呈梯形分布,圆形沉井后背反力增量呈向心余弦分布。
With the development and adoption of new technique and equipment, the diameter of jacking pipe grow up to be large scale gradually. It's inevitable that the influence of construction of large diameter jacking pipe was different with narrow pipe. So the traditional design methods of pipe was not suitable, and the working well which provided jacking force asked for higher requirement. Based on the South Line project of sewage treatment, the interaction between soil and pipe, between soil and caisson working well, were investigated respectively by numerical simulation in this dissertation. The major works and results of this dissertation were as follows:
     (1) Considering the characteristic of elastoplasticity of Shanghai soft clay, the performance of DN4000 jacking pipe was studied firstly. The variation of contact pressure between pipe and soil during construction was analyzed, and then the influence of soil parameters were discussed. At the same time, the existing computing methods were compared with results of numerical simulation, and the variation laws of earth pressure of the interface were summarized. The computed results were as follows: Reinforced concrete jacking pipe was belong to rigid pipe in Shanghai soft clay. Soil arch effect in the construction would decrease soil stress above and below pipe, while increased soil stress of two sides. Soil arch effect was strengthened with increasing of cover depth, and the distribution of contact pressure was very uniform. Active earth pressure was conservative to calculate lateral pressure in Chinese standard, so it's more reasonable to change the active earth pressure coefficient to be at rest.
     (2) Then the performance of rectangular and circular caisson under impellent were studied. The shortages of existing computing methods were pointed out, and the regularities of earth pressure distribution under different stress state were analyzed. The computed results were as follows: Under the counterforce on the rectangular caisson working well during pipe jacking, the displacement curve of back wall showed as parabolic while the soil was compressed all behind the back wall. The relation between displacement and earth pressure was used to calculate the earth counterforce. The soil behind back wall deformed entirely and reached to passive state at limiting state, and the vertical earth counterforce was calculated according to Rankine's passive earth pressure theory. The slide mass behind back wall of rectangular caisson was like a cambered sphenoid, and its flat shape was elliptic. While the slide mass behind back wall of circular caisson was like a sphenoid, and its flat shape was semi-circle.
     (3) The differences and reasons of various design methods was compared at home and abroad finally. Combined with results of finite element, the computing methods of earth pressure of pipe and caisson are optimized in rectilinear pipe line construction. Based on Chinese jacking pipe standard, the value and load model of vertical and lateral earth pressure, and subgrade counterforce were adjusted, which induced two new design models of jacking pipe. Both of the two models were more corresponding with field practice of pipe, and they could minish computed bending moment of pipe. Accordingly, the ratio of reinforcement could be reduced. At the limiting state, horizontal distribution of earth pressure was proposed for rectangular and circular caisson: The counterforce distribution of back wall was ladder-shaped for rectangular caisson, while the increment distribution of counterforce of back wall was centripetal cosine-shaped for circular caisson.
引文
[1]余彬泉,陈传灿.顶管施工技术[M].北京:人民交通出版社, 1998.
    [2]彭春强,张毅,范民权.超大直径钢筋混凝土顶管在排水工程中的应用[J].特种结构, 2011, 28(4): 21-24.
    [3]曹晓阳,李红兵.顶管施工用管材的比较和应用[J].中国给水排水, 2006, 22 (4): 47.
    [4] Zhou, J. Q.. Numerical analysis and laboratory test of concrete jacking pipes[D]. Doctor Dissertation, University of Oxford, 1998.
    [5] Thomson, James C.. Pipe jacking and microtunnelling[M]. London: The University Press of Cambridge, 1993.
    [6] Mohammad, N., Sanjiv, G.. Trenchless Technology: Pipeline and utility design, construction, and renewal[M]. McGraw-Hill Professional Press, 2004.
    [7]马保松,陈贵生.顶管和微型隧道技术的发展历史[J].非开挖技术, 2003, 20 (3): 26-29.
    [8] Clarkson, T. E., Thomson, J. C.. Pipe-jacking: State of the art in UK and Europe[J]. Journal of Transportation Engineering, 1983, 109(1): 57-72.
    [9]日本下水道管渠推进技术协会(社).推进工法讲座[R]. 1999.
    [10]山本稔.隧道工法[M]. 1999.
    [11]孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社, 1984.
    [12]北京市第一上下水道公司.上下水道顶管施工方法[M].北京:城市建设出版社, 1957.
    [13]曹晓阳,吴学伟.顶管施工技术在我国的历史与发展[J].非开挖技术, 2005, 5(2): 34-37.
    [14]黄均龙,冯崇翊.我国土压平衡式顶管掘进机的发展与应用[J].非开挖技术, 2003, 20(4-5): 94-97.
    [15]王承德.近十年来超长距离顶管发展概况[J].特种结构, 1997, 14(4): 16-21.
    [16]刘稚红.嘉兴市污水处理排海工程超长距离顶管施工[J].特种结构, 2004, 21(2): 72-74.
    [17]匡志文.嘉兴污水处理排海2050m超长距离混凝土顶管施工技术[J].非开挖技术, 2002, (6): 24-27.
    [18]孙钧.城市地下工程活动的环境土工学问题(上)[J].地下工程与隧道, 1999, (3): 2-4.
    [19]孙钧,方从启.城市地下工程活动的环境土工学问题(中)[J].地下工程与隧道, 1999, (4): 7-9.
    [20]徐林.基坑尺寸效应的有限元分析[D].硕士学位论文,天津:天津大学, 2007.
    [21]李小山.上埋式地下管道横向力学性状研究[D].硕士学位论文,浙江:浙江大学, 2003.
    [22]杨俊涛.垂直荷载作用下埋地管道的纵向力学性状分析[D].硕士学位论文,浙江:浙江大学, 2006.
    [23]魏纲.顶管工程土与结构的性状及理论研究[D].博士学位论文,浙江:浙江大学, 2005.
    [24] Pellet, B. A. L., Kastner, R.. Experimental and analytical study of friction forces during microtunnelling operations[J]. Tunnelling and Underground space Technology, 2002, 17: 83-97.
    [25] Haslem, R. F.. Pipe-jacking forces: from practice to theory[A]. In Proc. ICE North Western Association Centenary Conference, Manchester, Manstock, 1986.
    [26] O'Reilly, M. P., Rogers, C. D. F.. Pipe jacking forces[A]. In Proc. Int. Conf. On Foundations and Tunnels 87, Edinburgh, 1987.
    [27] Marshall, M. A.. Pipe-jacked tunnelling: Jacking loads and ground movements[D]. Doctor Dissertation, University of Oxford, 1999.
    [28] Norris, P.. The behaviour of jacked concrete pipes during site installation[D]. Doctor Dissertation, University of Oxford, 1992.
    [29] Ripley, K. J.. The performance of jacked pipes[D]. Doctor Dissertation, University of Oxford, 1989.
    [30] Milligan, G. W. E., Norris, P.. Site based research in pipe jacking-objectives, procedures and a case history[J]. Tunnelling and Underground space Technology, 1996, 11(1): 3-24.
    [31] Nanno, Teruhisa.. A method of driving cuvred pipe-jacked tunnels[J]. Journal of Tunnelling and Underground space Technology, 1996, 11(2): 3-25.
    [32] Milligan, G. W. E., Norris, P.. Pipe-soil interaction during pipe jacking[J]. Geotechnical Engineering, 1999, 137(1): 27-44.
    [33] Sofianos, A. I., Loukas, P.,C., Chantzakos. Pipe jacking a sewer under Athens[J]. Journal of Tunnelling and Underground Space Technology, 2004, 19 193-203.
    [34] Barla, M., Camusso, M., Santina, A.. Analysis of jacking forces during microtunnelling in limestone[J]. Journal of Tunnelling and Underground Space Technology, 2006, 21: 668-683.
    [35] Barla, M., Borghi, X., Mair, R. J., etc. Numerical modelling of pipe-soil stresses during pipe jacking in clays[J]. Department of Structural and Geotechnical Engineering, 2002.
    [36] Li, F. B., Fang, K., Li, H. C.. Application of ANSYS 3D FEM in studies of surface deformation caused by pipe jacking[J]. Wuhan University Journal of Natural Sciences, 2007, 12 (4): 633-637.
    [37]潘同燕.大口径急曲线顶管施工力学分析与监测技术研究[D].硕士学位论文,上海:同济大学, 2000.
    [38]房营光,莫海鸿,张传英.顶管施工扰动区土体变形的理论与实测分析[J].岩石力学与工程学报, 2003, 22(4): 601-605.
    [39]魏纲,徐日庆,屠玮.顶管施工引起的土体扰动理论分析及试验研究[J].岩石力学与工程学报, 2004, 23(3): 476-482.
    [40]冯海宁,龚晓南,徐日庆.顶管施工环境影响的有限元计算分析[J].岩石力学与工程学报, 2004, 23(7): 1158-1162.
    [41]吴修锋.顶管施工引起的地层移动与变形控制研究[D].硕士学位论文,南京:南京工业大学, 2004.
    [42]杨转运.超浅层顶管施工引起路基地层移动数值模拟[J].重庆建筑大学学报, 2008, 30(5): 58-62.
    [43]侯学渊.地下圆形结构弹塑性理论[J].同济大学学报, 1982.
    [44]刘建航,侯学渊.盾构法隧道[M].北京:科学出版社, 1991.
    [45]日本土木学会青涵隧道土压研究委员会[R].青涵隧道土压研究调查报告, 1977: 365-401.
    [46] Eisenstein, Z., EI-Nahhas, F., Thomson, S.. Pressure-displacement relations in two systems of tunnel lining[C]. Proc. Int. Symp. on Geotech. Aspects of Underground Constr. in Soft Ground, l98l: 85-94.
    [47] Fathalla EI-Nahhas, Farouk EI-Kadiand, H Ahmed. Interaction of tunnel linings and soft ground[J]. Tunnelling and Underground Space Technology, 1992, 7(l): 33-44.
    [48] Toshi, N., Shinichiro, L. and Toshiyuki, H., et al. Shield tunnel construction in centrifuge[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(4): 289-300.
    [49] Mashimo, H., Ishimura, T.. Evaluation of the load on shield tunnel lining in gravel[J]. Tunnelling and Underground Space Technology, 2003, 18(2-3): 233-241.
    [50]周小文.盾构隧道土压力离心模型试验及理论研究[D].博士学位论文,北京:清华大学, 1999.
    [51]刘斯宏,卢廷浩.用离散单元法分析单剪试验中粒状体的剪切机理[J].岩土工程学报, 2000, 22(5): 608- 611.
    [52]雷晗,陈锦剑,王建华,朱熊.大直径砼顶管的管道受力特性分析[J].上海交通大学学报, 2011, 45(10): 1493-1497.
    [53] CECS 246: 2008,给水排水工程顶管技术规程[S].上海市政工程设计研究总院, 2008.
    [54]彭夏军,毛炜,葛春辉.钢管顶管设计计算方法的研究[J].特种结构, 2007, 24(3): 16-19.
    [55]上海市政工程设计院等编著.给水排水工程结构设计手册[M].北京:中国建筑工业出版社, 2007.
    [56]钱钟毅.马斯顿土压理论[J].工程建设, 1953(3).
    [57]付俊英.沟埋式涵洞垂直土压力计算的探讨[J].电力学报, 2006, 21(1): 28-30.
    [58]太沙基著,徐志英译.理论土力学[M].北京:地质出版社, 1960.
    [59]车宏亚.涵洞和水管结构计算[M].北京:水利电力出版社, 1958.
    [60]Γ.Κ.克莱恩.地下管计算[M].北京:中国工业出版社, 1961.
    [61]马谢尔勒.顶管工程[M].北京:中国建筑工业出版社, 1983.
    [62]夏明耀,汪炳,王大龄.圆形地下连续墙顶管工作井施工阶段和顶进阶段的内力计算与设计[J].同济大学学报, 1989, 17(l): 11-20.
    [63]宋伟宁,葛春辉.顶管工程中后座井壁荷载近似计算方法探讨[J].特种结构, 1995, 12(4): 31-35.
    [64]蒋燕,葛春辉.矩形沉井井壁受顶管后座力作用的分析[J].特种结构, 2001, 18(l): l-3.
    [65]王恒栋,葛春辉,王大龄等.圆形沉井在顶力作用下的内力分析[J].特种结构, 2001, 18(2): 5-7.
    [66]丁豪,龚福鑫,贺志宏等.顶管施工在市政工程中的实际应用[J].特种结构, 2001, 18(3): 54-56.
    [67]肖展青.截污工程顶管工作井沉井法施工[J].广东土木与建筑, 2002, (12): 40-45.
    [68]冯海宁,徐日庆,龚晓南.沉井后座井壁土抗力计算的探讨[J].中国市政工程, 2002, (l): 64-66.
    [69]任凤鸣,莫海鸿.顶管工程中矩形工作井的应力和变形分析[J].广东土木与建筑, 2003, (6): 54-55.
    [70]成国保.顶管工作井井壁压力分布研究[J].港工技术, 2003, (3): 24-25.
    [71]闫治国,朱合华,李向阳等.顶管同步顶进工作井稳定性三维数值分析[J].岩土工程学报, 2005, 27(8): 891-896.
    [72]贺桂成,丁德馨.顶管工作井围护开挖过程的FLAC3D模拟[J].南华大学学报(自然科学版), 2008, 22(3): 15-20.
    [73]黄清猷.地下管道计算[M].武汉:湖北科学技术出版社, 1991.
    [74]超大口径PC推进工法研究会.超大口径PC推进工法[M]. 2010.
    [75] ASCE 27-00, Standard practice for direct design of precast concrete pipe for jacking in trenchless construction[S].
    [76] ATV A-161, Structural calculation of driven pipes[S].
    [77] GB 50332-2002,给水排水工程管道结构设计规范[S].北京市市政工程设计研究总院, 2002.
    [78]费康,张建伟. ABAQUS在岩土工程中的应用[M].北京:中国水力水电出版社, 2010.
    [79]陈卫忠,武国军,贾善坡. ABAQUS在隧道及地下工程中的应用[M].北京:中国水力水电出版社, 2010.
    [80]殷宗泽等.土工原理[M].北京:中国水力水电出版社, 2010.2007
    [81]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D].博士学位论文,上海:上海交通大学, 2007.
    [82] DGJ08-37-2002,岩土工程勘察规范[S].上海市岩土工程勘察设计研究院, 2002.
    [83]栗培光.圆形钢筋砼排水管在结构方面的问题[J].土木工程学报, 1957, 4, (4): 499-517.
    [84]土木学会.隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社, 2011.
    [85]赖惠清,宋敏生,刘功勋.顶管工程后背反力计算及后背结构设计初探[J].广州建筑,2001,(增刊): 47-52.
    [86]葛金科,沈水龙,许烨霜.现代顶管施工技术及工程实例[M].北京:中国建筑工业出版社, 2009.
    [87]龙驭球,包世华.结构力学[M].北京:高等教育出版社, 1996.
    [88]魏纲,徐日庆,龚慈,刘加湾.顶管工程中矩形沉井土抗力计算方法探讨[J].中国市政工程, 2005, (1): 50-52.
    [89]史如平,韩选江.土力学与基础工程[M].上海:上海交通大学出版社, 1990.
    [90] CECS 137: 2002,给水排水工程钢筋混凝土沉井结构设计规程.上海市政工程设计研究院, 2002.
    [91] Clayton, C. R. I., Hope, V. S., Heymann, G., et al. Instrumentation for monitoring sprayed concrete lined soft ground tunnels[J]. Geotechnical Engineering, 2000, 143: 119-130.
    [92]崔京浩,陈肇元,宋二祥等.一个顶管法穿越高速公路的施工方案[J].特种结构, 2001, 18(3): 44-47.
    [93]魏纲,徐日庆,余剑英等.顶管施工中管道受力性能的现场试验研究[J].岩土力学, 2005, 26(8): 1273-1277.
    [94]王静,杨转运,尹洪明.大直径混凝土顶管管节优越性探讨[J].探矿工程, 2006, (11): 32-34.
    [95]王承德.顶进管道受力分析[J].特种结构, 2006, 23(4): 87-89.
    [96]黄吉龙,陈锦剑,王建华等.大口径顶管顶进过程的数值模拟分析[J].地下空间与工程学报, 2008, 4(3): 489-493.
    [97]蒋洪胜,侯学渊.软土地层中的圆形隧道载荷模式研究[J].岩石力学与工程学报, 2003, 22(4): 651-658.
    [98]严萍,房营光.顶管工作井变形和应力的三维分析[J].广东土木与建筑, 2006, (10): 44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700