空气冲旋钻头牙齿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对空气冲旋钻头现场使用存在的两个问题:齿的磨损和断裂,一方面从硬质合金材料角度出发,研究不同WC晶粒度对齿的耐磨性和抗冲击性的影响,找到了能更好地满足空气冲旋钻头牙齿要求的硬质合金材料。另一方面对边齿做了力学分析,研究了边齿倾角、露齿高度以及齿形对边齿各危险点应力的影响,找到了合理的边齿参数,降低了边齿的断裂几率。同时,应用ANSYS有限元分析软件对理论计算进行验证。通过硬质合金材料的研究以及边齿的力学分析,达到提高牙齿耐磨性和抗冲击韧性,减小边齿内部应力。从达到提高牙齿使用寿命的目的,本文主要从以下几方面开展工作:
     (1)空气冲旋钻头的现场调研。
     通过对国内外钻头牙齿材料(硬质合金材料)的文献调研,了解硬质合金的特点、发展状况及研究水平,在前人研究基础上找到能适应空气冲旋钻头要求的硬质合金牙齿材料;同时,对国内外钻头牙齿力学分析做了调研分析,为本论文牙齿力学分析提供借鉴。
     (2)空气冲旋钻头牙齿失效分析。
     包括牙齿失效形式、失效机理及失效原因分析。通过对空气冲旋钻头牙齿失效分析研究,弄清钻头的失效原因,失效机理,为后续研究提供依据。
     (3)空气冲旋钻头牙齿材料研究。
     主要以试验手段研究WC的晶粒度对硬质合金材料耐磨性能和抗冲击韧性的影响关系。确定合理的WC晶粒度后,采用WC粉末制备技术、压坯成型烧结技术和抑制WC晶粒的长大技术等制备工艺制备成品牙齿,通过牙齿的性能测试、微观结构分析、耐磨性、抗冲击性能试验,以期研制出能很好满足空气冲旋钻头头要求的硬质合金牙齿材料。
     (4)空气冲旋钻头牙齿力学分析。通过对钻头牙齿井底受力分析,建立力学模型进行理论计算,找出牙齿内可疑危险点,分析各可疑危险点的应力与钻头边齿的露齿高度、倾角、半径以及齿形的关系,确定合理的边齿露齿高度、倾角、半径以及齿形。通过ANSYS有限元分析软件,对不同倾角和露齿高度的边齿进行仿真分析,其仿真结果和理论计算结果是比较吻合的。
In this paper, we analyzed two question that are wearing and fracture of air impulse rotary drill bit teeth in field use. On the one hand from cemented carbide material standpoint, study the effects of teeth wear resistance and impact resistance with different WC grain sizes,and find the better cemented carbide materials which can meet the requirements of the teeth of air percussion-rotary bit. On the other hand make a mechanical analysis on side teeth,research the inclination of side teeth, teeth height as well as the teeth shape's effects on side teeth's peril points stress. Then find reasonable parameters of the side teeth and reduce the chance of side teeth fragmentation. Achieve improving wear resistance and impact resistance and reduce the stress side of teeth through researching cemented carbide materials and analysising mechanical of side teeth. So as to achieve the purpose of improving the service life. The thesis's primary research work is as follows:
     (1) The scene investigates and studies on air percussion-rotary bit. Through researching literature on the overseas and domestic present status of drill teeth materials(cemented carbide materials), comprehend the cemented carbide characteristics, the development state and the reseach level. On the basis of previous research find cemented carbide teeth materials which can adapt to the requirements of air percussion-rotary bit. Meanwhile make an investigation and analysis on the mechanical of home and abroad bit teeth and provide experience in mechanical analysis of the teeth of this thesis.
     (2) Failure analysis of air percussion-rotary bit teeth. Include tooth failure modes, failure mechanisms and failure reason analysis. Through the failure analysis of air percussion-rotary bit teeth,understand the failure reasons of drill, failure mechanism and provide a basis for further study.
     (3) Researching on air percussion-rotary bit tooth materials. Mostly use experimental study means to research the affect of WC's grain size on wear resistance and impact resistance of cemented carbide materials. Use WC powder preparation technique, forming compact sintering technology and subduing growth of WC grain size technology as well as preparatian procedure to product finished teeth after confirming the reasonable WC grain size. Through tooth performance test, microstructure analysis, wear resistance and impact resistance experiments, well develop cemented carbide tooth materials which can meet the requirements of the air percussion-rotary bit.
     (4) Mechanical analysis of air percussion-rotary bit. Through mechanical analysis of drill tooth in downhole, establish the mechanical model for calculation, identify the suspicious dangerous point within teeth, analyse the relationship between every stress of suspected dangerous points and the tooth height, inclination, radius and tooth form of drill side teeth. Then comfirm more rensonable ones.
引文
[1]马保松,张祖培,孙友宏.钻井工程用超硬材料及钻头的发展[J].地质与勘探,1998,34(2):50~54.
    [2]林远华.冲击回转技术研究,西南石油学院博士论文.
    [3]王人杰,蒋荣庆等.液动冲击回转钻探[M].北京:地质出版社,1988.
    [4]会议组.冲击回转钻井技术专题报告讨论会集锦.探矿工程.
    [5]李吉林.DC型液动潜孔锤的研究[J].探矿工程,1993,3.
    [6]液动冲击器回转钻井技术[J].长春地质学院勘工系,1985.
    [7]幸福安.我国液动冲击回转钻探技术发展综述[J].探矿工程,1991,2.
    [8]苏长寿.YZ-150型液动冲击器[J].探矿工程.1989,4.
    [9]陶兴华.冲击旋转钻井破岩特点分析[J].钻采工艺,1996,19(3):1-3.
    [10]陶兴华,张建龙,曾义金.石油旋冲钻井技术研究及应用[J].石油钻采工艺,1998,20(2):27~30.
    [11]陶兴华.提高深井钻井速度的有效技术方法[J].石油钻采工艺,2001,23(5):4~8.
    [12]姜雪峰.超细硬质合金制备及微观结构研究.重庆大学硕士论文.
    [13]王国栋.硬质合金生产原理[M].北京,冶金工业出版社,1988,1-6.
    [14]邓秋元.硬质合金生产的进展[J].硬质合金,1996,13(3),184.
    [15]张玉华.超细硬质合金研究综述[J].粉末冶金技术,1995,13(3):216~219.
    [16]S.Imasato, K.Tokumoto. Properties of ultra-fine grain binderless cemented carbide "Rufn"[J].International Journal of Refractory Metal& Hard Materials,1995,13(5):305-312.
    [17]K.Brookes.50 years of hardmetal technology [J]. Metal Powder Report,1995,12:22-28.
    [18]L.J.Parkash. Properties of submicron WC-based cemented carbides[J]. Metal Powder Report,1989,44(12):835-836.
    [19]李学芳.超细硬质合金的最新应用情况[J].硬质合金.2002,18:22.
    [20]周建华,卢伟民.国内外硬质合金生产现状及近期发展动向分析[J].稀有金属与硬质合金,2006,34(1):36~41.
    [21]HENRI P, EMMANUEL P. On the composition of Fe-Ni-Co-WC-based cemented carbides[J]. Int J of Ref rac-tory Metals& Hard Materials,1995,15 (8):1392149.
    [22]REEDER, DAVID A, BUR WICK. Uniform coarse tungsten carbide powder and cemented tungsten carbide article and process for producing same:US,5071473 [P].1991212210.
    [23]Sproggs G E. A history of fine grained hardmetal [J]. International Journal of Ref ractory Metals& Hard Ma-terials,1995,13 (5):241-255.
    [24]毛昌辉.高能机械研磨纳米结构WC-Co复合粉末的研究[J].稀有金属,1999,23(3):185.
    [25]王兴庆.纳米硬质合金制备技术的研究[J].硬质合金,2003,20(1):1.
    [26]王兴庆.一种超细硬质合金及其制造方法[P].中国专利:03116546.8,2003-10-22.
    [27]周定良.防止超细硬质合金制备过程中氧化的方法[P].中国专利:02139710.4,2003-06-25.
    [28]何惧.超细硬质合金的制备方法[P].中国专利:03124670.2,2004-03-10.
    [29]李来荣,超细硬质合金的制备方法[P].中国专利:03124671.0,2004-03-10.
    [30]张卫兵WC、Co质量对超细硬质合金性能影响的研究[J].硬质合金,2009,20(3):157~160.
    [31]羊建高,黄伯云.一种利用废残粗晶硬质合金生产超细WC-Co复合粉末的新方法[J].中国钨业,2008,18(2):35~37.
    [32]何宪峰.两步碳化法生产优质粗颗粒WC粉末[J].中国钨业,2007,22(6):39~41.
    [33]占志泽.优质碳化钨粉的研制[J].江西冶金,1996,16(3):19~21.
    [34]须志刚,蔡镜仑.PDC钻头切削齿受力试验的新方法[J].石油大学学报(自然科学版),1994,18(4):31~35.
    [35]赵淑兰,马德坤.牙轮钻头牙轮动力学特性的计算机仿真[J].石油机械,1999,21(3):13~16.
    [36]林玉龙,侯季康.牙轮钻头侧切试验研究[J].西南石油学院学报,1999,21(1):59~62.
    [37]练章华,倪军.麻花钻头切削刃受力测试研究[J].石油机械,2000,28(8):20~22.
    [38]练章华,倪军.任意形状钻头切削刃的受力预测模型[J].中国机械工程,2010,12(6):616~620.
    [39]皱德永,张将海.PDC钻头力学模型的试验研究[J].石油钻探技术,2005,33(2):11~13.
    [40]许爱.PDC钻头切削齿破岩载荷规律的分析[J].探矿工程(岩土钻掘工程),2006,7:59~61.
    [41]马德坤.关于牙轮钻头齿顶线方向问题的讨论[J].石油机械,2006,34(9):102~105.
    [42]叶枫,宋涛.PDC钻头切削齿的受力模型的建立[J]. SCIENCE& TECHNOLOGY INFORMATION,2007,34:397-398.
    [43]梁尔国,李子丰.PDC切削齿受力的试验研究[J].石油机械,2009,37(11):12~15.
    [44]刘欣,周国芳.基于有限元的PDC钻头单齿工作参数仿真研究[J].矿山机械,2010,38(3):1-4.
    [45]符夷雄.硬质合金硬质合金磨损机理的研究[J].凿岩机械气动工具,1994(1):61~66.
    [46]谭永生,蔡和平.采煤机截齿用WC-Co硬质合金磨损、强度与断裂[J].稀有金属材料与工程,1996,25(6):7-11.
    [47]蔡和平等.硬煤截齿刀头的热疲劳失效分析[J].西安交通大学学报,1997,31(3):12~17.
    [48]胡世炎.机械失效分析手册[M].成都:四川科学技术出版社,1996.
    [49]P Seegopaul, L E MeCandlish and F M shinneman. Produetion capability and powde Proeessing methods for nanostruetured WC-Co Powder. International Journal of Refraetory Metals& Hard Materials,1997,15:133-138.
    [50]R K Sadangi, L E MeCandlish, B H Kearetal. Grain growth inhibition in liquid Phase sintered nanophase WC/Co alloys. The International Journal of Powder Metallurgy,1999,35(l):27-33.
    [51]高荣根.纳米结构WC-Co复合粉末的制备与应用[J].稀有金属与硬质合金,1999,27(6):49~52.
    [52]吴伯麟,邵刚勤.纳米晶复合碳化钨-钻粉末的工业化制备技术[J].材料导报,2000,14(7):55~58.
    [53]Y T Zhou, A Manthiram. J. Am. Ceram. Soc.,1994,77:2777-2780.
    [54]Y T Zhou, A Manthiram. Composites,1996,27B(5):407-413.
    [55]刘珍,梁伟.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,(3):103~108.
    [56]毛昌辉.高能机械研磨纳米结构WC-Co复合粉末的研究[J].稀有金属,1999,23(3):185~188.
    [57]B K Kim, C J Choi. Scripta Mater.,2001,44:2161-2164.
    [58]Z GBan, L L Shaw. J. Mater. Sci.,2002,37:3397-3403.
    [59]XMa, L Zhao,GJi et al. J. Mater. Sci. Lett.,1997,16:968-970.
    [60]XMa, GJi. Rare Metals,1998,17 (2):88-93.
    [61]B K Kim, G H Ha, D WLee et al. Advanced Performance Materials,1998,5:341-352.
    [62]Z Zhang, MMuhammed. Thermochimica Acta,2002,71149:1-11.
    [63]曹立宏,欧阳世翕,时东霞等.硬质合金WC-Co超细粉末的制备研究[J].硅酸盐学报,1995,24(5):604~608.
    [64]雷秀娟.纳米材料的力学性能.西北工业大学硕士论文.
    [65]范景莲,李志希吴恩熙.超细/纳米硬质合金及晶粒长大抑制剂的研究[J].粉末冶金技术.2004,22(5):259~265.
    [66]J.Zackrisso B.Jansson, G.s.Uphadyaya, H.-O.Ander, WC-Co based cemented carbides with large Cr3C2 additions, International Journal of Refactory Metal& Hard Materials 1998,16:417-22.
    [67]T.YAMAMOTO, Y.IKUHARA, T.WATANABE, High resolution microeroseopy, Study in Cr3C2-doped WC-Co, JOURNAL OF MATERIALS SCIENCE,2001,36:3885-3890.
    [68]李炯义,曹顺华,林信平等.硬质合金中的晶粒长大抑制剂[J].硬质合金,2004,21(1):56~59.
    [69]A.Delanoe, M.Baeia, E.pauty, S.Lay, C.H.Allibert. Cr-rich layer at the WC/Co interface in Cr-doped WC-Co cerments:segregation or metastable earbide[J]. Journal of Crstal Growth.2004,(270):219-227.
    [70]陈丽华.带有沙漏控制的有限元冲击动力问题并行计算.博士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700