石油钻井任意井眼的井壁稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井壁稳定性问题是石油钻井过程中普遍存在而且是一直是困扰石油工业界的一个重大问题,一直受到国内外石油钻井界专家们的关注,是国内外钻井技术界一直坚持不懈努力攻关的重要内容。研究表明井壁稳定性问题既有力学问题,也有化学问题,而化学问题最终仍然反映到力学问题上。井壁稳定性研究是多学科发展共同的结果,譬如化学、弹性力学、测井解释等,本文重点是进行力学分析,但涉及到测井方法的应用。本文将现今对地应力、岩石力学参数的测井法进行了归纳和总结,因测井法本身就是一门复杂的学科,所以本文并未对测井法做深入的研究。
     钻井液密度在井壁稳定控制中起着举足轻重的作用,它是在诸多因素中唯一可控的因素。本文主要工作就是求解防止井壁失稳的钻井液密度。本文根据线弹性理论建立模型推导出求井壁围岩受力公式,并分别与常用的三个剪切破坏准则Mohr-Columb准则、Drucker-Prager准则、修正Lade准则联立,代入井下深处岩石的岩石参数,便可求解出防止井壁坍塌的钻井液极限密度。研究表明在相同参数条件下,三个剪切准则的求解结果差异较大。Mohr-Coulomb准则得到的安全密度窗口过于保守,根据Druck-Prager准则安全钻井液密度窗口可能与实际相差很大,得出错误的结论。Mohr-Coulomb准则没有考虑中间主应力对岩石的破坏作用,而Druck-Prager准则则过于夸大了中间主应力对岩石的破坏作用。因此,Mohr-Coulomb准则、Druck-Prager准则均不能很好的反映中间主应力对岩石破坏作用的影响。Modified-Lade准则弥补了这两个准则的不足,能准确的体现中间主应力对岩石的破坏作用的影响。
     因绝大多数岩石都表现出一定程度的弹塑性,即岩石在破坏前会经由一段塑性变形,而非直接脆性破坏。所以又运用大型有限元软件ANSYS对井壁岩石进行弹塑性分析,将二者的结果进行对比。本文给出参数进行数值模拟,从模拟结果观察井壁井径坍塌扩大率,因此可以得知,钻井液密度对井径扩大率有很大的影响,当钻井液密度小于某一临界值时井径扩大率急剧增加,当钻井液密度大于临界值时,钻井液的密度变化对井径扩大率影响较小。实际钻井中,只要控制钻井液密度大于其临界值,即可保持井壁不发生坍塌,从而提高机械钻速,保证钻井安全运作,降低费用。井壁稳定线弹性模型虽然能很好的描述脆性地层的破坏特性,但并不能完全真实地体现深部弹塑性岩层的力学行为。从这个意义上讲,对井下深处岩石应用线弹性模型求解钻井液密度,其预算结果将偏大将会产生很大的误差,而运用弹塑性模型计算钻井液密度更加适用于实际应用。
     地应力在井壁稳定性起着至关重要的作用,本文从四种不同的地应力状况研究了地应力与井斜角、方位角、井周角之间的一般规律,即:在两水平地应力相等的情况下,井斜角为零时,坍塌压力不随方位角和井周角变化;在水平应力不等,垂直应力最大时,井斜角由π/6到π/3变化时,各方位井壁稳定性差别增大。井斜角由π/6到π/2变化时,沿着小角度方位角钻进井壁才安全;垂直应力为中间值时,井斜角在π/3到π/2变化时,沿小角度方位角钻进,井壁不坍塌;垂直应力为最小时,井斜角在π/3到π/2变化时,沿小角度方位角钻进,井壁不坍塌,且发生坍塌部位的井周角在0和π处,这是区别于前两种情况而与第三种情况相同。以上规律对井壁稳定研究有重要的意义。
     在实际应用中要根据油田现场具体情况,将理论和实践相结合才能预防和及时处理井眼失稳事故。井壁失稳是一个复杂和需要进一步开展研究的问题,应用有限元数值模拟能为钻井工程提供准确的参考依据,满足现场工程实际应用的钻井液密度,确保钻井过程安全、有序的进行。
The wellbore stability problem is widespread existence in the process of the artesian well and have been an iMPortant problem which perplexs the petroleum industrial boundary. It has been being subjected to domestic and international field experts concern of the petroleum artesian well, and has been the iMPortant contents which the domestic and international artesian well technique field’s unremittingly efforts work for . The test indicates that the wellbore stability problem not only including the mechanics problem, also chemistry problem, the chemistry problem still reflects to the mechanics problem in the end .The wellbore stability study is the results of many subjects development,such as chemistry, elastic mechanics, log interpretation and so on. The paper’s point is to carry on mechanics analysis, the application of logging method is also involved.
     This paper will conclude the logging method of the stress, rock mechanics parameters.As the loggingg well method itself is a coMPlicated subject, the text didn't do deep research on it.
     Drilling fluid density played a pivotal role in controling the wellbore stability ,it is the only factor that can control in many factors. This text's mainly aim is calculate the drilling fluid density to prevent sidewall instability. This text will establish modle based on linear elastic theory and deduce the mechanical formula about sidewall surrounding rock, also the shear failure scriteria was commonly used, they are Mohr-Columb scriteria , Drucker-Prager scriteria and Mohr-Coulomb scriteria. The generation goes into rock parameters of the depths rock underground,it can solve to the drilling fluid extreme limit density which can prevent the wellwall from collapsesing. The research indicates that under the same parameter condition, there is great difference of three results which use the three shear failure scriteria.The result which use Mohr-Coulomb scriteria get the safe density is too conservative, according to Druck-Prager scriteria, the safe drilling liquid density probably with great difference from the reality, so it draw erroneous conclusions. The Mohr-Coulomb scriteria didn't consider the mid-principal stress of rock’s breakage function, but the Druck-Prager scriteria is too exaggerates the mid-principal stress of rock’s breakage function. Therefore, the Mohr-Coulomb criterion and the Druck - Prager criteria are not well reflected intermediate principal stress on the role of rock damage. The Modified-Lade criteria made up for the shortcomings of these two criteria, can accurately reflect the intermediate principal stress on the role of the rock damage effects.The drilling liquid density play the role in the wellbore stability, it is the only factor that can control in many factors. The main task is calculating the liquid density to keep wellbore from collapsed or fracture. So this text is mainly studying of the mechanics to dint formula , respectively with the Mohr-Columb rule、Drucker-Prager rule、Lade rule to calculate a the liquid density to keep wellbore from collapsed or fracture.
     Beascuse the great majority of rock have shown a certain degree of elastic-plastic, that is, rock will through a period of plastic deformation before destruction, rather than direct brittle failure. So make use ofthe large-scale finite element software ANSYS to carry on elastoplastic analysis on the sidewall rock, coMPareing the two results. The paper presents parameters to perform numerical analysis, observeing Borehole Collapse and Well-hole Enlargement from simulation results.We can know, it could be that the density of drilling fluid have great iMPact on well diameter enlargement ,when the density of drilling fluid is less than a critical value, well diameter enlargement increased dramatically.when the density of drilling fluid is greater than the critical value, well diameter enlargement was less affected. In the practical drilling, as long as the density of drilling fluid controled greater than the critical value, it can prevent the wall collapsed, enhance mechanical separator speed, ensure the drilling was operated safety and reduce costs. Although the elastic modle of the sidewall stability can be a good description of the brittle formation’s damage property, it can not reflect the mechanical behavior of elasto-plastic strata coMPletely. In this sense, the finite element method is more appropriate to the calculation principle and controling of material properties, finite element analysis can express more intuitive to deep rock’s elastic-plastic properties.
     The formation stress alsoly plays the role in the wellbore.Law of the hole collapse pressure of azimuth, hole angle and perigon is studied.When the both horizontal stresses are equivalent, oblique angle is zero and collapse pressure is not change with azimuth angle and perigon;when the horizontal stresses are unequal and the vertical pressure is the most large, the different azimuth of wellbore stability is difference alongπ/6到π/3 of hole angle. It is safety alongπ/6 toπ/2 of hole angle;when the vertical stress is the intermediate value, it is safety alongπ/3 toπ/2 that the wellbore can’t collapse;when the vertical stress is the least value,it is safety alongπ/3 toπ/2 that the wellbore can’t collapse and the the position of collapse lies to the 0 andπperigon. It is different from the previously cases and similar td the third case. Above the law mentioned in this paper will be meaning forfurther study of centering theory.
     In practice, the spot is according to the oil-field concrete circumstance, combine together theories and fulfillment then can prevent°from and handle a well eye to lose steady trouble in time.The well wall lose steady is a coMPlications and need to open an exhibition research further of problem, applying limited dollar number to imitate can provide an accurate reference for the artesian well engineering basis.
引文
[1] Roegiers. JC.Applied mechanics problems in oil and gas industry[J]. Apll. Mech. Rev.1986.39:1678-1679.
    [2] Mclean, MR, Addis, MA. We11bore Stability Analysis: A Review of Current Methods of Analysis and Their Field Application.SPE 1999.41:pp.261-274.
    [3] Cheatham,J B. Wellbore Stability.Journal of Petroleum Technology.1984.
    [4] Bruce,S.A Mechanical stability. Log.IAI3C/SPE 1999.42.
    [5]赵忠举,徐同台,刘玉石等.国外力学和化学稳定井壁机理和方法的调研[M].北京中国石油.天然气总公司信息研究所.1996.
    [6]徐同台.井眼稳定—80年代国外文献综述[J].钻井液与完井.1991增刊.12-16.
    [7]高德利,陈勉,王家祥.谈谈定向井井壁稳定问题[J].石油钻采工艺.1997.9(1): 1-4.
    [8]刘向君,罗平亚.泥岩地层井壁稳定性研究[J].天然气工业.1998.7(1): 45-48.
    [9]李军,陈勉,金衍,张广清.定向井井壁稳定性三维有限元分析模型[J].石油钻探技术, 2003.
    [10] Tilard D J,King M S. General Report: Mechanical Behavior of Rocks and Masses Discontinuities at Great Depth Rock at Great Depth , Maury&Fourmaintraux(eds), 1990:1235-1241.
    [11] Mclellan,P.J. Assessing the Risk of wellbore instability in horizontal and in clined wells. JCPT, 1996,Vol.35, No.5:pp.113-115.
    [12] Weidler,J.B.and Paslay,P.R. Analytical description of behavior of granlar media.J.Eng. Mech. Div. Proc. ASCE, 1969:pp.378-395.
    [13] Johnson J N and Green D J. The mechanics reponse porous Media subject loads, The Effcet of Voilds on Material Deformation.S.C Cowim(eds.)ASME. 1976:93-123.
    [14] Kojie, M, and Cheatham,J. B. Theory of Plasticity of porous media with fluid flow, Soc. Pet. Eng. J. AIME. 1974, 25: pp.263-270.
    [15] Lemaitre,J.Chaboche,J.L. Aspect phenomenologique de la rupture par endommagemeat, J.Meca,Appl.1978.2(3):pp. 317-365
    [16] Cheboche, J.L.and Rousselter, G. On the plastic and viscoplastiec constitutive equation-Part I: Rules developed with internal variable concept;Part II:Application of internal variable concepts to the 316 stainless steel, Journal of Pressure Vessel Technology, 1983.105:pp.153-158, 159-164.
    [17] Krajcinovic, D.Continuum damage mechanics.J.Appl. Mech. Reviews,1884. 37(1):pp. 1-6
    [18] Gray, G. R. and Darley, H. H. CoMPosition and Properties of Oil Well drilling Fluide, Gulf Publishing Co. Houston, 1980.
    [19] Chenevert, M.E. Adsorptive Pressure of Argillaseous Rocks , Proe.11th SyMPosius on Rock Mechanics, June 16-19, 1969.
    [20] Yew C H,Chenevert M E,Wang C L and Sisanya, S O. Well bore Stress Distribution Produced by Moisture Adsorption. SPE , 1953.6.
    [21]王越之,李自俊.地震资料预测地层压力方法综述[J].钻采工艺.1997,20(2)31~34.
    [22]张伯文,王程忠.塔北深探井地层压力预测检测技术以应用[J].西部探矿工程, 2000, 63(2):68-69.
    [23]张光清.钻井液密度与井壁围岩破坏的关系[J].电脑开发与应用,2002,24(3):13-16.
    [24]云美厚.地震地层压力预测[J].石油地球物理勘探,1996,31(4):576-586.
    [25]钻进手册(甲方) ,上册[M].石油工业出版社, 1990.
    [26]刘之的,夏宏泉,汤小燕等.碳酸岩盐地层孔隙压力计算方法研究[J].大庆石油地质与开发, 2003, 22(6):30-34.
    [27] Scott D Thomson LA. A Global Algorithm for Pore Pressure Prediction. SPE25674. 1993.
    [28]梁红军,樊洪海,贾立强等.利用声波时差检测地层孔隙压力的新方法[J].石油钻采工艺, 1998, 20(2):1-6
    [29] Martin T raugott. Basic Concepts:The Centroid Concept for Pore Pressure in shale and Reservoir. World oil Deep Water Tech, 1997, 218(8):68-70.
    [30]樊洪海.适于检测砂泥岩地层孔隙压力的综合解释方法[J].石油勘探与开发, 2002, 29.
    [31]陈永生译,谭廷栋校.地层压力理论和评价[M].石油工业出版社, 1990.
    [32]赵唤欣,高祝军.用声波时差法预测地层压力的方法[J].石油勘探与开发, 1995, 22(2):80-85.
    [33]郭齐军,瞿辉.测井声波时差在地层压力预测中的应用[J].中国海上气田, 1997, 11(1):67-70.
    [34]周立宏,刘国芳.利用泥岩声波时差估算地层压力[J].石油实验地质.1996. 6.
    [35]楚泽涵.声波测井原理[M].北京:石油工业出版社, 1994.
    [36]赵焕欣,高祝军.用声波时差预测地层压力的方法[J]. 1995, 22(2):80-86.
    [37]钟敬敏,春晓气田群定向井井壁稳定行研究.西南石油大学硕士论文,成都, 2004.4.
    [38]雷正义,砂泥岩地层井壁力学稳定性研究机制.西南石油大学硕士论文,成都, 2004.4.
    [39] Bowers G.L, Pore Pressure Estimation from Velocity data: Accounting for Overpressure Mechanisms Besides UndercoMPaction, 1994, IADC/SPE 27488.
    [40]刘之的,碳酸盐岩地层井壁稳定性测井评价方法研究.西南石油大学硕士论文,成都, 2004.4.
    [41]夏宏泉,刘之的,凌忠等.川东北部飞仙关组探井井眼稳定性评价研究[J].西南石油学院科研报告,2003.
    [42] Scott D Thomson L A. A Global Algorithm for Pore Pressure Prediction.SPE25674, 1993.
    [43]梁红军,樊洪海,贾立强等.利用声波时差检测地层孔隙压力的新方法[J].石油钻采工艺[J], 1998, 20(2):1-6.
    [44]朱焕春,陶振宇.地应力研究新进展[J],武汉水利电力大学学报, 1994, 27(5):542-54.
    [45]刘向君,罗平压.石油测井与井壁稳定[M].北京:石油工业出版社,1999.
    [46]马寅生.地应力在油气地质研究中的作用、意义和研究现状[J].地质力学学报, 1997.
    [47]楼一珊.地应力的测试方法及其在石油工业中的应用[J].中国海上油气, 1996, 10(4):271-273.
    [48]陈桂忠,蔡美峰,于波,张瑞明.对水压致裂地应力测量资料的解释[J].中国矿业, 1996, 5(4):52-56.
    [49]张义元,魏庆芝.利用测井资料计算连续地应力剖面[J].大庆石油地质与开发, 1993, 12(2):61-65.
    [50]欧阳健.测井地应力分析与油气藏[J].勘探家,1999, 4(1): 38-43.
    [51]王越之,李自俊.地应力在石油工业中的研究现状[J].大自然探索, 15(57):72-75.
    [52] Wills D G, Biot M A. The Elastic Coefficients of the theory of consolidation.Journal Applied Mechanics, 1977, 24(2):594~601.
    [53]黄荣樽.大斜度井围岩应力和位移的粘弹性分析[J].石油钻采工艺, 1994, 16(5):1-7.
    [54]华东石油学院.华东石油学院译丛(岩石力学专辑).1987年(增刊)
    [55] Aadnoy B S. Modeling of the stability of highly lnclined boreholes in anisotropic rock formations. SPE Drilling Engineering. 1988(9):259-267.
    [56] Plischke B.Finite element analysis of coMPaction and Subsidence-experience gained from several chalk fields. SPE 28129, 1995.
    [57]《测井学》编写组.测井学[M].北京:石油工业出版社, 1998.13.1,163-165.
    [58] Bruce. Mechanical Stability Log, IADC/SPE 19942.
    [59] Ercil R.Hunt等著,李自俊译.由测井资料分析确定岩石机械性质.国外钻井技术, 1999, 14(6):23-31.
    [60]邓金根,洪生.钻井工程中井壁失稳的力学机理[M].北京:石油工业出版社, 1998.
    [61]吴家龙,弹性力学[M].高等教育出版社, 2001: 152~163.
    [62] M.R.Mclean , M.A.Addis. WellBore Stability: The Effect of strength Criteria on Mud Weight Recommendations, SPE 20405.
    [63]范军.井壁力学稳定性及机理研究.西南石油大学硕士论文,成都, 1995.4.
    [64]刘夕才.软岩巷道变形的粘弹塑性有限元分析[M].徐州:中国矿大, 1996.3.
    [65] Rajinder Bhasin, Eystein Grimstad. The use of stress-strength relationships assessment of tunnel stability. Tunnelling and underground space technology, 1996(11), 1, 1996.3.
    [66]朱伯芳.有限元法原理与应用(第二版)[M].中国水利水电出版社.
    [67]张波,盛和太. ANSYS有限元数值分析原理与工程应用[M].北京:中国铁道出版社, 2005.9.
    [68]李权. ANSYS在土木工程中的应用[M].北京:人民邮电出版社, 2005.6.
    [69]陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南[M].北京:中国铁道出版社, 2001.
    [70]夸克工作室.有限元分析基础篇ANSYS与Mathematica[M].北京:清华大学出版社, 2002.
    [71]嘉木工作室. ANSYS 5.7有限元实例分析教程[M].北京:机械工业出版社, 2002.
    [72]叶先磊,史亚杰. ANSYS工程分析软件应用实例[M].北京:清华大学出版社, 2003.
    [73]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社, 1997.3.
    [74]王焕定,吴德伦.有限单元法及计算程序[M].中国建筑工业出版社, 1997.6.
    [75]赵海峰,蒋迪.ANSYS 8.0工程结构实例分析[M].北京:中国铁道出版社, 2004.11.
    [76]秦荣.计算结构非线性力学[M].南宁:广西科学技术出版社, 1999.
    [77]王金凤,邓金根,李宾.井壁坍塌破坏过程的数值模拟及井径扩大率预测[J].石油钻探技术, 2000,28(6): 13-14
    [78]肖树芳,杨淑碧.岩体力学[M].北京.地质出版社, 1987: 97-98.
    [79] M.R.Mclean & M.A.Addis. Wellbore Stability: The Effect of Strength Criteria Drilling of High-Angle Hole , SPE 20405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700