砂泥岩地层井壁力学稳定性研究及软件编制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井壁稳定性问题是一个长期困扰石油工程界的重大技术难题,在全世界范围内广泛存在,我国各油田也都不同程度地存在。对于钻井来说,井壁失稳会造成井下复杂情况,影响钻井施工进度,严重时可能导致井眼报废,造成巨大的经济损失;井壁失稳还影响固井,油藏开发中的射孔、防砂、采油和油井增产等后序作业的实施。因此,研究井壁稳定性问题对钻井工程以及油田开发均具有重要的意义。
     井壁失稳主要发生在砂泥岩层段,包括脆性泥页岩井壁的坍塌剥落,塑性泥页岩层的缩径,砂岩地层的漏失。从本质来说,井壁失稳是岩石力学与钻井液化学共同作用的结果。鉴于力学与化学耦合造成井壁失稳的复杂性,本论文仅分析有关岩石力学方面的因素对井壁稳定性的影响,对于由孔隙流体迁移导致的与时间相关的效应也不予考虑。
     从力学角度分析,当井眼钻开后,钻井液液柱压力取代了所钻岩层提供的支撑,破坏了地层原来的应力平衡,导致井壁周围岩石的应力重新分布,如果重新分布的应力超过岩石所能承受的最大载荷(不管是抗压强度、抗拉强度还是抗剪强度等),井壁失稳就会发生。而原地应力、地层孔隙压力、岩石力学性质、钻井液密度是决定井壁稳定与否的几个关键性的力学因素。当井眼钻开后,井壁周围应力又是怎样重新分布的?井壁何时发生破坏?如何预测所钻地层的地应力状态、地层孔隙压力大小、岩石力学性质?这就是本论文所要研究、解决的问题。
     在室内通过岩心试验确定地应力、地层孔隙压力、岩石力学性质,费时、费力、又有一定的局限性,而通过测井手段,可以方便地解决这个问题。因为测井响应是在一定的钻井背景下测得的,每一个时刻得到的测井响应值都必然隐含了井周地层在钻井过程中所经历的各种应力变化和强度变化;且测井资料信息量大,成本低,又有很高的精度,所以利用测井资料确定地应力、地层孔隙压力以及岩石力学性质,具有一定的经济和工程应用价值。
     本论文首先根据弹性力学理论推导出了直井、定向井井周应力分布状态,然后研究了如何利用测井资料快速、经济、准确地预测所钻地层地应力状态、地层孔隙压力大小、岩石力学性质。具体研究内容包括以下五个方面:
     (1) 根据线——弹性本构模型推导出了直井、定向井井周应力分布;根据剪切破坏准则推导出了导致井壁产生初始剪切破坏的钻井液密度上、下限的理论计算公式;对比分析了三种剪切破坏准则,得出了选用不同的破坏准则,计算出的坍塌压力有较大的差别的结论。
     (2) 利用声波测井资料,根据欠压实理论,采用等效深度法对地层孔隙压力进行了预测;在地层孔隙压力预测常规方法的基础上,还进行了地层孔隙压力预测新方法的探讨。
    
    (3)对地应力的几种计算模式进行了分析,分别讨论了四种应力状态下,安全钻井
     液密度窗口随井斜角、方位角的变化规律,以及这些规律对钻井工程实践的指
     导意义。
     (4)对如何利用声波测井、密度测井、自然伽马测井等测井资料求岩石力学参数进
     行了深入的探讨,分析了安全钻井液密度窗口对各参数的敏感性问题。
     (5)在前四步的基础上,编制了“基于测井资料的安全钻井液密度窗口预测”应用
     软件,该软件主要利用测井资料钻前预测安全钻井液密度窗口,要求输入的参
     数少,操作方便,能输出岩石力学参数曲线、地层压力曲线、地应力曲线、坍
     塌压力、剪切破坏压力曲线与破裂压力曲线,对钻井工程具有很强的现实指导
     意义。
     本论文在理论研究的基础上,编制了“基于测井资料的安全钻井液密度窗口预
    测”应用软件,并根据DD气田、QQ油田两口井的测井资料对软件进行了测试,通过对
    比现场实测数据与理论预测结果,证明本论文的研究结果是可信的,同时也说明本项
    研究具有重要的理论意义与实用价值。
     关键词:砂泥岩井壁德定坍塌压力破裂压力地层孔隙压力地应力力学性质
    侧井资料
Wellbore stability is one of the most important considerations in any drilling operations. At best, an unstable wellbore would mean that drilling performance is impeded through lost time. At worst, it would mean a hole collapse and total loss of a well. All this means extra costs and money-time losses. And wellbore instability also influences the perforation and sand production,ect in the reservoir development. So it is important to study wellbore instability.Wellbore instability includes mainly borehole collapse in brittle shale and borehole shrinkage in soft shale and borehole rupture in standstone. The main reasons that effect shale instability can be divided into mechanical and chemical aspects. However, only the mechanical effects are considered in this paper. Time dependent effects resulting from pore fluid migration are not considered either.In mechanical terms, when the well is drilled, the drilling fluid pressure substitutes the pressure that the formation provides, resulting from the stress re-distributing. If the redistributing stress exceeds the intension of the formation, wellbore instability will occure. The most important factors influencing wellbore instability are in-situ stresses, mud weight, formation pressure and rock properties.The logging information is gathered in or after drilling. The logging information at ervery time-interval indicates indirectly the change of pressure and rock strength around the wellbore. Meanwhile, the log data have high precision and include a lot of information about formation, and the cost of logging is lower relatively. So we can obtain the rock mechanical parameters, pore pressure and in-situ stresses througth log data. Then the mud weight window for the drilling can be predicted.In this paper, borehole instability mechanism is thoroughly studied, the methods by which the in-situ stresses, pore pressure and rock mechanical properties were obtained througth log data were described. The detailed work can be concluded as follows:(1) Mechanical reasones of borehole collapse and tensil failure were researched. With the linar elastic theory, the formula calculating the maximum drilling fluid density that causes formation tensile failure and the minimum drilling fluid density that would cause formation to produce initial shear fracture in vertical and directional borehole were derived. Three rock failure criterions have been evaluated and had drawn a conclusion that the predicted "safe" mud weight window changes with the failure cricterion selected.(2) Some model for caculating the in-situ stresses had been discussed. The changing trend of the "safe" mud weight window with the inclination and azimuth was also
    
    researched, which would give some guidance to the drilling engineering. (3) Based on the theory of undercompaction, with the equivalent depth technique, theformation pressure was caculated through acoustic log data.(4) The way by which the useful information of the rock properties from log data were obtained had been studied and the effcts of the formation parameters on the "safe" mud weight window were also researched.(5) The software used to calculate "safe" mud weight window had been developed. Only a few parameters are needed , the software can calculate rock properties, formation pressure, in-situ stresses , collapse pressure and fracture pressure along the well bore.On the basis of theoretical research, the software was used to predict the "safe" mud weight window of two wells in DD gas field and in QQ oil field . Comparison between actual data related to wellbore instability and theoretical results was carried out. The results of study of this paper has important theory meaning and practical value.
引文
[1] M. R. McLean and M. A. Addis (1990) , WellBore Stability Analysis: A Review of Current Methods of Analysis and Their Field Application, IADC/SPE19941
    [2] 邓金根,张洪生,钻井工程中井壁失稳的力学机理,石油工业出版社,1998
    [3] 廖扬强,余庆,大斜度井水平井井壁力学稳定性技术现状,钻釆工艺,2003,26(3):7~10
    [4] 高德利,陈勉,谈谈定向井井壁稳定问题,石油钻采工艺,1997,19(1):1~4
    [5] 李志明,张金珠编著,地应力与油气勘探开发,1997
    [6] 刘向君,罗平亚编著,石油测井与井壁稳定,石油工业出版社,1999
    [7] Bradley, W. B. (1979) , Mathematical Stress Cloud-Stress Cloud Can Predict Borehole Failure, Oil&Gas J. , Vol. 77, No. 8, Feb, P92~102
    [8] F. irburit, C. , Methods of Determining Iu-Situ Rock Stresses at Great Depth, TRI-68 Missouri River Div. , Corps of Engineer (1968)
    [9] Paslay, P. R and Cheatham, J. B. (1963) . Rock Stresses Induced by Flow of Fluids into Boreboles, Soc. Petrol. Engrs. J. , vol. 3, No. 1, March, P85~91
    [10] Sulem, J. and Vardoulakis, I. (1988) , A New Approaeh to Borehole Stability Based on Bifurcation Theory, Proc. 6 th, Int. Conf. Num. Meth. Geomech, Innsbruck, P1929~1935
    [11] Santarelli, E J. (1987) , Theoretical and Experimental Investigation of the Stability of the AkisyInmetric Wellbore, Ph. D thesis, University of London
    [12] Westergaard, H. M. (1940) , Plastic State of Stress Around a Deep Well, J. Boston Soc. of Civ. Engrs. , Vol. 27, No. 1, Jan. , P1~5.
    [13] Mictchell, R. F. , Goodman, M. A. and Wood, E. T. (1987) , Borehole Stresses: Plasticity and the Drilled Hole Effect, SPE/IADC drilling Conf. , New Orleans, La, Mar. , SPE/IADC 16053, P43~49
    [14] Bratli, R. K. and Risnes, R. (1981) , Stability and Failure of Sand Arches, Soc. Petrol. Engrs. J. , Vol. 21, No. 3, April, P236~248
    [15] Morita, N. and Gray, K. E. (1980) , A Constitutive Equation For Non-linear Stress-Strain Curves in Rocks and it's Application to Stress Analysis Around a Bore-hole During Drilling, 55th Annual Fall Tech. Conf. and Exhib. of SPE, Dallas, Sept. , SPE 9328
    [16] Veeken, C. A. M. , Walters, J. V. , Kenter, C. J. and Davies, D. R. (1989) , Use of Plasticity Models for Predicting Borehole Stability, Ptoc. Int. Syrup, ISRM-SPE,
    
    Pau, France, Aug., P 835-844 [17] Woodland, D. C. (1988). Borehole Instability in the Western Canadian Overthrust Belt. SPE Rocky Mountain Regional Meeting, Casper, Wy, May, SPE17508, P319-331. [18] Fuh, G.F..Whitfill, D. L. and Schuh, P. R. (1988), Use of Borehole Stability for Successful Drilling of High-angle hole, IADC/SPE Drilling Conf, Dallas, TX, Feb., IADC/SPE 17235, P483-491 [19] Hsiao, C. (1988), Growth of Plastic Zone in Porous Medium around a We-llbore, 20th Annual OTC Conf, Houston, Tx, May, P 439-448. OTC 5858. [20] Aadny, B. S. and Chenevert, M. E. (1987), Stability of Highly Inclined Bore-holes, SPE/IADC Drilling Conf, New Orleans, La, Mar., P25-41. SPE/IADC 16052 [21] Gnirk, P. F. (1972), The Mechanical Behaviour of Uncased Wellbores Situated in E-lastic/Plastic Media under Hydrostatic Stress, SPE J., Feb., SPE3224, P49-59 [22] Hottman, C.E., Smith, J.H. and Purcell, W.R.(1978), Relationship among earth stresses, Pore Pressure and Drilling Problems Offshore Gulf of Alaska, 53th Annual Tech, Conf.&Exhib.of SPE, Houston , Oct., SPE 7051 [23] Nakken, S.j., Christensen, T.L.Marsden, J.R. and Holt, R.M.(1989), Mechanical Behevior of Clays at high Stress levels for Wellbore Stability Applications, Proc.Int .Symp.ISRM-SPE, Pau, France, Aug, P141-148 [24] Marsden, J.R., Wu, B., Hudson, J.A.and Archer, J.S.(1989), Investigation of Peak Rock Strength Behavior for Wellbore Stability Applications , Proc.Int .Symp.ISRM-SPE, Pau, France, Aug, P753-760 [25] Kwakwa, K.A., Batchelor, A.S. and Clark, R.(1989), An Assessment of the Mechanical Behavior of High-angle Wells In block 22/11.Proc, Offshore Eureope 89, Aberdeen, Sept, SPE 19240 [26] M.R.McLean and M.A.Addis (1990), WellBore Stability:The Effect of Strength Criteria on Mud Weight Recommendations, SPE 20405. [27] Leeman, E.R., The Measurement of the Stress in the Groud Surrounding Mining Excavations, Papers and Discussions, 1966, P331-356 [28] Brace, W.F., Recent experimental Studies of Brittle Fracture of Rock, Failure and Breakage of Rock, AIME.NewYork, N.Y., 1967, P57-87 [29] Fairhurst, C, The phenomenon of Rock Splitting Parallel to a Free Surface Under Compressive Stress, Proceedings, 1st Congress of Int.Soc. of Rock Mech., Lisbon [30] Ziqiong Zheng, Compressive Stress_Induced Microcracks in Rock and Applications to Seismic Anisotropy and Borehole Stability, Ph.d Dissertation, 1989 Pau, France, Aug., P 835-844
    
    [17] Woodland, D. C. (1988). Borehole Instability in the Western Canadian Overthrust Belt. SPE Rocky Mountain Regional Meeting, Casper, Wy, May, SPE17508, P319-331.
    [18] Fuh, G.F..Whitfill, D. L. and Schuh, P. R. (1988), Use of Borehole Stability for Successful Drilling of High-angle hole, IADC/SPE Drilling Conf, Dallas, TX, Feb., IADC/SPE 17235, P483-491
    [19] Hsiao, C. (1988), Growth of Plastic Zone in Porous Medium around a We-llbore, 20th Annual OTC Conf, Houston, Tx, May, P 439-448. OTC 5858.
    [20] Aadny, B. S. and Chenevert, M. E. (1987), Stability of Highly Inclined Bore-holes, SPE/IADC Drilling Conf, New Orleans, La, Mar., P25-41. SPE/IADC 16052
    [21] Gnirk, P. F. (1972), The Mechanical Behaviour of Uncased Wellbores Situated in E-lastic/Plastic Media under Hydrostatic Stress, SPE J., Feb., SPE3224, P49-59
    [22] Hottman, C.E., Smith, J.H. and Purcell, W.R.(1978), Relationship among earth stresses, Pore Pressure and Drilling Problems Offshore Gulf of Alaska, 53th Annual Tech, Conf.&Exhib.of SPE, Houston , Oct., SPE 7051
    [23] Nakken, S.j., Christensen, T.L.Marsden, J.R. and Holt, R.M.(1989), Mechanical Behevior of Clays at high Stress levels for Wellbore Stability Applications, Proc.Int .Symp.ISRM-SPE, Pau, France, Aug, P141-148
    [24] Marsden, J.R., Wu, B., Hudson, J.A.and Archer, J.S.(1989), Investigation of Peak Rock Strength Behavior for Wellbore Stability Applications , Proc.Int .Symp.ISRM-SPE, Pau, France, Aug, P753-760
    [25] Kwakwa, K.A., Batchelor, A.S. and Clark, R.(1989), An Assessment of the Mechanical Behavior of High-angle Wells In block 22/11.Proc, Offshore Eureope 89, Aberdeen, Sept, SPE 19240
    [26] M.R.McLean and M.A.Addis (1990), WellBore Stability:The Effect of Strength Criteria on Mud Weight Recommendations, SPE 20405.
    [27] Leeman, E.R., The Measurement of the Stress in the Groud Surrounding Mining Excavations, Papers and Discussions, 1966, P331-356
    [28] Brace, W.F., Recent experimental Studies of Brittle Fracture of Rock, Failure and Breakage of Rock, AIME.NewYork, N.Y., 1967, P57-87
    [29] Fairhurst, C, The phenomenon of Rock Splitting Parallel to a Free Surface Under Compressive Stress, Proceedings, 1st Congress of Int.Soc. of Rock Mech., Lisbon
    [30] Ziqiong Zheng, Compressive Stress_Induced Microcracks in Rock and Applications to Seismic Anisotropy and Borehole Stability, Ph.d Dissertation, 1989
    [31] 钻井手册(甲方),上册,石油工业出版社,1990
    [32] 路保平译,用测井资料预测地层压力的一些新概念,国外钻井技术,1992, 报,1998,17(3):315~321
    [5
    
    [53] 葛洪魁,黄荣樽,理想条件下定向井及水平井地层破裂压力的理论分析,石油大学学报,1993,17(2):20~25
    [54] 雍世和,张超谟,测井数据处理与综合解释,石油大学出版社,1996,9
    [55] 黄隆基,放射性测井原理,石油工业出版社,1996,3
    [56] 李士斌等,测井资料与岩石力学参数相关性及其在井壁力学稳定性计算中的应用,石油钻采工艺,1999,21(1):41~47
    [57] 李士斌等,岩石可钻性级值模型及计算,大庆石油学院学报,2002,26(3):26~28
    [58] Deere, D. U. and Miller, R. P. , Engineering Classification and Index Properties for Intact Rock, Technical report Air force Weapons Laboratory AFWL-TR-65-116, 1996
    [59] Coates, G. R. and Denoo, S. A. , Mechanical Properties Program Using Borehole Analysis and Mohr's circle, SPWLA Twenty-second Annual Logging Symposiums Transactions (1981) , P23~26
    [60] Bruce, Mechanical Stability Log, IADC/SPE 19942.
    [61] 刘向君,井壁力学稳定性原理及影响因素分析,西南石油学院学报,1994,17(4):51~57
    [62] Sergio A. B. da Fontoura, Bruno B. Holzber, etc. Probabilistic Analysis of Wellbore Stability During Drilling. SPE/ISRM 78179.
    [63] 陈德光,魏芳友等,井眼稳定性评估系统的开发与应用,钻井液与完井液,1994,11(4):28~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700