天然气水合物储层剪切强度及井壁稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气能源需求的不断增长和天然气水合物藏勘探的不断深入,商业开发天然气水合物已列入议事日程。由于天然气水合物分解前后,水合物赋存地层的力学性质产生变化,导致水合物钻井中发生井壁破坏的可能性明显增加,因此研究水合物储层的力学性质和井壁稳定性问题很有必要。本论文针对水合物钻井中保持井壁稳定这一技术问题,通过实验和理论研究的方法测定了水合物储层的剪切强度,分析了水合物钻井中保持井壁稳定的温度压力控制,以期对水合物的安全开发提供理论指导和技术支持。
     文中研究了天然气水合物的储层物理性质,对储层孔隙度、饱和度、渗透率、导热系数和力学性质等进行了系统总结。在调研国内外水合物剪切强度实验的基础上,自主研制了天然气水合物储层剪切强度仪,该仪器可以提供水合物稳定存在的低温高压环境,并在此环境中对水合物填砂模型进行直接剪切,测定了不同水合物饱和度下的剪切强度的变化规律。实验发现水合物储层的内聚力和内摩擦角随着水合物饱和度增加而增加,通过实验曲线的回归,得到了内聚力和内摩擦角随水合物饱和度的变化关系式,为计算水合物层井壁坍塌压力提供了参数。
     通过研究水合物钻井中保持井壁稳定的方法发现,如何确定并控制钻井液的低温高密度是解决问题的关键,文中在考虑岩屑和地层中水合物分解的情况下,基于质量、动量、能量守恒原理和传热学理论,利用微元分析和有限差分的方法,建立了环空气液两相流体的温度压力分布模型,编程求解模型并进行相关参数的敏感性分析。将求取的环空温度压力值与水合物相态曲线和钻井液安全密度窗口进行对比,提出了保持水合物层井壁稳定的钻井液临界入口温度和水合物分解压力两个关键参数,并给出了计算方法,为水合物钻井中钻井液温度和密度的确定提供了依据。
With the growing demand for oil and gas energy and developing of natural gas hydrates exploration, it is planned to exploit gas hydrates commercially. However, as a result of gas hydrates dissociation, the mechanical properties of hydrate formation would change, and this will result to the possibility of borehole damage and reservoir unstable during hydrates drilling process, so it’s necessary to study the mechanical properties and borehole stable problems. Confronted with the problem of maintaining reservoir stability in the process of drilling, this paper measures the shearing strength of reservoir bearing hydrates by theoretical and experimental method, and studied the stability of hydrate reservoir during drilling in order to provide the theoretical guide and technique supports for security of the natural gas hydrates exploration.
     This paper makes research on the physical properties of hydrates reservoir, and summarizes the porosity, saturation, permeability and mechanical properties, etc of hydrates’reservoir systematically. On the base of investigation of shearing test around the world, the author develops a shear strength measuring apparatus of hydrates reservoir, which could provide the low-temperature and high-pressure conditions of hydrates existing stably, measures the strength of sand models with different saturation, and gets that with the increase of the saturation, the friction cohesion and friction angle will increase too. By regression of experiment curve, this paper gets the relationship of cohesion and friction angle with saturation, and provides parameters for calculating the collapse pressure of reservoir bearing hydrates.
     The author found that the key to this problem is how to determine and control the drilling fluid to be low-temperature and high-density by studying the method of keeping borehole stable during drilling process. Taking into account of the gas invasion due to rock debris and decomposition of gas hydrates, based on mass, momentum, energy conservation principle and the theory of heat transfer, we established temperature and pressure distribution model of annular air-liquid two-phase flow by using the micro-element analysis and finite difference method, and did sensitivity analysis to each affecting elements. Through the comparison of annular space temperature & pressure and the hydrate phase curve & reasonable drilling fluid density window, we proposed two key parameters of hydrate decomposition pressure and critical inlet temperature of drilling fluids which can keep borehole stable during the hydrate reservoir mining, and gave the calculation methods of these two key parameters.
引文
[1]Mark Maslin. Gas Hydrates: A Hazard for the 21st Century. Hazard Research Centre. 2003,1-21
    [2]周文杰.南海北部天然气水合物资源潜力巨大[EB/OL] . (2007-06-15). http://www.gd.xinhuanet.com/ newscenter/2007-06/15/content-10303475.htm
    [3]冷奇丰.青藏高原发现新能源可燃冰至少350亿吨油当量[EB/OL].(2009-09-25). http://news.sohu com /20090925/n266996378.shtml
    [4]李登伟,张烈辉,刘大伟等.天然气水合物的储层保护技术探讨[J].海洋石油,2006,(1):43~46
    [5]叶建良,殷琨,蒋国盛等.天然气水合物钻井的关键技术与对策[J].探矿工程,2003,(5):45~48
    [6]Winters WJ, Pecher IA. Physicalproperties and rock physical models of sediment containing natural and labortaroy-formed methane gas hydrate. American Mineralogist, 2004, 89: 1221~1227
    [7]Winters W J, waite WF.Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 2007, 56: 127~135
    [8]Hyode M, Nakata Y.Shear behaviour of methane hydrate-bearing sand.In: Proc.17th Int. Offshore and Polar Engrg. Conf., Lisben, Portugal, 2007. 1326~1333
    [9]Clayton CRI, Priest JA. The effects of dissemininated methane hydr on the dynamic stiffness and damping of a sand. Geotechnique, 2005, 55(6): 423~434
    [10]Masui A, Haneda H, Ogata Y. Mechanical properties of sandy sediment cotaining marine gas hydrates in deep sea offshore Japan.In: Proc.17th Int. Offshore and Polar Engrg. Conf., Ocean Mining Symposium, Lisben, Portugal, ISOPE, 2007. 53~56
    [11]Clayton C R I, Priest A I. The effects of dissemininated methane hydrate on the dynamic stiffness and damping of a sand.Geotechnique, 2005, 55(6): 423~434
    [12]A1i G. Kadaster, Keith K.Millheim. The Planning and Drilling of Hot Ice#1-Gas Hydrate Exploration Well in the Alaskan Arctic[J]. SPE92764, 2005: 1~4
    [13]李常茂,耿瑞伦.关于天然气水合物钻探的思考[J].探矿工程,2000(3):5~8
    [14]刘华,李相方.关于天然气水合物钻采工艺技术进展的研究[J].钻采工艺,2006,29(5):54~55
    [15]M. N. Sweep, J.M. Bailey, Tengizchevroil, C. R. Stone. Closed-hole Circulation Drilling: Case Study of Drilling a High-Pressure Fractured Reservoir-Tengiz Field[J]. SPE/IADC79850, 2003, 18
    [16]Tan, C. P., Freij-Ayoub. Managing Wellbore Instability Risk in Gas-Hydrate-Bearing Sediments. Society of Petroleum Engineers Inc. 2005, 4
    [17]Freij-Ayoub, R., Tan, C.P., Clennell B., Yang, J. and Tohidi, B.:“Wellbore Stability Modeling In Hydrates Bearing Sediments.AAPG Hedberg Research Conference (2004) Vancouver, Canada
    [18]Tan, C. P., Yaakub, M. A., Chen, X., Willoughby, D. R., Hamid, P. A., Wu, B., Zamanuri, Ibrahim and Zahari Ibrahim: "Optimization of Drilling Fluid Design for Managing Wellbore Instability in K-Shale in the Malay Basin of Peninsular Malaysia," OilRock (2002) Irving, Texas, USA
    [19]宁伏龙.天然气水合物地层井壁稳定性研究[D].中国地质大学,2007,1
    [20]Krzyszt of Szamaek International researchprojecton gashydrates: Hydrates in Oceans-Programme of Exploration(HOPE). Przegl1dGeologiczny, vol. 52, no.8/2, 2004
    [21]姚伯初.天然气水合物的发现和研究历史[J].国外地质,2000,(1):1~11
    [22]蒋国盛,王达,汤凤林等.天然气水合勘探与开发[M].武汉:中国地质大学出版社,2002
    [23]Erwin Suess. THE EVOLUTION OF AN IDEA: FROM AVOIDING GAS HYDRATES TO ACTIVELY DRILLING FOR THEM. 2001. No.9 of SFB 574
    [24]张剑.多孔介质中水合物饱和度与声波速度关系的实验研究[D].青岛:中国海洋大学,2008,6
    [25]Mark Maslin. Gas Hydrates: A Hazard for the 21st Century. Issues in Risk Science. 2004, 5
    [26]D. Y Kim et al., Tuning clathrate hydrates: Application to hydrogen storage, Catal. Today (2006), doi: 10. 1016/j. cattod. 2006. 09. 001
    [27]孙志高,王如竹,樊栓狮等.天然气水合物研究进展[J].天然气工业,2001,21(1): 93~96
    [28]Koh C A. Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev., 2002, 31: 157~167
    [29]Erwin sues. The evolution of an idea:from avoiding gas hydrates to actively drilling for them. 45~46
    [30]Mark Maslin. Gas Hydrates: A Hazard for the 21st Century. Issues in Risk Science. 2004, 5
    [31]Cook, A. E., Goldberg, D., Kleinberg, R. L., 2008. Fracture-controlled gas hydratesystems in the northern Gulf of Mexico. Mar. Petr. Geol. 25, 932~941
    [33]孙志高,樊栓狮,郭开华等.天然气水合物分解热的确定[J].分析测试学报,2002,21(3):7~9
    [34]龚建明,王红霞.天然气水合物在沉积地层中的分布模式[J].海洋地质动态,2004,20(6):6~8
    [35]Eeker C, Dvorkin J, Aura M. Estimating the amount of gas hydrate and free gas from marine seismic data[J]. Geophysics, 2000, 65: 565~573
    [36]W F Waite, J Pinkston, S H Kirby. Proceedings of the Fourth International Conference on Gas Hydrate(C). Yokohama, 2002: 728~733
    [37]史斗,孙成权,朱岳年.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992
    [38]Handa Y P. Composition, enthalpy of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutene hydrate, as determined by heat-flow calorimeter[J]. Chem Thermodynamics, 1986, (18): 915~921
    [39]Rueff R M, sloan E D, Yesavage V F. Heat capacity and heat of dissociation of methane hydrate[J]. AICHE Journal, 1988, 34(9): 1468~1476
    [40]John L Cox. Natural Gas Hydrates: Properties, Occurrence and Recovery[M]. Boston: Butterworth, 1983
    [41]Dvorkin J, Helgerud M B, Waite W F, etal. Introduetion to Physieal Properties and elastieity model[A]. Natural gas hydrate in oeanic and permafrost environments[C], 2000, 245~260
    [42]高江平,支喜兰,杨含等.低温剪切仪[P].实用新型专利.ZL 200620079388.X
    [43]尹彦文,张卫东,王瑞和等.一种水合物储层剪切强度实验仪[P].实用新型专利.ZL 200820027803.6
    [44]Sloan Jr. Clathrate Hydrates of Natural Gases. Marcel Dekker Inc., 1998, New York
    [45]刘永军.天然气水合物储层物性模拟实验研究[D].东营:中国石油大学(华东),2008,5
    [46]黄荣蹲,邓金根,陈勉.井壁坍塌压力和破裂压力的计算模型[J].钻井工程井壁稳定新技术[M].北京:石油工业出版社,1999:104~112
    [47]李湘生,汪崇鲜,吴成义.典型人工冻结粘土三轴剪切强度准则的试验研究[J].建井技术,1998,19(4)
    [48]岳前进,周新安,沈梧等.海冰侧限剪切强度实验方法[J].冻川冻土,1994,16(1)
    [49]Tae Sup Yun. Mechanical and thermal study of hydrate bearing sediments. In Partial Fulfillment of the Requirements of the Degree Doctor of Philosophy in Civil and Environmental En. May 24, 2005
    [50]刘玉石,白家社,黄荣樽等.硬脆性泥页岩井壁稳定问题研究[J].石油学报,1998,19(1):85~88
    [51]雷正义.沙泥岩地层井壁力学稳定性研究及软件编制[D].四川:西南石油学院,2004
    [52]陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社.2008,7:56~61
    [53]Dranchuk P M, Purvis R A, Robinson D B. Computer Calculations of natural gascompressibility factors using the standing and katz correlation[J]. Inst of Petroleum Technical Series, 1974, 36(4): 76~80
    [54]张军,陈听宽.垂直同心环形管内气液两相环状流含气率与压降预测[J].化工学报,2003,54(1):47~50
    [55]高永海.深水油气钻探井筒多相流动与井控的研究[D].东营:中国石油大学(华东),2007
    [56]郭春秋,李颖川.气井压力温度预测综合数值模拟[J].石油学报,2001,22(3): 100~104
    [57]周燕遐,李炳兰,张义钧等.世界大洋冬夏季温度跃层特征[J].海洋通报,2002,21(1):16~22
    [58]邱章,蔡树群.与南沙深水区温跃层有关的海水平均温度的分布特征[J].热带海洋,2000,19(4):10~13
    [59]曾维平,周蒂.GIS辅助估算南海南部天然气水合物资源量[J].热带海洋学报,2003,22(6):35~44
    [60]王志远.含天然气水合物相变的环空多相流流型转化机制研究[D].东营:中国石油大学(华东),2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700