立式圆柱形钢制储罐在谐波沉降下的屈曲行为及缺陷敏感度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立式圆柱形钢制储罐是石油和化工领域的重要储存装置。由于储罐多位于地基较松软地区,储罐底部通常存在一定程度的不均匀沉降。当不均匀沉降达到某一临界值时,易造成壳体的屈曲。本文将不均匀沉降考虑成谐波沉降的形式,采用理论分析和数值计算的研究方法,针对立式圆柱形钢制储罐在谐波沉降下的屈曲行为和缺陷敏感度问题进行研究,主要的工作如下:
     (1)基于弯矩理论以及相应的模型假设,提出了立式圆柱形钢制储罐仅在谐波沉降下静力解析解。同时,推导了立式圆柱形钢制储罐在谐波沉降和静油压力同时作用下的静力解析解。并通过类比圆柱壳体的轴压屈曲,得到了储罐在谐波沉降下的屈曲理论公式。
     (2)分析了储罐在谐波沉降下的屈曲行为,并对不同结构参数的储罐进行了参数化分析。研究了弹塑性材料模型、顶部加强梁等因素对储罐屈曲强度的影响。并将浮顶罐的屈曲行为与锥顶罐的屈曲行为进行对照,分析了两种储罐屈曲行为的差异。
     (3)研究了储罐在谐波沉降下对不同缺陷形式的敏感度,包括屈曲点处屈曲模态形式的缺陷、鼓胀屈曲模态形式的缺陷、焊接缺陷等;研究了影响储罐在谐波沉降下的最危险的缺陷形式;对比了实际环向焊缝与纵向焊缝对壳体屈曲强度影响以及差异;探讨了顶部加强梁、弹塑性材料模型等因素对储罐缺陷敏感度的影响。
     (4)研究了储罐在谐波沉降和静油压力作用下的屈曲行为,分析了静油压力对储罐屈曲强度的影响;分析了静油压力对储罐缺陷敏感度的影响;提出了采用临界液面高度法判断壳体是否屈曲的研究方法。
     (5)根据理论分析以及数值结果,初步建立了立式圆柱形钢制储罐在谐波沉降下的临界沉降控制法则。采用该公式得到的预测结果与数值计算较为一致,可以用来预测储罐在谐波沉降下的屈曲强度。这可为将来的储罐不均匀沉降设计,提供一定的参考。
The vertical cylindrical steel tanks are widely adopted in petroleum and chemical fields, which are mainly used for the storage of oil and other chemical products. Considering that the steel tanks are usually located on the soft soils, large differential settlement can be monitored beneath the tank walls. When the differential settlement reaches a critical value, it is prone to cause the buckling of the tank. In this paper, the differential settlement is treated as the form of harmonic settlement. Based on this assumption, the theoretical analyses and numerical calculations are taken to investigate the buckling behavior and imperfection sensitivity of cylindrical steel tanks subjected to harmonic settlement. Main work conducted is as follows:
     (1) Based on the theory of shell bending with the given model hypotheses, the solutions for two cases are provided:one case is that the vertical cylindrical steel tanks subjected to harmonic settlement, and the other case is that the tank under harmonic settlement and the hydrostatic pressure. Moreover, the buckling formulas are proposed according to the assumption of axial buckling of cylindrical shells.
     (2) The buckling behavior of cylindrical shells subjected to harmonic settlement is reported. Then, parametric studies are conducted for tanks with various structure parameters, including the height-to-radius ratio and the radius-to-thickness ratio. Besides, the effects of the material models, as well as the top stiffening rings on the buckling behavior are given. Meanwhile, the buckling behavior of floating roof tanks is compared with that of conical roof tanks.
     (3) The imperfection sensitivity analyses are conducted for steel tanks subjected to harmonic settlement. Three kinds of imperfections are included, such as the imperfections as the form of the buckling mode corresponding to the limit point, dimple buckling mode and the weld depressions. Meanwhile, the worst imperfection for tanks subjected to harmonic settlement is stated. Then, the effects of the circumferential weld depressions on the buckling strength of the tanks are compared with that of vertical weld depressions. Also, the influences of the top stiffening rings and material models on the imperfection sensitivity of the tank are studied.
     (4) The buckling performance of cylindrical steel tanks subjected to harmonic settlement and hydrostatic pressure are reported. Simultaneously, the impact of the hydrostatic pressure on the settlement-loading capacity of the tank is analyzed. Meanwhile, the effect of the oil pressure inside the tank on the imperfection sensitivity of the tank is provided. Moreover, a method named critical liquid height method is established, which is employed for evaluating the state of the tank subjected to harmonic settlement and hydrostatic pressure.
     (5) According to the theoretical analyses and numerical results, the critical harmonic settlement rule for tanks subjected to harmonic settlement is preliminarily established. The results predicted by this formula are consistent with numerical results, presenting that this formula is accurate enough for predicting the critical harmonic settlement of the tank. This settlement prediction formula may give structural enginners some references in the future design of the tank.
引文
[1]王碧峰.中国能源安全问题讨论综述[JJ].经济理论与经济管理,2006,26(6):75-79.
    [2]陈志平.大型非锚固储油罐应力分析与抗震研究[D].杭州:浙江大学,2006.
    [3]徐英,杨一凡,朱萍,等.球罐和大型储罐[M].北京:化学工业出版社,2005.
    [4]陈德志,米广生,张继军,等.中国大型储罐建设现状及发展趋势[J].石油化工建设,2009,31(1):28-32.
    [5]沈利英,沈士明.大型储罐的模态分析[J].炼油技术与工程,2008,38(5):59-62.
    [6]Teng JG, Rotter JM. Buckling of thin metal shells [M]. London:Spon Press,2004.
    [7]李广信,张丙印,于玉贞.土力学[M].北京:清华大学出版社,2013.
    [8]张克恭,刘松玉.土力学[M].北京:中国建筑工业出版社,2010.
    [9]张东晓,刘晓红.泊松方程在储罐复合地基沉降预测中的应用[J].岩土工程界,2009,12(6):12-14.
    [10]龙照,张恩祥,李兰香,等.Usher模型在某原油储罐地基差异沉降预测中的应用研究[J].勘察科学技术,2009,27(2):37-40.
    [11]张东晓,王雅丽,高轲.复合模量法在储罐复合地基沉降计算中的应用[J].炼油技术与工程,2008,38(12):48-51.
    [12]Malik Z, Morton J, Ruiz C. Ovalisation of cylindrical tanks as a result of foundation settlement [J]. Journal of Strain Analysis for Engineering Design,1977,12(4):339-342.
    [13]Holst JMFG, Rotter JM. Axially compressed cylindrical shells with local settlement [J]. Thin-Walled Structures,2005,43(5):811-825.
    [14]陈铁云,沈惠申.结构的屈曲[M].上海:上海科学技术文献出版社,1993.
    [15]Green PA, Hight DW. The failure of two oil storage tanks caused by differential settlement [C]//Proceedings of Conference on Settlements of Structures. Cambridge (UK):British Geotechnical Society,1974:353-360.
    [16]贾庆山.大型油罐基础工程事故分析及变形允许值[J].地基处理,2006,17(2):10-21.
    [17]姜俊荣.2万m3立式钢制储罐基础不均匀沉降掏土法纠偏实例分析[J].石油工程建设,2011,37(4):92-95.
    [18]陈凌志,赵阳.不均匀沉降下的大型钢储罐结构[J].空间结构,2003,9(3):50-54.
    [19]李海涛.袖阀管法注浆技术在储罐基础纠偏中的应用[J].石油工程建设,2009,35(2):69-72.
    [20]康杰,徐晓红,郭寥廓.软土地基储罐群产生不均匀沉降原因及纠偏[J].炼油技术与工程,2010,40(10):57-60.
    [21]刘树墀.大型浮顶储罐非平面倾斜纠偏实践[J].石油工业技术监督,2004,20(8):41-44.
    [22](美)雷纳,(美)迪恩斯.深海危机-墨西哥湾漏油事件[M].北京:人民邮电出版社,2011.
    [23]吕建中.国外石油科技发展报告(2012)[M].北京:石油工业出版社,2013.
    [24]杨东平.中国环境发展报告(2012)[M].北京:社会科学文献出版社,2012.
    [25]Greenwood D.A. Differential settlement tolerance of cylindrical steel tanks for bulk liquid storage [C]//Proceedings of the Conference on Settlement of Structures. Cambridge (UK): British Geotechnical Society,1974:361-367.
    [26]Sullivan RA, Nowicki JF. Differential settlement of cylindrical oil tanks[C]//Proceedings of Conference on Settlement of Structures. Cambridge (UK):British Geotechnical Society, 1974:420-424.
    [27]DeBeer EE. Foundation problems of petroleum tanks [J]. Annales de L'Institut Belge du Petrole,1969,6:25-40.
    [28]GB 50341-2003.立式圆筒形钢制石油焊接油罐设计规范[S].北京:中国计划出版社,2003.
    [29]API Standard 650. Welded steel tanks for oil storage [S]. Washington D.C:American Petroleum Institute,2009.
    [30]EN 1993-1-6:Eurocode 3. Design of steel structures-Part 1-6:general rules-strength and stability of shell structures [S]. Brussels:CEN,2007.
    [31]EN 1993-4-2:Eurocode 3. Design of steel structures-Part 4-2:tanks [S]. Brussels:CEN, 2007.
    [32]JIS B 8501-1995. Welded Steel tanks for oil storage [S]. Tokyo:Japanese Industrial Standards Committee,1995.
    [33]Rosenberg P, Journeaux NL. Settlement limitations for cylindrical steel storage tanks [J]. Canadian Geotechnical Journal,1982,19(3):232-238.
    [34]Marr W A, Ramos J A, Lambe T W. Criteria for settlement of tanks [J]. Journal of the Geotechnical Engineering Division,1982,108(GT8):1017-1039.
    [35]D'Orazio TB, Duncan JM. Differential settlements in steel tanks [J]. Journal of geotechnical engineering,1987,113(9):967-983.
    [36]Calladine CR. Theory of shell structures [M]. Cambridge:Cambridge University Press, 1983.
    [37]Love AEH. A treatise on the mathematical theory of elasticity [M]. Cambridge:Cambridge University Press,1927.
    [38]Mousa EA, Ruiz C. Stresses in cylindrical tanks due to uneven circumferential settlement [J]. Strain,1979,15(1):7-9.
    [39]Kamyab H, Palmer SC. Analysis of displacements and stresses in oil storage tanks caused by differential settlement [C]//Proceedings of the Institution of Mechanical Engineers, Part C:Mechanical Engineering Science,1989,203(1):61-70.
    [40]Kamyab H, Palmer SC. Displacements in oil storage tanks caused by localized differential settlement [J]. Journal of Pressure Vessel Technology, Transactions of the ASME,1991, 113(1):71-80.
    [41]Palmer SC. Structural effects of foundation tilt on storage tanks [C]//Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 1992,206(E2):83-92.
    [42]Palmer SC. Stress in storage tanks caused by differential settlement [C]//Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 1994,208(E1):5-16.
    [43]Hornung U, Saal H. Stresses in tank shells due to settlement taking into account local uplift[C]//Advances in Steel Structures, Proceedings, First International Conference on Advances in Steel Structures. Oxford (UK):Elsevier,1996:827-832.
    [44]Hornung U, Saal H. Stresses in unanchored tank shells due to settlement of the tank foundation[C]//Proceedings of the International Conference on Carrying Capacity of Steel Shell Structures. Brno:1997:157-163.
    [45]Jonaidi M, Ansourian P. Harmonic settlement effects on uniform and tapered tank shells [J]. Thin-Walled Structures,1998,31(1-3):237-255.
    [46]Zhao Y, Cao QS, Xie XY. Floating roof steel tanks under harmonic settlement:FE parametric study and design criterion [J]. Journal of Zhejiang University, Science A,2006, 7(3):398-406.
    [47]张兴,赵阳.谐波沉降下变壁厚钢储罐的受力性能[J].工程设计学报,2006,13(4):267-270.
    [48]张兴.钢储罐在实测不均匀沉降下的结构性能[D].杭州:浙江大学,2006.
    [49]D'Orazio TB, Duncan JM, Bell RA. Distortion of steel tanks due to settlement of their walls [J]. Journal of Geotechnical Engineering-ASCE,1989,115(6):871-890.
    [50]Holst JMFG, Rotter JM. Nonlinear response and buckling of cylindrical tanks due to foundation settlement [C]//Proceedings international conference on design, inspection and maintenance of cylindrical steel tanks and pipelines. Prague:2003:29-35.
    [51]赵阳,范博.变壁厚浮顶型钢储罐在实测不均匀沉降下的稳定性分析[J].工业设计学报,2008,15(6):472-476.
    [52]Jonaidi M, Ansourian P. Buckling of cylindrical shells subjected to edge vertical deformation [C]//Advances in Steel Structures. Oxford (UK):Elsevier,1999:679-686.
    [53]Jonaidi M, Chaaya M, Ansourian P. Cylindrical shells subjected to vertical deformation and internal pressure [C]//Thin-Walled Structures:Research and Development. Oxford (UK): Elsevier,1998:613-620.
    [54]Cao QS, Zhao Y. Buckling strength of cylindrical steel tanks under harmonic settlement [J]. Thin-Walled Structures,2010,48(6):391-400.
    [55]杨勇.薄壁圆柱壳在不均匀沉降下的试验研究[D].杭州:浙江大学,2011.
    [56]Godoy LA, Sosa EM. Localized support settlements of thin-walled storage tanks [J]. Thin-Walled Structures,2003,41(10):941-955.
    [57]Godoy LA, Sosa EM. Deflections of thin-walled storage tanks with roof due to localized support settlement [C]//Proceedings II international conference on advances in structural engineering and mechanics. Seoul:Techno-Press,2002.
    [58]Sosa EM, Godoy LA. Buckling of thin-walled storage tanks due to support settlements [C]//Proceedings of the computing research conference. Puerto Rico:University of Puerto Rico,2001:18-21.
    [59]Lancaster ER, Calladine CR, Palmer SC. Paradoxical buckling behaviour of a thin cylindrical shell under axial compression. International Journal of Mechanical Sciences, 2000,42(5):843-865.
    [60]赵阳,曹庆帅,谢新宇.大型钢储罐的沉降与结构性能的关系[J].工业建筑,2007,37(4):65-68.
    [61]Zhao Y, Lei X, Zhang X. Stability analysis of floating-roof tanks under differential settlement [C]//Proceedings of the International Conference on Structures and Building Materials (Advances in Structures, PTS 1-5:Advanced Materials Research) (vol.163-167). Guangzhou (China):2011:55-60.
    [62]雷翔.大型变壁厚钢储罐在不均匀沉降下的稳定性能[D].杭州:浙江大学,2011.
    [63]Zhao Y, Lei X, Wang Z, et al. Buckling behavior of floating-roof steel tanks under measured differential settlement [J]. Thin-Walled Structures,2013,70:70-80.
    [64]何福保,沈亚鹏.板壳理论[M].西安:西安交通大学出版社,1993.
    [65]刘鸿文.板壳理论[M].杭州:浙江大学出版社,1987.
    [66]杨耀乾.薄壳理论[M].北京:中国铁道出版社,1981.
    [67]吴连元.板壳理论[M].上海:上海交通大学出版社,1989.
    [68]李国成.化工设备设计力学基础[M].东营:石油大学出版社,2002.
    [69]Teng JG. Buckling of thin shells:recent advances and trends [J]. Applied Mechanics Reviews,1996,49(4):263-274.
    [70]Yamaki N. Elastic stability of circular cylindrical shells[M]. Oxford(UK):Elsevier,1984.
    [71]Elishakoff Ⅰ, Li YW, Starners JH. Non-classical problem in theory of elastic stability [M]. Cambridge:Cambridge University,2001.
    [72]Timoshenko S P, Gere J M. Theory of elastic stability [M]. Courier Dover Publications, 2012.
    [73]Simitses G J. Buckling and postbuckling of imperfect cylindrical shells:a review [J]. Applied Mechanics Reviews,1986,39(10):1517-1524.
    [74]Koiter WT, Elishakoff I, Li YW, et al. Buckling of an axially compressed cylindrical perfect shell of variable thickness [J]. International Journal of Solids and Structures,1994, 31:797-807.
    [75]Yang LC, Chen ZP, Chen FC, et. al. Buckling of cylindrical shells with general axisymmetric thickness imperfections under external pressure [J]. European Journal of Mechanics A/Solids,2013,38:90-99.
    [76]Arbocz J, Babcock CD. The effect of general imperfections on the buckling of cylindrical shells [J]. Journal of Applied Mechanics,1969,36(1):28-38.
    [77]Donnell LH. Stability of thin-walled tubes under torsion [R]. NACARep.479,1933.
    [78]Donnell LH. A new theory for the buckling of thin cylinders under axial compression and bending [J]. Transactions of the American Society of Mechanical Engineers,1934,56(12): 795-806.
    [79]von Karman, Tsien HS. The buckling of thin cylindrical shells under axial compression [J]. Journal of the Aeronautical Sciences,1941,8(8):303-312.
    [80]Stein M. The effect on the buckling of the imperfect cylinders of the prebuckling deformations and stresses induced by edge support [R]. NASATN D-1510,1962.
    [81]Koiter WT, On the stability of elastic equilibrium [D]. Amsterdam:Delft University of Technology,1945.
    [82]沈惠申,陈铁云.圆柱薄壳在外压作用下屈曲的边界层理论[J].应用数学和力学, 1988,9(6):515-528.
    [83]Shen HS, Chen TY. A boundary layer theory for the buckling of thin cylindrical shells under axial compression [J]. The Advances of Applied Mathematics and Mechanics in China,1988,9(6):557-571.
    [84]杨永谦,肖金生,刘杰,等.实用有限元分析技术ANSYS专题与技巧[M].北京:机械工业出版社,2010.
    [85]张洪武,关振群,李云鹏,等.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004.
    [86]岳珠峰,王富生,王佩艳,等.飞机复合材料结构分析与优化设计[M].北京:科学出版社,2011.
    [87]ABAQUS user's manual [CP/DK]. USA:Hibbit, Karlsson and Sorensen Inc.2004.
    [88]Riks E. An incremental approach to the solution of snapping and buckling problems [J]. International Journal of Solids and Structures 1979,15(7):529-551.
    [89]Ramm E. Strategies for tracing the nonlinear response near limit points [C]//Proceedings of the Non-linear Finite Element Analysis in Structural Mechanics. New York:Springer, 1981:68-89.
    [90]Crisfield MA. An arc-length method including line searches and accelerations [J]. International Journal for Numerical Methods in Engineering 1983,19(9):1269-1289.
    [91]庄茁.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [92]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [93]刘展.ABAQUS 6.6基础教程与实例详解[M].北京:中国水利水电出版社,2008.
    [94]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [95]Holst JMFG, Rotter JM, Calladine CR. Imperfections and buckling in cylindrical shells with consistent residual stresses [J]. Journal of Constructional Steel Research,2000,54(2): 265-282.
    [96]Rotter JM, Cai M, Hoist JMFG Buckling of thin cylindrical shells under locally elevated axial compression stresses [J]. Journal of Pressure Vessel Technology,2011,133(1): 011204-1-11.
    [97]Holst J M F G, Rotter J M, Calladine C R. Imperfections in cylindrical shells resulting from fabrication misfits[J]. Journal of engineering mechanics,1999,125(4):410-418.
    [98]Godoy LA, Mendez JC. Buckling of aboveground storage tanks with conical roof [C]// Proceedings of the 3rd International Conference on Thin-Walled Structures (Thin-Walled Structures:Advances and Developments). Oxford (UK):Elsevier,2001:661-668.
    [99]Rotter JM, Teng JG. Elastic stability of cylindrical shells with weld depressions [J]. Journal of Structural Engineering,1989,115(5):1244-1263.
    [100]Teng JG, Rotter JM. Buckling of pressurized axisymmetrically imperfect cylindrical shells under axial loads [J]. Journal of Engineering Mechanics,1992,118(2):229-247.
    [101]Song CY, Teng JG, Rotter JM. Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression [J]. International Journal of Solid and Structures,2004, 41(24-25):7155-7180.
    [102]Song CY. Buckling of cylindrical shells under non-uniform stress states [D]. Hong Kong: The Hong Kong Polytechnic University,2002.
    [103]Rotter JM, Schmidt H. Buckling of Steel Shells:European Design Recommendations [S]. Brussels:European Convention for Constructional Steelwork,2008.
    [104]Yu CL, Chen ZP, Wang J, et al. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells [J]. Journal of Zhejiang University, Science A,2012,13(2): 79-90.
    [105]Portela G, Godoy LA. Wind pressures and buckling of cylindrical steel tanks with a conical roof [J]. Journal of Constructional Steel Research,2005,61(6):786-807.
    [106]Portela G, Godoy LA. Wind pressures and buckling of cylindrical steel tanks with a dome roof [J]. Journal of Constructional Steel Research,2005,61(6):808-824.
    [107]Godoy LA, Flores FG Imperfection sensitivity to elastic buckling of wind loaded open cylindrical tanks [J]. Structural Engineering and Mechanics,2002,13(5):533-542.
    [108]Schmidt H, Binder B, Lange H. Postbuckling strength design of open thin-walled cylindrical tanks under, wind load [J]. Thin-Walled Structures,1998,31(1):203-220.
    [109]Resinger F, Greiner R. Buckling of wind loaded cylindrical shells—application to unstiffened and ring-stiffened tanks[M]//Buckling of shells. Berlin:Springer Berlin Heidelberg,1982:305-331.
    [110]王善忠.十万立方米原油储罐的设计[D].天津:天津大学,2006.
    [111]宫建国,陶钧,曾胜,等.地基平面沉降下的大型石油储罐模态分析[C]//第七届中国CAE工程分析技术年会暨2011全国计算机辅助工程(CAE)技术与应用高级研讨会论文集.昆明:2011.
    [112]徐至钧,许朝铨,黄左坚.大型储罐基础地基处理与工程实例[M].北京:中国标准出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700