温度对花岗岩力学性能影响实验研究及井壁稳定性的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断进步,钻探技术的日益成熟,使得钻井深度逐步增加。同时由于深部的地层环境为高温高压,因此处于深部的地层其物理力学性质的等都会发生相应的改变,从而使得对于井壁稳定性问题的研究显得非常重要。
     本文通过研究温度对深部地质钻井中所钻遇的花岗岩地层的影响进行研究,主要是通过将所取的花岗岩试样加温冷却后,测量其纵波波速的变化情况,从而利用细观理论的间接试验法得出温度的变化对花岗岩内部结构、微细裂纹的扩展所带来的影响。其次,将加温冷却后的花岗岩试样分别进行岩石的单轴和常规三轴试验,从而得出温度对花岗岩的力学性质的影响,并且依据试验所得到的相关数据,整理出一些力学参数与温度的变化关系,为后期关于井壁稳定性进行数值模拟时提供相应的参数选择依据。最后,基于先前的试验研究及得到的相关规律,通过利用ANSYS数值模拟软件对于实际钻井过程中,钻井液在环空循环过程中对井壁及其围岩的影响进行了相关的模拟。
     本文通过利用细观力学试验的间接试验方法-超声波,得到了试样在加温前后其纵波波速会发生很大的变化,从而认为温度的升高使得花岗岩内部的微裂纹发生了扩展、贯通,岩石的内部结构发生了改变。其次,依据岩石的单轴和常规三轴试验,得到温度对花岗岩力学性质具有很大的影响,其中包括:弹性模量、峰值应力、内摩擦角、粘聚力等。最后,通过数值模拟得出,在实际钻井过程中,关于井壁稳定性问题的研究时,不仅要考虑地层原有的地应力作用,同时也要考虑钻井液的液柱压力,而且钻井液在环空中循环时,对井壁及其围岩的温度也会产生很大的影响。同时,温度的变化也会给井壁及其围岩的力学性质及其稳定性带来相关的影响。
With the progress of science and technology, the drilling technology becomesmore and more sophisticated. In the deep strata, the environment is high temperatureand high pressure. At the same time, the physical and mechanical properties of deepstrata will change, the wellbore stability is very important.
     In the deep drilling, the deep granite formation will be impact by the temperature.In this paper, the granite sample are taken to heat and cold, and measure P-wavevelocity, then using the indirect test method of the microscopic theory to know thechange of internal structure of granite and the impact of micro-crack propagation.Secondly, the heating and cooling of the granite specimens are taken to make theuniaxial and the triaxial tests. From the tests, the impact of temperature on themechanical properties of granite can been knew, and the temperature change inrelationship between the corresponding parameters will been getting. Then, we canuse the experiment reports to choose the parameters of numerical simulate. Finally,based on the previous pilot study and the relevant law, the circulation process ofdrilling fluid in the actual drilling will been simulated by ansys numerical software.
     Through the use of ultrasound method, the wave velocity of the heating andcooling samples vary greatly, so we can believe that there are great relationship withthe micro-crack extending, linking and temperature. Simultaneously, the internalstructure of rock has been changed. Second, according to the reports of tests, themechanical properties of granite are effect by the temperature, such as elastic modulus,peak stress, internal friction, cohesive force, and so on. Third, not only the originalstrata of ground stresses be considered, but also the fluid column pressure of thedrilling fluid taken into account. At the same time, the effect of temperature betweenthe drilling fluid that in the ring of air circulation and the borehole and its surroundingrock should been taken into considered. Because, the change of temperature will madethe mechanical properties of the borehole and its surrounding rock will be changed,and the wellbore been unstable.
引文
Bradley W B. Failure of Inclined Bore Holes[J]. Journal of Energy Resources Technology,1979,101(4):232-239.
    Brown E T, Bray J W, Santarelli F.J. Influence of Stress-Dependent Elastic Moduli on Stresses andStrains Around Axisymmetric Boreholes[J]. Rock Mechanics and Rock Engineering,1989,22:189-203.
    Choi S K, Tan C P. Modelling of Effects of Drilling Fluid Temperature on Wellbore Stability[J].Society of Petroleum Engineers,1998:471-477.
    Cuss R J, Rutter E H, Holloway R.F. Experimental Observation of the Mechanics of BoreholeFailure in Porous sandstone[J]. International Journal of Rock Mechanics&Mining Sciences,2003,40:747-761.
    Chen G. Z, Chenevert M E, Sharma M. M, etal. A Study of Wellbore Stability in Shales IncludingPoroelastic, Chemical, and Thermal effects[J]. Journal of Petroleum Science and Engineering2003,38:167-176.
    Darot M, Reuschle T. Acoustic Wave Velocity and Permeability Evolution During Pressure Cycleson a Thermally Cracked Granite[J]. International Journal of Rock Mechanics&Mining Sciences,2000,37:1019-1026.
    Ding D Y. Coupled Simulation of Near-Wellbore and Reservoir Models[J]. Journal of PetroleumScience and Engineering,2011,76:21-36.
    Fairhurst C. The Phenomenon of Rock Splitting Parallel to a Free Surface Under CompressiveStress[J]. Proceedings1stCongress of the International Society of Rock Mechanics, Lisbon,1968.Gentzis T, Deisman N, Chalaturnyk R. J. Effect of Drilling Fluids on Coal Permeability: Impact onHorizontal Wellbore Stability[J]. International Journal of Coal Geology,2009,78:177-191.
    Hubbert M K and Willis D G. Mechanics of Hydraulic Fracturing [J]. Journal of PetroleumTechnology,1957:153-168.
    Homand E F., Houpert R. Thermally Induced Microcracking in Granites: Characterization andAnalysis[J]. International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts,1989,26(2):125-134.
    Johnson B, Gangi A F, Handin J. Thermal Cracking of Rock Subject to Slow, UniformTemperature Changes[C]. Proceedings19thUS Symposium Rock Mechanics,1978:259-267.
    Maury V, Guenot A. Aquitaine E. Practical Advantages of Mud Cooling Systems for Drilling[J].Society of Petroleum Engineers,1995,10:42-48.
    Mckenzie C K, Stacy G P, Gladwin M T. Ultrasonic Characteristics of a Rock Mass. InternationalJournal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1982,19(1):25-30.
    Miura K, Okui Yoshiaki, Horii H. Micromechanics-Based Prediction of Creep Failure of hardRock for Long-Term Safety of High-Level Radioactive Waste Disposal System[J]. Mechanics ofMaterials,2003,35:587-601.
    Nawrocki P A, Dusseault M B, Bratli R K. Assessment of Some Semi-Analytical Models forNon-linear Modelling of Borehole Stresses [J].International Journal of Rock Mechanics andMining Sciences and Geomechanics,1996,35:522.
    Nguyen V X, Abousleiman Y N, Hoang S K. Analyses of Wellbore Instability on Drilling ThroughChemically Active Fractured-Rock Formations[J]. Society of Petroleum Engineers,2009:283-301.
    Oda M. Modern Developments in Rock Structure Characterization[J]. Comprehensive RockEngineering,1993:185-200.
    Odedra A, Ohnaka M, Mochizuki H, et al. Temperature and Pore Pressure Effects on the ShearStrength of Granite in the Brittle-Plastic Transition Regime[J]. Geophysical Research Letters,2001,28:3011-3014.
    Roegiers J C. Well Modeling: an Overview[J]. Oil&Gas Science and Technology-Rev,2002,57(5):569-577.
    Simpson C. Deformation of Granitic Rocks Across the Brittle-Ductile Transition[J]. Journal ofStructural Geology,1985,7(5):503-511.
    Tang L, Luo P. The Effects of Thermal Stress on Wellbore Stability[J]. Society of PetroleumEngineers,1998:17-19.
    Westergaard H M. Plastic State of Stress around a Deep Well[J]. Boston Society Civil Engineers,1940,27:387-391.
    Wang H F, Bonner B P, Carlson S R, et al. Thermal Stress Cracking in Granite[J]. Journal ofGeophysical Research,1989,94:1745-1758.
    Wang R Q. Fundamental Studies of Micromechanics, Fracturing Progression, and Flow Propertiesin Tuffaceous Rocks for the Application of Nuclear Waste Repository in Yucca Mountain[D].America: The University of Arizona Campus Repository,1994.
    Wang Y L, Dusseault M B. A Coupled Conductive-Convective Thermo-Poroelastic Solution andImplication for Wellbore Stability[J]. Journal of Petroleum Science and Engineering,2003,38:187-198.
    Yew C H, Liu G. Pore Fluid and Wellbore Stabilities [J]. Society of Petroleum Engineers,1992:24-27.
    ZHOU X P, ZHANG Y X, HA Q. L. Real-Time Computerized Tomography (CT) Experiments onLimestone Damage Evolution During Unloading [J]. Theoretical and Applied FractureMechanics,2008,50(1):49-56.
    蔡忠理,刘克,罗津辉.超声波谱法在岩石破裂特性研究中的应用[J].岩土工程学报,1989,11(3):60-69.
    蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    陈四利,冯夏庭,李邵军.化学腐蚀下三峡花岗岩的破裂特征[J].岩土力学,2003,24(5):817-821.
    程鑫.立井井壁温度应力三维数值模拟分析[D].安徽:合肥工业大学,2007.
    陈秀荣.泥页岩井壁稳定性研究[D].武汉:中国地质大学,2009.
    杜守继,刘华,职洪涛,等.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学,2004,23(14):2359-2364.
    冯夏庭,丁梧秀,崔强,等.岩石破裂过程的化学—应力耦合效应[M].北京:科学出版社,2010.
    宫常斌,高德利,徐秉业.井眼稳定性的研究方法和进展[J].武汉交通科技大学学报,1997,21(6):644-648.
    葛修润,任建喜,蒲毅彬.岩石细观损伤扩展规律的CT实时试验[J].中国科学(E辑),2000,30(2):104-111.
    郭小勇.火成岩地层井壁稳定技术研究进展[J].重庆科技学院学报(自然科学版),2009,11(6):42-44.
    黄明利,唐春安,朱万成.岩石单轴压缩破坏失稳过程SEM即时研究[J].东北大学学报(自然科学版),1999,20(4):426-429.
    凌建明.压缩荷载条件下岩石细观损伤特征的研究[J].同济大学学报,1993,21(2):219-226.
    刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,19(4):408-411.
    柳江琳,白武明,孔祥儒,等.高温高压下花岗岩、玄武岩和辉橄岩电导率的变化特征[J].地球物理学报,2001,44(4):528-533.
    刘向君,罗平亚,孟英峰.地应力场对经验轨迹设计及稳定性的影响研究[J].天然气工业,2004,24(9):57-59.
    雷正义.砂泥岩地层井壁力学稳定性研究及软件编制[D].成都:西南石油大学,2004.
    刘丹.龙虎泡油田钻井井壁稳定性研究[D].黑龙江:大庆石油学院,2007.
    刘厚彬,孟英峰,李皋,等.超深井井壁稳定性分析[J].天然气工业,2008,28(4):67-69.
    李连崇,唐春安,杨天鸿,等.岩石破裂过程THMD耦合数值模型研究[J].计算力学学报,2008,25(6):764-769.
    廖红建.岩土工程数值分析[M].北京:机械出版社,2009.
    唐世斌,唐春安,朱万成,等.热应力作用下的岩石破裂过程分析[J].岩石力学与工程学报,2006,2(10):2071-2078.
    吴晓东,刘均荣.岩石热开裂影响因素分析[J].石油钻采技术,2003,31(5):24-27.
    吴黎辉.岩体经验强度准则研究[D].陕西:长安大学,2004.
    王京印.泥页岩井壁稳定性力学化学耦合模型研究[D].北京:中国石油大学,2007.
    王博.深水钻井环境下的井筒温度压力计算方法研究[D].山东:中国石油大学,2007.
    吴刚,滕念管,王宇.高温后石灰岩的物理力学特性研究[J].岩土工程学报,2011,33(2):259-264.
    席道瑛.温度对岩石模量和波速的影响[J].岩石力学与工程学报,1998,17(增):802-807.
    许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22(3):332-335.
    谢卫红,高峰,谢和平.细观尺度下岩石热变形破坏的实验研究[J].实验力学,2005,20(4):628-634.
    薛秋来,邓金根.井眼破坏过程的数值模拟[J].西部探矿工程,2009(4):80-83.
    徐小丽,高峰,季明.温度作用下花岗岩断裂行为损伤力学分析[J].武汉理工大学学报,2010,32(1):143-147.
    杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9.
    尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报,2003,22(1):53-60.
    闫治国,朱合华,邓涛,等.三种岩石高温后纵波波速特性的试验研究[J].岩土工程学报,2006,28(11):2010-2014.
    阎铁,李士斌.深部井眼岩石力学理论与实践[M].北京:石油工业出版社,2002.
    张梅英,袁建新,李廷芥,等.单轴压缩过程中岩石变形破坏机理[J].岩石力学与工程学报,1998,17(1):1-8.
    张广清,陈勉.井眼破坏与钻井液密度关系的三维有限元模型[J].石油钻探技术,2004,32(4):37-38.
    张慎河,孟召平.地热资源开发中井壁围岩稳定性数值模拟[J].山东建筑大学学报,2010,25(3):280-284.
    张志镇,高峰,刘治军.温度影响下花岗岩冲击倾向及其微细观机制研究[J].岩石力学与工
    程学报,2010,29(8):1591-1602.
    张静华,王靖涛,赵爱国.高温下花岗岩断裂特性的研究[J].岩土力学,1987,8(4):11-16.
    王绳祖.高温高压岩石力学—历史、现状、展望[J].地球物理学进展,1995,10(4):1-10.
    周克群,楚泽涵,张元中,等.岩石热开裂与检测方法研究[J].岩石力学与工程学报,2000,19(4):412-41.
    朱合华,闫治国,邓涛,等.3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,2006,25(10):1945-1950.
    左建平,谢和平,周宏伟,等.不同温度作用下砂岩热开裂的实验研究[J].地球物理学报,2007,50(4):1150-1155.
    钟海峰.力—化耦合作用下井眼破坏过程模拟[D].山东:中国石油大学(华东),2007.
    周宏伟,左建平,王驹,等.温度—应力作用下北山花岗岩的细观破坏实验研究[J].第二届废物地下处置学术研讨会论文集,2008:257-266.
    赵小龙.石油钻井任意井眼的井壁稳定性研究[D].重庆:重庆大学,2008.
    赵阳升,杨栋,冯增朝,等.多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J].岩石力学与工程学报,2008,27(7):1321-1328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700