新型建筑材料—纳米级碳纤维混凝土性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代混凝土工程的大型化、超大型化、工程环境的超复杂化以及混凝土材料应用领域的不断扩大,人们对混凝土材料的要求也逐步提高,高性能混凝土和高功能混凝土是21世纪混凝土材料科学和工程技术发展的重点和方向。而纳米技术在混凝土领域的渗透,打破传统混凝土的局限,极大地扩展了混凝土的应用领域,给混凝土行业带来了崭新的生命力。纳米级碳纤维混凝土作为一种新型建筑材料目前在国际上鲜有研究,国内几乎处于空白阶段。本文以美国国家科学基金项目(NSF项目编号:0634279)为依托,在消化吸收相关文献的基础上,以试验为主、数值分析为辅的研究手段系统地探索了纳米级碳纤维混凝土的基本物理力学性质以及基于电阻变化率的机敏特性等问题。论文的主要研究内容和研究成果如下:
     (1)在纳米级碳纤维混凝土的制备中,使用三种适合用于混凝土拌制与施工的纳米级碳纤维分散方法,并通过实验结果比较采用不同分散方法制备的纳米级碳纤维混凝土的力学特性和电阻特性。确定了采用聚羧酸盐高效减水剂水溶液作为分散介质,同时配合适量消泡剂对纳米级碳纤维进行分散的方法,可实现纳米级碳纤维对混凝土物理力学性能增强和功能化的目的。
     (2)通过单轴抗压试验、抗弯试验、劈裂试验和轴向不等辐循环抗压试验对纳米级碳纤维混凝土材料的物理力学性能进行了测试,确定了不同类型纳米级碳纤维在混凝土和自密实混凝土中的最优掺量。电镜扫描结果也表明将适量的分散良好的纳米级碳纤维掺入混凝土中可以增强其抗压强度、劈裂强度,提高混凝土的延性和抗弯性能。
     (3)从纳米级碳纤维混凝土的电阻特性和导电机理入手,通过试验揭示了纳米级碳纤维混凝土在抗压、抗弯、劈裂和循环荷载试验中电阻变化与应力应变之间的关系。实验结果表明,纳米级碳纤维混凝土试件表现出良好的压敏特性,是一种很有应用前景的具有自监测功能的智能混凝土材料。
     (4)使用超声波脉冲速度法探讨了普通混凝土和纳米级碳纤维混凝土中脉冲速度与电阻变化率和抗压强度之间关系。试验结果显示出纳米级碳纤维混凝土内部的超声波脉冲速度与其抗压强度具有较好的线性关系,在混凝土应变增大时其内部脉冲速度变化和电阻变化关系也有很好的规律性。因此可利用这些关系来预测混凝土强度,实现对其性质的无损探察。
     (5)使用基于循环软化模型的有限元程序对纳米级碳纤维混凝土框架剪力墙的抗震性能进行了模拟计算分析。结果表明纳米级碳纤维的加入使得墙体物理力学性能得到提升,其平均延性和抗剪能力也相应增强,因而使用纳米级碳纤维混凝土可以提高剪力墙的抗震性能。
     (6)通过试验进一步研究了纳米级碳纤维钢筋混凝土梁结构和受弯曲控制的纳米级碳纤维钢筋混凝土桥柱试件的机敏特性。提出纳米级碳纤维钢筋混凝土与纳米级碳纤维素混凝土相似,在工作(受力)状态下荷载或变形与电阻变化率之间存在着相应的关系,进一步验证将纳米级碳纤维混凝土用于结构中而使钢筋混凝土结构智能化的可行性。
Concrete is the most widely used construction material and has experienced the developing stages of normal strength concrete, high strength concrete and high performance concrete. Due to the nano size, concrete with nano particles is superior to normal strength concrete because of the special properties of nano-engineered concrete and as a result, the development of Nano technology today greatly diversify the application of traditional concrete. On the other hand, carbon nanofibers (CNFs) have many advantages in both mechanical and electrical properties such as high strength, high Young's modulus and high conductivity. In this paper, an innovative carbon nanofiber reinforced concrete is proposed by mixing nanofiber into normal concrete to produce nano-engineered concrete. The mechanical properties and strain self-monitoring properties based on variation of electrical resistance (ERV) of the proposed carbon nanofiber reinforced concrete have been studied. Finally, a reasonable concentration of CNF is obtained for use in concrete which not only enhances compressive strength, but also improves the electrical properties required for strain monitoring, damage evaluation and self-health monitoring of concrete and the test results show it is attractive to make smart, high performance concrete using CNFs. The main research contents are as follows:
     (1) How to dissolve the carbon nanofiber into concrete was studied. The test results indicate that it is feasible to disperse CNFs in Self-Consolidating Concrete (SCC) using the polycarboxylate high range water reducer solution. The enhancement of concrete's strength and functionality can also be achieved.
     (2) The optimal concentration of CNFs in concrete has been found by conducting compressive test、four point bending test、split tensile test、cyclic loading with various stress amplitudes test and SEM test. Well-dispersed CNFs in the appropriate concentration allows for the significant mechanical enhancement of concrete such as compressive strength、split tensile strength、flexural strength and ductility.
     (3) Based on the theoretical analysis of electrical resistance property and electrical conductivity mechanism of CNF-concrete composite, the behavior of composite's ERV under loading and the correlations between ERV and strain (stress) was experimentally investigated simultaneously by conducting compressive test、four point bending test、split tensile test、cyclic loading with various stress amplitudes test. It was found that the ERV was strain dependent and strain self-monitoring because its electric resistance changes linearily with applied strain, which is named as "piezoresistivity", and consequently, may be used in applications that require strain monitoring and make concrete itself a smart sensor.
     (4) The pulse velocity method was used to characterize properties of concrete containing CNFs. Concrete strength correlations between pulse velocity, ERV in nondestructive and destructive tests were analyzed for each mix proportions and in each series. These correlations are presented in the form of regression equations. The tests results indicate that the compressive strength, pulse velocity and percent reduction in electrical resistance while loading concrete containing CNF are much greater than those of plain concrete. This regularity may be used for predicting the strength and nondestructive detection of CNF-Concrete composite.
     (5) The stress-strain curves of concrete containing CNFs are similar to those of plain concrete; therefore, the uniaxial constitutive law of plain concrete in Cyclic Softened Membrane Model (CSMM) is also applicable for concrete containing CNFs. The seismic performance of two framed shear walls was analyzed using cyclic load with the CSMM-based finite element program. Both of the shear force capacity and ductility of shear walls with carbon nanofibers were improved significantly. It shows CNFC can be used to enhance the seismic performance of framed shear walls.
     (6) Only normal concrete containing CNFs without rebar were investigated in the preliminary research, therefore, the further studies on behavior of ERV of concrete beam with rebar containing CNFs and concrete bridge column with rebar containing CNFs under flexural loading and cyclic laoding are experimentally conducted. It shows similar results to those of plain concrete containing CNFs and verified the feasibility of adding CNFs into concrete structure to make it superior and smart.
引文
[1]Pierre Claude Aitcin. Cement of yesterday and today concrete of tomorrow. Cement and Concrete Research,2000. (30):1349~1359
    [2]姚武,吴科如.智能混凝土的研究现状及其发展趋势.新型建筑材料,2000(10):22~24
    [3]K. Sobolev, M. Ferrara. How nanotechnology can change the concrete word —Part 1. American Ceramic Bulletin,2005,84 (10):15~17
    [4]关新春,欧进萍,韩宝国.碳纤维机敏混凝土材料的研究和进展.哈尔滨建筑大学学报,2002,35(6):55~59
    [5]巴恒静,冯奇,冯旻.光纤传感器智能混凝土的研究和现状.工业建筑,2002,32(4):45~48
    [6]张雄,习志臻,王胜先,等.仿生自愈合混凝土的研究进展.混凝土,2001,(3):10~13
    [7]Gleiter H. Nanostructured materials. In:Hansen N, etal. eds. Proceedings of the Second Rise International Symposium on Metallurgy and Materials Science. Denmark, Roskilde,1981.15~29.
    [8]杜仕国,施冬梅,邓辉.纳米材料的特异效应及其应用.自然杂志,1999,22(2):102~105
    [9]代淑芬.纳米材料的特性和发展.无锡南洋学院学报,2008,7(4):49~52
    [10]周裁民,杨雄波,许瑞珍.纳米材料的研究现状及发展趋势.科技信息,2008,(17):17~18
    [11]张立德,牟季美.纳米材料学.沈阳:辽宁科学技术出版社,1994.106~140
    [12]朱世东,周根树,蔡锐,等.纳米材料国内外研究进展Ⅰ—纳米材料的结构、特异效应与性能.热处理技术与装备,2010,31(3):1~5,26
    [13]Kubo R. Generalized Cumulant Expansion Method. Journal of the Physical Society of Japan.1962,17 (7):1100~1120
    [14]李泉,曾广赋,席时权.纳米粒子.化学通报,1995, (6):29~34
    [15]石士考.纳米材料的特性及其应用.大学化学,2001,16(2):39~42.
    [16]钟宁.纳米材料的特性及制备方法.湖南有色金属,2000,16(2):28~30.
    [17]雷秀娟.纳米材料的力学性能:[硕士学位论文].西安:西北工业大学,2001.
    [18]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.1~22
    [19]H M Jennings,J W Rullard. J J Thomas, et al. Characterization and modeling of pores and surfaces in cement paste:correlations to processing and properties. J Adv Concr Technol,2008,6(1):5~29
    [20]F Sanchez, A Borwankar. Multi-scale performance of carbon microfiber reinforced cement-based composites exposed to a decalcifying environment. Mater Sci Eng A,2001,527 (13-14):3151~3158
    [21]Sanchez F, Zhang L, Ince C. Multi-scale performance and durability of carbon nanofiber/cement composites. In:Bittnar Z,Bartos PJM, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in construction:proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic,2009.345~350
    [22]中国国际水泥工艺网,2010. www. sngyw. com
    [23]Erich Robens, Benzler B, Buchel G, et al. Investigation of characterizing methods for the microstructure of cement. Cement and Concrete research, 2002,32 (1):87~90
    [24]G Constantinides, F J Ulm. The effects of two types of C-S-H on the elasticity of cement-based materials:results from nanoindentation and micromechanical modeling. Cement and Concrete research,2004,34 (1): 67~80
    [25]K Sobolev, M Ferrada-Gutierrez. How nanotechnology can change the concrete world:part 2. Am Ceram Soc Bull,2005,84 (11):16~19
    [26]K L Scrivener, R J Kirkpatrick. Innovation in use and research on cementitious material. Cem Concr Res,2008,38 (2):128~136
    [27]Scrivener K L. Nanotechnology and cementitious materials. In:Bittnar Z, Bartos P J M, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in construction:proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic,2009.37~42
    [28]Raki L, Beaudoin J J, Alizadeh R. Nanotechnology applications for sustainable cement-based products. In:Bittnar Z, Bartos P J M, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in construction:proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic,2009.119~124
    [29]Garboczi E J. Concrete nanoscience and nanotechnology:Definitions and applications. In:Bittnar Z, Bartos P J M, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in construction:proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic,2009.81~88
    [30]Sanchez F, Sobolev K, Nanotechnology in concrete—A review. Construction and Building Materials,2010,24 (11):2060~2071
    [31]Perumalsamy Balaguru, Ken Chong. Nanotechnology and concrete:research opportunities. Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, Denver, USA,2006.119~ 130.
    [32]K Sobolev, I Flores, R Hermosillo. Nano materials and Nanotechnology for High performance cement composites. Proceedings of ACI Session on Nanotechnology of Concrete:Recent Developments and Future Perspectives, Denver, USA,2006.91~118.
    [33]唐明,巴恒静,李颖.纳米级SiOx与硅灰对水泥基材料的复合改性效应研究硅酸盐学报,2003,31(5):523~527
    [34]L Senff, J A Labrincha, V M Ferreira, et al. Effect of nano silica on rheology and fresh properties of cement pastes and mortars. Construction and Building Materials,2009,23 (7):2487~2491.
    [35]J J Gaitero, I Campillo, A Guerrero. Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research,2008,38 (8-9):1112~1118
    [36]Collepardi M, Collepardi S, Troli R, et al. Combination of Silica Fume, Fly Ash and Amorphous Nano-Silica in Superplasticized High-performanceConcretes. Proceeding of First International Conference on Innovative Materials and Technologies for construction and Rehabilitation, Lecce, Italy,2004.459~468
    [37]Fly ash for concrete Headwaters Resources, Inc.2010. www.flyash.com
    [38]季韬,黄与舟,郑作樵.纳米混凝土物理力学性能研究初探.混凝土,2003,161(3):13,14,48
    [39]G Li. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research,2004,34 (6):1043~1049
    [40]A M Said, M S Zeidan. Enhancing the Reactivity of Normal and Fly Ash Concrete Using Colloidal Nano-Silica. ACI symposium publications SP267-07,2009, 267:75-86
    [41]K L Lin, W C Chang, D F Lin, et al. Effects of nano-SiO2 and different ash particle sizes on sludge ash—cement mortar. Journal of Environmental Management,2008.88 (4):708-714
    [42]宋小杰.纳米材料在新型混凝土材料中的应用.安徽建筑工业学院学报(自然科学版),2007,15(4):22~24
    [43]Li Hui, Zhang Mao hua, Ou Jin ping. Abrasion resistance of concrete containing nano—particles for pavement. Wear,2006,260 (11—12): 1262-1266
    [44]Hui Li, Mao hua Zhang, Jin ping Ou. Flexural fatigue performance of concrete containing nano—particles for pavement. International Journal of Fatigue,2007,29 (7):1292-1301
    [45]胡安正,唐超群.纳米TiO2光催化材料及其应用于环境保护的研究进展.功能材料,2001,32(6):586~589
    [46]任雪潭,曾令可.二氧化钛与环保建材.新型建筑材料,2000, (7):36~37
    [47]王世忠.纳米材料与新型建材.中国建材科技,2001, (1):4~6
    [48]许孝春.光催化混凝土的研究与发展.孝感学院学报,2001,21 (6):53~55
    [49]吴思刚,黄义春.智能水泥混凝土的实验研究.哈尔滨建筑大学学报,2001,34(2):128~129
    [50]维基百科.2010. http://zh.wikipedia.org
    [51]杨继敏,孙培梅,童军武,等.碳纳米管/聚合物纳米复合材料研究进展.金属材料与冶金工程,2010,38(3):60~64
    [52]Trettin Reinhard, Kowald Torsten. Nanotubes for high-performance concretes. Betonwerk und Fertigteil-Technik/Concrete Precasting Plant and Technology,2005,71 (2):20~21
    [53]Sato T. Nanoscience for greener concrete. NRCC-51339, May,2009
    [54]吴中伟.纤维增强—水泥基材料的未来.混凝土与水泥制品,1999, (1):5~6
    [55]钱庆祎,张经双.纤维混凝土特性研究及应用前景.西部探矿工程,2005,17(10):166~168
    [56]曹万智,孙庆霞,杨永恒.浅谈纤维混凝土的特性及发展前景.中国建材科技,2008, (6):24~27
    [57]王丽艳.纤维混凝土特性及前景分析.科技资讯,2006, (7):22~23
    [58]赵军,高丹盈.纤维混凝土研究与应用的探讨.混凝土,2006, (1):82~85
    [59]倪敬达,于湖生.纤维增强混凝土的研究进展.山东建材,2006,27(1):14~28
    [60]李仕玲.纤维对混凝土内部结构的影响.广东建材,2006, (6):15~16
    [61]王立军,张本秋,刘亚凤.纤维混凝土技术及其应用.黑龙江水利科技,2004,32(4) : 74
    [62]刘永胜.纤维混凝土增强机理的界面力学分析.混凝土,2008, (4):34~35
    [63]Balaguru P, Shah S P. Fiber Reinforced Cement Composites. McGraw-Hill, New York,1992.530
    [64]百度百科.2010. http://baike.baidu.com/
    [65]王黎明,石振武,王士军.钢纤维混凝土的路用性质试验.东北林业大学学报,2007,35(10):61~63
    [66]Si hai Wen, D D L Chung. Piezoresistivity in Continuous Carbon Fiber Cement-Matrix Composite, Cem Concr Res,1999,29 (3):445~449
    [67]D D L Chung. Carbon Fiber Cement-Matrix Composite. TANSO,1999, (190): 300~312
    [68]Xu li Fu, Wei ming Lu, D D L Chung, Improving the Bond Strength between Carbon Fiber and Cement by Fiber Surface Treatment and Polymer Addition to Cement Mix. Cem Concr Res,1996,26 (7):1007~1012
    [69]Katz A, Li V C, Kazmer A. Bond properties of carbon fibers in cementitious matrix. ASCE Journal of Materials in Civil Engineering,1995,17 (2): 125~128
    [70]Park S B, Lee B I. Mechanical properties of carbon-fiberreinforced polymer—impregnated cement composites. Composites,1993,15 (3): 153~163
    [71]Chen P W, Fu X, Chung D D L. Microstructural and mechanical effects of latex, methylcellulose, and silica fume on carbon fiber reinforced cement. ACI Mater J,1997,94 (2):147~155
    [72]Chen P W, Chung D D L. Concrete reinforced with up to 0.2vol% of short carbon fibers. Composites,1993,24:33~52
    [73]Toshio Urano. Study on the size effect of tensile characteristics of carbon fibre-reinforced cement composites. Composites Part A:Applied Science and Manufacturing,1996,27 (3):183~187
    [74]A Katz, A Bentur. Mechanical properties and pore structure of carbon fiber reinforced cementitious composites. Cem Concr Res,24 (2):214~ 220
    [75]K Zayat, Z Bayasi. Effect on the latex of mechanical properties of carbon fiber reinforced cement. ACI Materials J,1996,93 (2):178~181
    [76]Yoshihiko Ohama. Carbon-cement composites. Carbon,1989,27(5):729~ 737
    [77]Toutanji H A, El Korchi T, Katz R N, et al. Behaviour of carbon fiber reinforced cement composites in direct tension. Cem Concr Res,1993, 23 (3):618~626
    [78]Banthia N, Sheng J. Fracture toughness of micro—fiber reinforced cement composites. Cem Concr Composites,1996,18 (4):251~69.
    [79]Soroushian P. Carbon fiber reinforced mortar-optimizing reinforced cement composites. Cem Concr Composites,1996,18 (4):251~269.
    [80]Banthia N, Yan C, Sakai K. Impact resistance of fiber reinforced concrete at subnormal temperatures. Cement and Concrete Composites,1998,20 (5):393~404
    [81]Pu Woei Chen, Xu li Fu, D D L Chung. Improving the Bonding Between Old and New Concrete by the Addition of Carbon Fibers to the New Concrete. Cem Concr Res,1995,25 (3):491~496
    [82]Banthia N, Sheng J. Fracture toughness of micro—fiber reinforced cement composites. Cem Concr Composites,1996,18 (4):251~269
    [83]Mobasher B, Li C Y. Mechanical Properties of Hybrid Cement Based Composites. ACI Materials Journal,1996,93 (3):284~293
    [84]A K Lal. Development and adoption of fibre-reinforced concrete. Batiment International/Building Research and Practice,1990,18 (3): 153~161
    [85]M Pigeon, M Azzabi, R Pleau. Can microfibers prevent frost damage? Cement and Concrete Research,1996,26 (8):1163~1170
    [86]Pu Woei Chen, D D L Chung. A Comparative Study of Concretes Reinforced with Carbon, Polyethylene and Steel Fibers and Their Improvement by Latex Addition. ACI Mater J,1996,93 (2):129~133
    [87]Toutanji H A. Strength and reliability of carbon—fiber—reinforced cement composites. Cement and Concrete Composites,1994,16 (1):15~ 21
    [88]Park S B, Lee B I, Lim Y S. Experimental study on the engineering properties of carbon fiber reinforced cement composites. Cem Concr Res, 1991,21 (4):589~600
    [89]Huang C M. Carbon—Coated—Glass—Fiber—Reinforced Cement Composites I, Fiber Pushout and Interfacial Properties. Journal of the American Ceramic Society,1997,80 (9):2326~2332
    [90]Xie P, Gu P, Beaudoin J J. Electrical percolation phenomena in cement composites containing conductive Fibers. Mater Sci,1996,31 (15): 4093~4097
    [91]Xu li Fu, D D L Chung. Radio Wave Reflecting Concrete for Lateral Guidance in Automatic Highways. Cem Concr Res,1998,28 (6):795-801
    [92]Kim T J, Park C K. Flexural and tensile strength developments of various shape carbon fiber—reinforced lightweight cementitious composites. Cement and Concrete Research,1998,28 (7):955~960
    [93]Shin ichi Igarashi, Mitsunori Kawamura. Effects of a size in bundled fibers on the interfacial zone between the fibers and the cement paste matrix. Cement and Concrete Research,1994,24 (4):695~703
    [94]M Z Bayasi, J Zeng. Composite slab construction utilizing carbon fiber reinforced mortar. ACI Struct J,1997,94 (4):442~446
    [95]Campione G, Mindess S, Zingone G. Compressive Stress-Strain Behavior of Normal and High-Strength Carbon-Fiber Concrete Reinforced with Steel Spirals. ACI Materials Journal,1999,96 (1):27~34
    [96]Xu li Fu, Wei ming Lu, D D L Chung. Ozone Treatment of Carbon Fiber for Reinforcing Cement. Carbon,1998,36 (9):1337~1345
    [97]Pu Woei Chen, D D L Chung. Carbon Fiber Reinforced Concrete as a Smart Material Capable of Non-Destructive Flaw Detection. Smart Mater Struct,1993,2(1):22~30
    [98]Si hai Wen, D D L Chung. Carbon Fiber—Reinforced Cement as a Thermistor. Cem Concr Res,1999,29 (6):961~965
    [99]Sun M, Li Z, Mao Q, et al. Study of the hole conduction phenomenon in carbon fiber reinforced concrete. Cem Concr Res,1998,28 (4):549~ 554
    [100]Pu Woei Chen, D D L Chung. Carbon Fiber Reinforced Concrete as an Intrinsically Smart Concrete for Damage Assessment During Static and Dynamic Loading. ACI Mater J,1996,93 (4):341~350
    [101]Lee J, Batson G. Materials for the New Millenium, Proc.4th Mater. Eng. Conf.,1996 (2):887~896
    [102]M Sun, Z Li, Q Mao, et al. Thermoelectric Percolation Phenomena in Carbon Fiber—Reinforced Concrete. Cem Concr Res,1998,28 (12): 1707~1712
    [103]Xu li Fu, D D L Chung. Effect of Admixtures on the Thermal and Thermomechanical Rehavior of Cement Paste.ACT Mater I,1999,96 (4): 455~461
    [104]Yun sheng Xu, D D L Chung. Increasing the Specific Heat of Cement Paste by Admixture Surface Treatments. Cem Concr Res,1999,29 (7):1117~ 1121
    [105]Jiang yuan Hou, D D L Chung. Cathodic Protection of Steel Reinforced Concrete Facilitated by Using Carbon Fiber Reinforced Mortar or Concrete. Cem Concr Res,1997,27 (5):649~656
    [106]Banthia N, Djeridane S, Pigeon M. Electrical resistivity of carbon and steel micro—fiber reinforced cements. Cem Concr Res,1992,22 (5):804~814.
    [107]Brouseau R J, Pye G B. Proprietary and carbon fiber modified overlays in the cathodic protection of reinforced concrete. ACI Materials Journal,1997,94 (4):306~310
    [108]Xu li Fu, D D L Chung. Submicron—Diameter—Carbon—Filament Cement-Matrix Composites. Carbon,1998,36 (4):459~462
    [109]Xu li Fu, D D L Chung. Submicron Carbon Filament Cement-Matrix Composites for Electromagnetic Interference Shielding. Cem Concr Res, 1996,26 (10):1467~1472,1997,27 (2):314
    [110]Xiao jun Wang, D D L Chung. Electromechanical Behavior of Carbon Fiber. Carbon,1997,35 (5):706~709
    [111]Xiao jun Wang, D D L Chung. Piezoresistive Behavior of Carbon Fiber in Epoxy. Carbon,1997,35 (10-11):1649~1651
    [112]Chen P W, Chung DDL. Concrete as a new strain/stress sensor Composites B,1996,27 (1):11~23
    [113]Chung D D L. Cement-matrix composites for smart structures. Smart Mater Struct,2000,9 (4):389~401
    [114]D D L Chung. Self-Monitoring Structural Materials. Mater Sci Eng Rev, 1998,22 (2):57~78
    [115]Xiao jun Wang, Xu li Fu, D D L Chung. Strain Sensing Using Carbon Fiber. J Mater Res,1999,14 (3):790~802
    [116]D D L Chung. Structural Health Monitoring by Electrical Resistance Measurement. Smart Mater Struct,2001,10 (4):624~636
    [117]Shou kai Wang, Xiao ping Shui, Xu li Fu, et al. Early Fatigue Damage in Carbon Fiber Composites, Observed by Electrical Resistance Measurement. J Mater Sci,1998,33 (15):3875~3884
    [118]D D L Chung. Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon,2001,39 (2):279-285
    [119]Jun hua Wu, D D L Chung. Increasing the Electromagnetic Interference Shielding Effectiveness of Carbon Fiber Polymer-Matrix Composite by Using Activated Carbon Fibers. Carbon,40 (ER3):445~447
    [120]Luo X, Chung D D L. Electromagnetic interference shielding using continuous carbon—fiber carbon-matrix and polymer—matrix composites. Comp Part B,1999,30 (3):227~231.
    [121]SauKP, Chaki T K, Chakraborty A, et al. Electromagnetic interference shielding by carbon black and carbon fibre filled rubber composites. Plastics Rubber Comp Process Appl,1997,26 (7):291~297.
    [122]Taejin Kim, D D L Chung. Carbon Fiber Mats as Resistive Heating Elements. Carbon,2003,41 (12):2427-2451
    [123]Xu li Fu, D D L Chung. Effect of Admixtures on the Thermal and Thermomechanical Behavior of Cement Paste. ACI Mater J,1999,96 (4): 455~461
    [124]Makar J M, Margeson J, Luh J. Carbon nanotube/cement composites-early results and potential applications. In:Banthia N, Uomoto T, Bentur A, Shah S P, eds. Proceedings of 3rd international conference on construction materials:performance, innovations and structural implications. Vancouver, BC August 22—24,2005.1~10
    [125]Y Saez de Ibarra, J J Gaitero, E Erkizia, et al. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys Status Solidi,2006,203 (6):1076~1081
    [126]Cwirzen A, Habermehl Cwirzen K, Nasibulin A, et al. SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles. Materials Characterization,2009,60 (7):735~740
    [127]A Cwirzen, K Habermehl Cwirzen, V Penttala. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv Cem Res,2008,20 (2):65~73
    [128]S Musso, J M Tulliani, G Ferro, et al. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos Sci Technol,2009,69 (11-12):1985~1990
    [129]Shah S P, Konsta Gdoutos M S, Metaxa Z S, et al. Nanoscale modification of cementitious materials In:Bittnar Z.Bartos P T M, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in construction:proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic,2009.125~130
    [130]T Kowald, R Trettin. Improvement of Cementitious Binders by Multi-Walled Carbon Nanotubes. Nanotechnology in Construction 3, 2009, Part 3:261~266,
    [131]Raki L, Beaudoin J, Alizadeh R, et al. Cement and Concrete Nanoscience and Nanotechnology. Materials,2010,3 (2):918~942.
    [132]M S Konsta Gdoutos, Zoi S Metaxa, S P Shah. Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research,2101,40 (7):1052~1059
    [133]Grigorij Y, Jadvyga K, Albinas G, et al. Cement Based Foam Concrete Reinforced by Carbon Nanotubes. Materials science,2006,12 (2): 147~151
    [134]J M Chan, G W Makar. Growth of cement hydration products on single walled carbon nanotubes. Journal of the American Ceramic Society, 2009,92 (6):1303~1310
    [135]Shah S P, Konsta Gdoutos M S, Metaxa Z S, et al. Nanoscale modification of cementitious materials In:Bittnar Z, Bartos P J M, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in construction:proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic,2009.125~130
    [136]Valentin N Popov. Carbon nanotubes:properties and application. Materials Science and Engineering Reports,2004,43 (3):61~102
    [137]S P Shah, M S Konsta Gdoutos, Z S Metaxa, et al. Nanoscale Modification of Cementitious Materials. Nanotechnology in Construction 3:Chemistry and Materials Science,2009, Part 2:125~130,
    [138]Z S Metaxa, M S Konsta Gdoutos, S P Shah. Carbon Nanotubes Reinforced Concrete. ACI symposium publications,2009, n267-02SP:11~20
    [139]Todd Loesch. Paving a smarter, greener road. Medill Reports, Chicago, Northwestern University, Jan 28,2010
    [140]Geng Ying Li, Pei Ming Wang, Xiao hua Zhao. Pressure—sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites,2007,29 (5):377~382
    [141]Bao Guo Han, Xun Yu, Eil Kwon. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology,2009,20 (44): 445501 (5pp)
    [142]Saafi Mohamed. Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology,2009,20 (39):395502 (7pp)
    [143]Mohamed Saafi, Lanouar Kaabi. Low—Cost Wireless Nanotube Composite Sensor for Damage Detection of Civil Infrastructure. Sensors & Transducers Journal,2009,110 (11):96~104
    [144]I Kang, M J Schulz, J H Kim, et al. A carbon nanotube strain sensor for structural health monitoring. Smart Materials and Structures, 2006,15 (3):737~748
    [145]Vikas Khannal, Bhavik R. Bakshi, L James Lee. Carbon Nanofiber Production Life Cycle Energy Consumption and Environmental Impact. Journal of Industrial Ecology,2008,112 (3):394~410
    [146]J B Baek, Christopher B Lyons, Loon Seng Tan. Grafting of vapor— grown carbon nanofibers via in—situ polycondensation of 3— phenoxybenzoic acid in poly (phosphoric acid). Macromolecules, 2005,37 (22):8278~8285
    [147]I C Finegan, Tibbetts G G. Electrical conductivity of vapor—grown carbon fiber/thermoplastic composites. Journal of Material Research, 2001,16 (6):1668~1674
    [148]M Endo, Y A Kima, T Hayashia, et al. Vapor—grown carbon fiber (VGCFs): basic properties and their battery applications. Carbon,2001,39 (9):1287~1297
    [149]G G Tibbetts, J J Mchugh. Mechanical properties of vapor—grown carbon fiber composites with thermoplastic matrices. Journal of Material Research,1999,14 (7):2871~2880
    [150]K Lafdi, Matthew Matzek. Carbon nanofibers as a nano—reinforcement for polymeric nanocomposites.48th International SAMPE Symposium Proceedings, Long Beach, CA, USA, May 2003
    [151]I C Finegan et al. Modeling and characterization of damping in carbon nanofiber/polypropylene composites. Composites Science Technology, 2003,63 (11):1629~1635
    [152]I C Finegan, G G Tibbetts, D G Glasgow, et al. Surface treatments for improving the mechanical properties of Carbon nanofiber/thermoplastic composites. Journal of Material Science, 2003,38 (16):3485~3490
    [153]R J Kruiger, M Khairul Alam, David P Anderson. Strength prediction of partially aligned discontinuous fiber—reinforce composites. Journal of Material Research,2001,16 (1):226~232
    [154]Van Hattum, W J Ferrie. Processing and properties of carbon nanofiber/thermoplastic composites.49th International SAMPE symposium Proceedings, Long Beach, CA, USA, May 2004
    [155]Ji jun Zeng, Bethany Saltysiak, W S Johnson, et al. Processing and properties of poly (methyl methacrylate) carbon nanofiber composites. Composites Part B:Engineering,2004,35 (2):173~178
    [156]H Mahfuz, S Zainuddin, Vijay K Rangari, et al. Infusion of carbon nanotubes and carbon nanofibers into SC—15 epoxy, an investigation of the influence of high magnetic fields.50th International SAMPE Symposium proceeding, Long Beach, CA, USA, May 2005
    [157]R D Patton, C U Pittman Jr, L Wang, et al. Vapor—grown carbon fiber composites with epoxy and poly (phenylene sulfide) matrices. Composites Part A,1999,30 (9):1081~1091
    [158]T Gibson, Brian Rice, William Ragland. Formulation and evaluation of nanofiber—based conducting adhesives.50th International SAMPE Symposium proceeding. Long Beach, CA, USA, May 2005
    [159]Z S Metaxa, Konsta Gdoutos Maria S, Shah Surendra P. Carbon nanofiber reinforced cement—based materials. Transportation Research Board, 2010, (2142):114~118
    [160]F Sanchez, C Ince. Microstructure and macroscopic properties of hybrid carbon nanofibers/silica fume cement composites. Composites Science and Technology,2009,69 (7-8):1310~1318
    [161]J V Agullo, V Chozas Ligero, D Portillo Rico, et al. Mortar and concrete reinforced with nanomaterials. Nanotechnology in Construction 3, 2009, Part 3:383~388
    [162]C Gay, F Sanches. Performance of carbon nanofiber-cement composites with high-range water reducer. Transportation Research Board,2010, (2142):109~113
    [163]Sanchez F, Zhang L, Ince C. Multi—scale performance and durability of carbon nanofiber/cement composites. In: Bittnar Z, Bartos P J M, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction), Prague, Czech Republic,2009.345~ 350
    [164]F Sanchez. Carbon nanofiber/cement composites:challenges and promises as structural materials. Inter J Mater Struct Integ,2009, 3 (2—3):217~226
    [165]C Chang, M Ho, G B Song, et al. A feasibility study of self-heating concrete utilizing carbon-nanofiber heating elements. Smart Material and Structures,2009,18 (12):1~5
    [166]S Y Yang, K Lozano, Lomeli A, et al. Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Composites Part A,2005,36 (5):691~697
    [167]张金升,尹衍升,刘蕾,等.纳米材料和技术与发展新型建材.中国建材装备,2002,(2):41~43
    [168]熊国宣,邓敏,宋碧涛,等.纳米材料在混凝土中应用的思考.混凝土与水泥制品,2002,(5):18~21
    [169]颜汉军.复合纳米材料对混凝土及水泥砂浆性能的影响.新型建筑材料,2008,35(7):32~35
    [170]李固华,高波.纳米SiO2对混凝土盐类结晶循环性能的影响.西南交通大学学报,2007,42(1):70~74
    [171]禹凯,钱晓倩,孟涛,等.纳米技术在水泥混凝土中的应用.建材技术与应用,2006,(4):13~14
    [172]李固华,高波.纳米微粉SiO2和CaCO3对混凝土性能影响.铁道学报,2006,28(1):131~136
    [173]杜应吉,韩苏建,姚汝方,等.应用纳米微粉提高混凝土抗渗抗冻性能的试验研究.西北农林科技大学学报(自然科学版),2004,32(7):107~110
    [174]叶青,张泽南,孔德玉,等.掺纳米SiO2和掺硅粉高强混凝土性能的比较.建筑材料学报,2003,6(4):381~385
    [175]董建伟,裴宇波.混凝土复合防渗材料的研究与应用.吉林水利,2000,(10)20~22
    [176]兰成明,李惠,肖会刚.纳米混凝土抗磨及抗氯离子渗透性能研究.功能材料,2006,37(增刊):652~656
    [177]李朋飞,张擎,李晶晶.掺加纳米二氧化硅水泥混凝土路用性能.长安大学学报(自然科学版),2010,30(3):41~46
    [178]孟涛,钱匡亮,钱晓倩,等.纳米改性复合矿物外加剂对水泥性能和微观结构的影响.稀有金属材料与工程,2008,37(增刊2):631~633
    [179]关新春,欧进萍.碳纤维机敏混凝土材料的研究与进展.哈尔滨建筑大学学报,2002,35(6):55~59
    [180]杜向琴.碳纤维混凝土断裂性能研究:[硕士学位论文].西安,西北农林科技大学,2007
    [181]沈刚,董发勤.碳纤维致热混凝土的阻温特性研究.武汉理工大学学报,2004,26(8):26~28
    [182]杨玉山,董发勤.碳纤维导电水泥砂浆研究动态.水泥工程,2007,(6):76~79
    [183]吴思刚,黄义春.智能水泥混凝土的研究.哈尔滨建筑大学学报,2001,34(2):128~129
    [184]李书进,吴科如.碳-钢纤维混杂水泥基复合材料的力学行为.混凝土与水泥制品,2008,(1):41~43
    [185]沈文忠,张雄.碳纤维功能混凝土研究现状及应用前景.新型建筑材料,2004,(8):30~32
    [186]邓宗才,孙成栋,黄博升.碳纤维混凝土的压缩韧度指数.混凝土与水泥制品,2000,(4):37~38
    [187]关新春,韩宝国,欧进萍.碳纤维在水泥浆体中的分散性研究.混凝土与水泥制品,2002,(2):34~36
    [188]杨元霞,毛起炤,沈大荣.碳纤维水泥基复合材料中纤维分散性的研究.建筑材料学报,2001,4(1):84~88
    [189]孙明清,张晖,李卓球,等.CFRC机敏混凝土中碳纤维的分散性研究.混凝土与水泥制品,2004,(5):38~41
    [190]申豫斌,谢慧才.碳纤维水泥砂浆的配制及力学性能测试.混凝土,2001,(7):48~51
    [191]侯作富,李卓球,唐祖全.融雪化冰用碳纤维混凝土的导电性能研究.武汉理工大学学报,2002,24(8):32~34,66
    [192]杨元霞,刘宝举.导电混凝土及机敏混凝土电阻测试中电极的研制.混凝土与水泥制品,1997,(2):8~9,45
    [193]候作富,李卓球,胡胜良.硅灰对碳纤维导电混凝土电阻率和强度的影响.混凝土,2003,(2):26~28
    [194]孙明清,李卓球, 沈大荣.炭纤维水泥基复合材料的Seebeck效应.材料研究学报,1998,12(1):111~112
    [195]孙明清,李卓球,刘清平.纤维水泥基复合材料的电力效应研究.华中科技大学学报(城市科学版),2004,21(2):47~49
    [196]席保锋,刘辅宜,徐传骧,等.聚合物/碳黑复合材料PTC特性的理论研究 进展.高分子材料科学与工程,1999,15(6):25~29.
    [197]毛起炤,陈品华,赵斌元,等.小应力下炭纤维增强水泥的压敏性和温敏性.材料研究学报,1997,11(3):322~324
    [198]毛起炤,杨元霞,李卓球,等.碳纤维增强水泥压敏性影响因素的研究.硅酸盐学报,1997,25(6):734~737
    [199]毛起炤,赵斌元,沈大荣,等.极化效应对碳纤维增强水泥(CFRC)导电性的影响.材料研究学报,1997,11(2):195~198
    [200]孙明清,李卓球,刘清平.水泥及水泥基复合材料的机敏性研究.材料导报,2002,16(5):52~54
    [201]李惠,欧进萍.智能混凝土与结构.工程力学,2007,24(增刊2):45~61
    [202]李庚英,王培铭.碳纳米管-水泥基复合材料的力学性能和微观结构.硅酸盐学报,2005,33(1):105~108
    [203]高良丽,徐世娘.多壁碳纳米管增强DSP水泥基复合材料的探讨.混凝土,2009,(12):26~28
    [204]衣朝华,赵发伟,李仕群,等.纳米碳管对磷铝酸盐复合水泥性能的影响.硅酸盐通报,2006,25(2):70~73
    [205]杜岩滨,朱立群,刘慧丛.表面活性剂在碳纳米管表面处理中的应用.精细化工,2004,21(增刊):1~5
    [206]罗健林,段忠东.表面活性剂对碳纳米管在水性体系中分散效果的影响.精细化工,2008,25(8):733~738
    [207]罗健林,段忠东.碳纳米管的分散性及其增强水泥材料力学性能.建筑结构学报,2008,(S1):246~250
    [208]罗健林,段忠东,李惠.MWNT的分散性及其对复合水泥基材料力学性能的影响.纳米技术与精密工程,2009,7(6):532~536
    [209]高濂,刘阳桥.碳纳米管的分散及表面改性.硅酸盐通报,2005,24(5):114~119
    [210]罗健林,段忠东,李惠.纳米级硅灰及碳管对水泥基材料减振性能的影响.材料工程,2009,(4): 31~34
    [211]龚红宇,全静,张玉军,等.CNTs/纳微米PZT/水泥压电复合材料的研究.人工晶体学报,2010,39(3):660~664
    [212]李庚英,王培铭.表面改性对碳纳米管-水泥基复合材料导电性能及机敏性的影响.四川建筑科学研究,2007,33(6):143~146
    [213]崔素萍,刘永肖,兰明章.石墨—水泥基复合材料的制备与性能.硅酸盐学报,2007,35(1):91~95
    [214]范晓明,董旭,孙明清,等.石墨水泥基复合材料的导电及压敏特性研究.武 汉理工大学学报,2009,31(12):12~14,19
    [215]王玉林,赵晓华.纳米碳黑水泥基复合材料力学性能及微观结构分析.材料导报:纳米与新材料专辑,2008,22(Z1):159~162
    [216]王小英,孙明清,侯作富等.纳米炭黑水泥砂浆的导电性与电热特性研究.功能材料,2006,37(11): 1841~1843,1847
    [217]龙曦,孙明清,李卓球,等.纳米炭黑水泥基复合材料的压敏性研究.武汉理工大学学报,2008,30(3): 65~67
    [218]王玉林,赵晓华,杜建华,等.纳米碳黑改善水泥基复合材料力学性能及其压敏性研究.新型建筑材料,2008,35(12):6~9
    [219]王玉林,赵晓华,杜建华,等.纳米碳黑水泥基复合材料压敏性及机理分析.硅酸盐通报,2009,28(1):189~193
    [220]黄莉,龚学进,孙明清.不同混合导电掺和料水泥基复合材料压阻特性的实验研究.硅酸盐通报,2009,28(6):1112~1117
    [221]李惠,肖会刚,欧进萍.水泥基纳米复合材料压敏特性研究.功能材料,2004,35(增刊):2653~2656
    [222]M Joshi, A Bhattacharyya. Carbon Nanofiber Reinforced Carbon/Polymer Composite. NSTI-Nanotech,2004,3:308~311
    [223]Abhrajit Chatterjeea, Khairul Alama, Peter Klein. Electrically Conductive Carbon Nanofiber Composites with High-Density Polyethylene and Glass Fibers. Materials and Manufacturing Processes, 2007,122 (1):62~65
    [224]D l Shi, J Lian, P He, et al. Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites. Applied physics letters,2003,83 (25):5301~5303
    [225]S G Prolongo, M Buron, M R Gude, et al. Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites. Composites Science and Technology,2008,68 (13): 2722~2730
    [226]O M Teyssier, S S Valdes, L F R de Valle. Effect of Carbon Nanofiber Functionalization on the Dispersion and Physical and Mechanical Properties of Polystyrene. Nanocomposites:Macromolecular Materials and Engineering,2006,291 (12):1547~1555
    [227]Kubota S, Nishikiori H, Tanaka N, et al. Dispersion of Acid—Treated Carbon Nanofibers into Gel Matrices Prepared by the Sol—Gel Method. The Journal of Physical Chemistry B,2005,109 (49):23170~23174
    [228]Zhao J, Schaefer D W, D l Shi, et al. How does surface modification aid in the dispersion of carbon nanofibers? The Journal of Physical Chemistry B,2005,109 (49):23351~23357
    [229]D D L Chung. Dispersion of Short Fibers in Cement. Journal of Materials in Civil Engineering@ASCE,2005,17 (4):379~383
    [230]Texas Industries, Inc.2010. www.txi.com/TXI-products/TXI-cement.html
    [231]Heidelberg Cement Grouop.2010.www.Heidelbergcement.com/global/en /hanson/home.htm
    [232]BASF Admixture Systems.2009. http://files.buildsite.com/dbderived-f /master_builders_inc/derived_files/derived278987.pdf
    [233]Merck KGaA, Inc. Jan 2010. www. emdbiosciences. com/product/428015
    [234]Dow Corning Corporation. Jan 2010, www. dowcorning. com
    [235]Pyrograf Products, Inc. Jan 2010, www.pyrografproducts.com
    [236]Pyrograf Products, Inc. Jan 2009. www.pyrografproducts.com/Merchant5 /merchant. mvc?Screen=cp_nanofiber
    [237]MGChemicals.2010. www.alliedelec.com/Images/Products/Datasheets/ BM/MG_ CHEMICALS/661-0232. PDF
    [238]University of Houston.2010. http://www.egr.uh.edu/structurallab /?e=le_tom
    [239]MTS Systems Corporation.2010. http://www.mts.com/stellent/groups /public/documents/library/dev_002093.pdf
    [240]SPX Hydraulic Technologies.2010. http://www.powerteam.com/catalog /023.pdf
    [241]Tokyo Sokki Kenkyujo Co. Ltd.2010. http://www.tml.jp/e/product /strain_gauge/catalog_pdf/Fseries.pdf
    [242]Vishay Precision Group.2010. http://www.vishaypg.com/docs/11102 /p3.pdf
    [243]Macro Sensors Inc.2010. http://www.macrosensors.com/downloads /datasheets/DC750series-100902.pdf
    [244]University of Houston.2010. http://www.egr.uh.edu/structurallab /?e=le_ida
    [245]NDT JAMES INSTRUMENTS INC.2010. http://www.ndtjames.com/
    [246]B&K Precision Corp 2010 http://www.bkprecision.com/products/docs /datasheets/1671A_datasheet.pdf
    [247]Dhonde HB, Mo YL, Hsu TTC, and Vogel J. Fresh and Hardened Properties of Self—Consolidating Fiber Reinforced Concrete. ACI Materials Journal, 2007,104 (5):491~500
    [248]Hui L, Xiao H, Yuan J, et al. Microstructure of cement mortar with nano-particles. Composites part B:Eng,2004,35 (2):185~189
    [249]Colston S L,O connor D, Barnes P, et al. Functional micro—concrete: the incorporation of zeolites and inorganic nano-particles into cement micro-structures. Journal of materials science letters,2000,19 (12): 1085~1088
    [250]Hammond E, Robson T D. Comparison of electrical properties of various cements and concretes. Engineer,1955,199(5166):114~115
    [251]T C Hou, Jerome P Lynch. Conductivity—based strain monitoring and damage characterization of fiber reinforced cementitious structural components. Proceedings of SPIE 12th Annual International Symposium on Smart Structures and Materials, San Diego, CA, March 6-10,2005.1~11
    [252]Chung D D L. Multifunctional cement—based materials, Brazil:Marcel Dekker Inc,2003.1~32
    [253]Torrents J M, Mason T O, Peled A, et al. Analysis of the Impedance Spectra of Short Conductive Fiber-Reinforced Composites. Journal of Materials Science,2001,36 (16):4003~4012
    [254]Pu Woei Chen, D D L Chung. Carbon fiber reinforced concrete for smart structures capable of non—destructive flaw detection. Smart Mater Struct,1993,2(1):22~30
    [255]Pu Woei Chen, D D L Chung. Carbon fiber reinforced concrete as an electrical contact material for smart structures. Smart Mater Struct, 1993,2 (3):181~188
    [256]Chung D D L. Strain sensors based on the electrical resistance change accompanying the reversible pull—out of conducting short fibers in a less conducting matrix. Smart Mater Struct,1995,4(1):59~61
    [257]Mohamed Saafi, Lanouar Kaabi. Low—Cost Wireless Nanotube Composite Sensor for Damage Detection of Civil Infrastructure. Sensors&Transducers Journal,2009,110 (11):96~104
    [258]Xiao Hui Gang, Cheng ming Lan, Xiao yong Ji, et al. Mechanical and sensing properties of structural materials with nanophase materials. Pacific Science Review,2003,5:11~17
    [259]Hui Li, Hui Gang Xiao, Jin Ping Ou. A study on mechanical and pressure —sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research,2004,34 (3):435~438
    [260]Hui Li, Hui Gang Xiao, Jin Ping Ou. Effect of compressive strain on electrical resistivity of carbon black—filled cement—based composites. Cement and Concrete Composites,2006,28 (9):824~828
    [261]Hui Gang Xiao, Li Hui, Ou Jin Ping. Piezoresistance property of cement —based composites filled with carbon black and the application of it for strain sensing. (SPIE) Behavior and Mechanics of Multifunctional Materials and Composites, San Diego, USA, March 2007
    [262]Xu li Fu, D D L Chung. Contact electrical resistivity between cement and carbon fiber:its decrease with increasing bond strength and its increase during fiber pull—out. Cement and Concrete Research,1995,25 (7): 1391~1396
    [263]Si Hai Wen, D D L Chung. Electric polarization in carbon fiber—reinforced cement. Cement and Concrete Research,2001,31 (1):141~147
    [264]Si Hai Wen, D D L Chung. Effect of stress on the electric polarization in cement. Cement and Concrete Research,2001,31 (2):291~295
    [265]候作富,李卓球,唐祖全.碳纤维导电混凝土的交直流电性能对比研究.混凝土,2002,150(4):32~34
    [266]吴冰,姚武,吴科如.用交流阻抗法研究碳纤维混凝土导电性.材料科学与工艺,2001,19(1):76~79
    [267]毛起炤,孙明清,陈品华.CFRC试块体积电阻和表面电阻的研究.武汉工业大学学报,1997,19(2):65~67
    [268]Gowers K R, Millard S G. Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique. ACI Materials Journal,1999,96 (5):536~542
    [269]Reza F, Yamamuro J A, Batson G B, et al. Smart behavior of carbon fiber cement composites in compact tension. Proceedings of the 16th ASCE Engineering Mechanics Conference, Seattle, WA, USA, July 16—18,2003.
    [270]Whiting D A, Nagi M A. Electrical Resistivity of Concrete—a Literature Review, Report Serial No.2457, Portland Cement Association(PCA),2003. 1~56
    [271]韩宝国.碳纤维水泥基复合材料压敏性能的研究,[硕士学位论文].哈尔滨:哈尔滨工业大学,2001
    [272]Si Hai Wen, D D L Chung. Electric polarization in carbon fiber—reinforced cement. Cement and Concrete Research,2001,31 (1):141~147
    [273]Mclachlan D S, Blaszkiewicz M, Newnham R E. Electrical resistivity of
    Composites. Journal American Ceramic Society,1990,73 (8):2187~2203
    [274]Van Beek, Van Pul. Internal field emission in carbon black—loaded natural rubber vulcanizates. Journal of Applied Polymer Science,1962,6 (24): 651~655
    [275]Wen S, Chung D D L. A Comparative Study of Steel—and Carbon—Fiber Cement as Piezoresistive Strain Sensors. Advances in Cement Research,2003, 15 (3):119~128
    [276]Chen P W, Chung D D L. Improving the electrical conductivity of composites comprised of short conducting fibers in a non-conducting matrix:the addition of a non-conducting particulate filler. Electron Mater,1995, 24 (1):47~51
    [277]Chen B, Wu K, Yao W. Conductivity of carbon fiber reinforced cement-based composites. Cem Concr Compos,2004,26 (4):291~297
    [278]Wang X, Wang Y, Jin Z. Electrical conductivity characterization and variation of carbon fiber reinforced cement composite. Mater Sci,2002, 37 (1):223~227
    [279]Reza F, Batson G B, Yamamuro J A, et al. Volume electrical resistivity of carbon fiber cement composites. ACI Mater J,2001,98 (1):25~35
    [280]Chiarello M, Zinno R. Electrical conductivity of self—monitoring CFRC. Cem Concr Compos,2005,27 (4):463~469
    [281]Si Hai Wen, D D L Chung. Double Percolation in the Electrical Conduction in Carbon Fiber Reinforced Cement—Based Materials. Carbon,2007,45 (2):263~267
    [282]Xie P, Gu P, Beaudoin J J. Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibers. Journal of Materials Science, 1996,31 (15):4093~4097
    [283]Banthia N, Djeridane S, Pigeon M. Electrical Resistivity of Carbon and Steel Micro—Fiber Reinforced Cements. Cement and Concrete Research, 1992,22 (5):804~814
    [284]肖会刚.水泥基纳米复合材料压阻特性及其自监测智能结构系统:[博士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [285]Ezquerra T A, Kulescza M. Charge transport in polyethylene—graphite composite materials. Advanced Materials,1990,2 (12):597~600
    [286]韩宝国,关新春,欧进萍.碳纤维水泥石压敏传感器电极的实验研究.功能材料,2004,35(2):262~264
    [287]Abo Qudais S A. Effect of concrete mixing parameters on propagation of ultrasonic waves. Construction and Building Materials,2005,19 (4): 257~263
    [288]0kamoto P A, Whiting D. Use of Maturity and Pulse Velocity Techniques to predict Strength Gain of Rapid Concrete Pavement Repairs During Curing Period. Transportation Research Record,1994, (1458):85~90
    [289]Ohdaira E, Masuzawa N. Water content and its effect on ultrasound propagation in concrete-the possibility of nde. Ultrasonics,2000, 38 (1-8):546~552
    [290]Hernandez M, Izquierdo M, Ibanez A, et al. Porosity estimation of concrete by ultrasonic nde. Ultrasonics,38 (1-8):531~533
    [291]Sutan N M, Jaafar M S. Evaluating efficiency of nondestructive detection of flaws in concrete. Russian Journal of Nondestructive Testing,2003, 39 (2):87~93
    [292]Popovics J, Song W J, Ghandehari M, et al. Application of surface wave transmission measurements for crack depth determination in concrete. ACI Materials Journal,2000,97 (2):127~135
    [293]Washer G, Fuchs P, Rezai A, et al. Ultrasonic measurement of the elastic properties of ultra high performance concrete (uhpc). Proc of SPIE, 2005,5767:416~422
    [294]ASTM C 597-02. Standard Test Method for Pulse Velocity through Concrete. Annual Book of ASTM Standards,2003,4 (2):310~313
    [295]Mansour M, Lee J Y, Hsu T T C. Constitutive Laws of Concrete and Steel Bars in Membrane Elements under Cyclic Loading. Journal of Structural Engineering@ASCE,2001,127 (12):1402~1411
    [296]Hsu T T C, M Y Mansour, Y L Mo, et al. Cyclic Softened Membrane Model for Nonlinear Finite Element Analysis of Concrete Structures. ACI SP-237, Finite Element Analysis of Reinforced Concrete Structures, American Concrete Institute, Farmington, MI,2006.71~98
    [297]Gao X D. Framed shear walls under cyclic loading. [Ph.D. dissertation]. Houston:University of Houston,1999
    [298]Mansour M, Hsu T T C. Behavior of reinforced concrete elements under cyclic shear:Part 1-experiments. J Struct Eng@ASCE,2005,131 (1):44~53
    [299]Mansour M, Hsu T T C. Behavior of reinforced concrete elements under cyclic shear:Part 2-theoretical model. J Struct Eng@ASCE,2005,131 (1): 54~65
    [300]Mansour M, Hsu T T C, Lee J Y. Pinching Effect in Hysteretic Loops of R/C Shear Elements. In:ACI Special Publication 205:Deterioration Analysis of RC Structures under Cyclic Loading, K Willam, A Tanabe Eds, American Concrete Institute, Farmington Hill, MI,2001.293~321
    [301]Y L Mo, Jian Xia Zhong, Thomas T C Hsu. Seismic simulation of RC wall —type structures. Engineering Structures,2008,30 (11):3167~3175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700