强剪切流变仪的研制及剪切空化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空化是液压传动中的一种常见现象,它的发生主要取决于液体的温度和压力,还受到液体的表面张力及抗张强度影响,空化的初生、发展和溃灭是空化的三个重要阶段。剪切空化是两个具有相对滑动壁面间液体破裂的一种重要形式,是液压传动、油膜润滑性能及流变测量等领域中的重要科学和技术问题。关于剪切空化的研究中,前面的研究人员采用的实验介质均为大分子量的高粘度液体,且未考虑液体含气量这一影响因素。对于剪切空化的形成原因,研究者通常采用主应力空化标准、剪切应力促进成核及剪切能成核来加以解释,而我们的研究表明,剪切空化的初生强烈依赖于液体中溶解气体的饱和度。
     论文分析了强剪切流空化的实验方案,针对外圆筒旋转内圆筒固定在较高雷诺数下的流动仍然是等压的稳定的纯剪切流的优点,提出了一种外圆筒旋转的可调压的可视化同心圆筒强剪切流变仪,解决了流变仪在设计及制造中的三个技术难题,即高转速下均匀小间隙的获得,高转速下的气动密封以及外圆筒内部尺寸、形状及位置精度的控制问题。研制出可调压外筒旋转同心圆筒可视流变装置,利用该实验装置测量了淡水、10cSt及16500cSt二甲基硅油的粘度,基于液体粘温关系及壁面绝热近似,获得液体粘度的理论值,通过理论值与测量结果的对比分析,初步校核了该装置在未安装测温传感器时测量结果的可靠性,实验还获得淡水及两种硅油发生剪切空化的实验证据。增加了设备的测温功能之后,柱坐标系中,利用实验获得的纯剪切力矩,基于均匀的间隙和瞬态传热微分方程,考虑传感器的热惯性,由数值计算方法求出不同时刻强剪切流的瞬态温度,结果表明理论计算值与实验结果较为吻合,校核了强剪切流的剪切力矩、间隙均匀性及瞬态温度测量准确性。对比分析表明,相比前面的初步校核方法,考虑传热后获得的结果精度高且适用范围广。
     基于现有测量气体在液体中溶解度方法及装置的不足,研制出一种测量气体溶解度的新型精密活塞式装置,测量了温度293K及353K,压力0~350kPa范围内的空气在500cSt二甲基硅油中的溶解度,获得本生溶解度对压力和温度的依赖关系,测量了298K时20cSt二甲基硅油及国产32#抗磨液压油的本生溶解度。精度及可靠性分析表明该测量装置获得的溶解度数据误差范围为6%。本生溶解度与气相压力呈较好的线性关系,以摩尔分数表示的溶解度与压力是非线性关系但可用Krichevsky-Ilinskaya方程拟合。发现分子量差异很大的二甲基硅油对空气的本生溶解度相同,提出基于聚合物链节基团摩尔数来表示摩尔浓度更有利于实验数据的外推和工程应用。对于分子量差别较大或无法确定分子量的溶剂,适宜用本生溶解度确定气体浓度与压力和温度的关系。
     经典成核理论将空化核分为均相成核和异相成核两类,对于过饱和溶液,通常将气态空化核分为四类。考虑液体表面张力对空化核的影响,基于力学平衡条件,讨论了球状空化核界面的平衡性。分析了气核内气体的热力学行为,基于相平衡条件,还讨论了气体扩散与空化核稳定性的关系。计算出不同浓度比时500cSt二甲基硅油中的临界核半径,开展了过饱和溶液中的成核实验,实验结果及理论分析表明,难于去除壁面凹槽内事先截留气体造成的异相成核,溶液单纯的过饱和状态并不能形成空泡,剪切作用对液体空化起到重要作用。
     阐述了剪切空化实验中需要解决的微小气泡的排除、照明光线处理、含气量控制及空化初生识别等方面的技术问题,利用强剪切流空化实验装置,开展了含气量对剪切空化初生的影响实验,获得不同饱和比下,液体发生空化时的相关数据,确立了饱和比与剪切空化初生P_(eL)、C_a及C_i数的经验关系。发现一定压力下空化发生的临界剪切应力与压力成正比,但远低于主应力空化标准的预测值,临界剪切应力与饱和度成反比。剪切空化初生后,剪切力矩下降导致粘性发热减少,是造成剪切流温度下降的原因,力矩变化与温度有一致性,但不敏感,提出温度变化是检测空化初生的有效手段的新观点。应用经典成核理论中关于空化核出现的概率由成核的自由能障碍决定,探索性解释增加剪切速率,可在欠饱和溶液中产生剪切空化的实验现象。
Cavitation often appears in hydraulic pressure system. The influence of liquid temperature and pressure and surface tension and tensile strength is obvious. Bubble inception and grow and collapse is a particularly important process. As for the film rupture in the sliding solid wall, the influence of shearing cavitation is obvious. Of course, shearing cavitation has highly important effects on the hydraulic pressure system efficiency and the lubricating performance of film oil and rheology measurement. The former researcher had only used highly viscous liquid. Furthermore, they had not considered carefully the influence of the solubility of air in the solution. The researcher had explained the shearing cavitation by the principal normal stress cavitation criterion or the shear stress nucleation or the shear energy nucleation. The research by us indicated that the influence of the solubilities of air in the solution and the film stability is obvious.
     The experimental system principle and its structure and its function are indicated in this paper. Base on the techniques of high-precision designing and machining, a new Couette apparatus where its outer cylinder rotating with flow visualization and pressure control has been made. Utilizing the well-known viscosity-temperature formula and approximate adiabatic surroundings, the viscosities of water and 10cSt silicone oil and 16500cSt silicone oil at high shear rates measured by this apparatus agree well with that obtained the computed viscosities at various temperatures. At a certain shear stress, cavitation occurred for fresh water and two silicone oils with low and medium viscosities. After the thermocouple is located in the stationary cylindrical layer, in a Cylindrical coordinate system, with the experimental shearing torque and transient heat transfer differential equation, the transient computed temperature of high shearing flow are calculated by numerical equation. The transient computed temperature was consistent with the experimental temperature. It shows that the shearing torque and the symmetrical gap and the transient temperature of pressure fitting Couette flow apparatus where its outer cylinder rotating is transparent are precise. The elevated transient temperature of high shearing flow is calculated by the computed methods in the simple calculation. It indicated that the transient computed temperature by the transient heat transfer differential equation is precise and the accuracy verification way can be well fitted by many applications.
     Overcoming some drawbacks of previous methods measuring gas-solubility, a new piston apparatus was established in which the state equation of ideal gas is used to determine the amount of gas-dissolution. An expression of the Bunsen solubility of air in 500cSt silicone at temperature of 293.2 and 353.2 K and in the gas-pressure range of 0-350 kPa has been determined. Also measured is the Bunsen solubility of air in 20cSt silicone and Chinese 32# hydraulic oil at 298.2 K under various gas-pressures. Reliability and accuracy analyses indicate that the error range of the experimental data is about 6%. The Bunsen solubility and gas-pressure exhibit good linearity while the relationship between the molar fraction and the pressure in the experimental range is nonlinear but can be well fitted by the Krichevsky-Ilinskaya equation. It was discovered that the Bunsen solubilities of air in silicone with quite different molecular mass are closed with each other. We suggest that the molar fraction based on the monomer mass is more appropriate than that based on the molecular weight for engineering extrapolation of the solubility data of small and non-polar solutes in polymer solvents. At last, for the solvent containing much different or uncertain molecular weight, the commonplace in engineering applications, the Bunsen solubility is appropriate to give the dissolved gas concentration.
     There are two categories of nucleation about classical nucleation, i.e. homogeneous nucleation and heterogeneous nucleation. Four possible types of nucleation are described from gas cavities. Considering influence of liquid surface tension, equilibrium of a spherical nucleus has been discussed based on mechanical equilibrium of the interface. We analyzed the thermal behavior of the gas content. Gas diffusion and nucleus stability has been discussed based on diffusive equilibrium of the interface. The critical nucleus radii where the ratio of the dissolved concentration of air in 500cSt silicone is different have been calculated. The experiment about heterogeneous nucleation has been carried by us in supersaturated still solution. It is clear that the small crevices in solid alls or in solid particles carried by the liquid flow can shelter stable heterogeneous nuclei. Of course, gas cavities can not be formed in still liquid unless there is shearing flow.
     It is highly important to remove visible small air bubble and to get lighting and to control air in the solution and to select appropriate distinguishing cavitation inception ways in shearing cavitation experiment. This apparatus has been used in the cavitation inception experiment after the saturation ratio of air has been changed. We had given an empirical relationship between the saturation ratio and Peclet number and the Capillary number and the cavitation index. We found that critical shear stress of cavitation inception is roughly proportional to the applied pressure, but it is less than results of PNSCC. The critical shear stress of cavitation inception is roughly inversely proportional to the saturation. The transient temperature of shearing flow will decrease when the cavitation is appearing because quantity of heat is decreasing by shearing torque. The decrease of temperature is consistent with the shearing torque. But the torque is not sensitive. We think that the change of temperature is one of the effective ways about identification shearing cavitaion. According to the classical nucleation theory, the probability of occurrence of nuclei is determined from the free energy required for the formation of a critical bubble formation, the more high the saturation ratio of air in solution is, the more easily the shearing cavitation has been formed. In the gas-undersaturated liquid, shearing cavitation can be formed by increasing the shear rate.
引文
[1]程俊兰,吴晓明.21世纪的液压技术的评述[J].通用机械,2003(3):13-14.
    [2]钱祥生.液压技术发展展望[J].液压气动与密封,2000(4):1-5.
    [3]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报,2003,39(10):95-99.
    [4]徐绳武.浅谈中国液压传动的发展和出路[J].液压气动与密封,2002(6):10-11.
    [5]杨华勇,周华,路甬祥.纯水液压传动的应用与研究新进展[J].中国机械工程,2000,11(12):1430-1433.
    [6]刘银水,李壮云.水压传动技术在移动机械中的应用[J].液压与气动,2004(3):36-38.
    [7]CHRISTOPHER W M.'Rheology:principles measurements,and applications'[M].Canada:Wiley-VCH Inc,1993.
    [8]BAIR S,WINER W.The high pressure high shear stress rheology of liquid lubricant[J].Journal of Tribology,1992(114):1-9.
    [9]YOUN J R,SUH N P.Processing of microcellular polyester composites[J].Polyester Composites,1955,6(3):175-180.
    [10]庞志成,陈世家编.液体静压动静压轴承[J].哈尔滨:哈尔滨工业大学出版社,1991.
    [11]方燕然.液体静压轴承在重型机床改造中的应用[J].制造技术与机床,2002(9):54-55.
    [12]ARCHER L A,TERNET D,LARSON R G.'Fracture' phenomena in shearing flow of viscous liquids[J],Rheologica Acta,1997(36):579-584.
    [13]PLESSET M S,HSIEH D H.Theory of gas bubble dynamics in oscillating pressure fields[J],1960(3):882-892
    [14]ACOSTA A J,PARKIN B R.Cavitation inception-a selective review[J],J Ship Res,1975(19):193-205
    [15]XAVIER ESCALER,PHILIPPE DUPONT,FRANCOIS AVELLAN.Experimental investigation on forces due to vortex cavitation collapse for different Materials[J],Wear 233-235,1999:65-74.
    [16]ROGER E A ARNDT.Cavitation in fluid machinery and hydraulic structures[J],Ann.Rev.Fluid mech.,1981(13):273-328.
    [17]BRENNER M P,EGGERS J,JOSEPH K,NAGEL R,SHI X D.Breakdown of scaling in droplet fission at high Reynolds numbers[J].Phys Fluids,1997(9):1573-1590.
    [18]FISHER J C.The fracture of liquids[J].Journal of Applied Physics,1948(19):1062-1067.
    [19]JOSEPH D D.Cavitation in a flowing liquid[J].Phy Rev E,1995,51(3):1649-1650.
    [20]JOSEPH D D,HUANG A,CANDLER.Vaporization of a liquid drop suddenly exposed to a high speed air stream[J].Journal of Fluid Mechanics,1996,318:223-236.
    [21]LUNDGREN T S,JOSEPH D D.Capillary collapse & rupture[M].Submitted to Phys Rev Letters,1997.
    [22]PLESSET M.Tensile strength of liquids[M].Office of Naval Research,Report no.85-4,1969.
    [23]杨志明.初生空化与液体抗拉强度的关系[J].水动力学研究与进展 Ser.A,1990(4):27-38.
    [24]黄景泉.气核成分及其对空化现象的影响[J].水动力学研究与进展 Ser.A,1992(2):138-140.
    [25]PETER A KOTTKE,BAIR SCOTT S,WINER WARD O.Cavitation in Creeping Shear Flows[J].Journal of American Institute of Chemical Engineers,2005,51(8):2150-2170.
    [26]蔡业彬,国成明等.泡沫塑料加工过程中的气泡成核理论(Ⅱ):剪切能成核理论及其发展[J].塑料科技,2005(4):37-43.
    [27]国成明,彭玉成等.剪切流场中气泡成核理论的研究[J].塑料工业,2004(7):20-50.
    [28]LEE CHEN,XIANG WANG,RICH STRAFF,KENT BLIZARD.Shear Stress Nucleation in Microcellular Foaming Process[J].Poylmer Engineering and Science,2002,42(6):1151-1158.
    [29]HAN J H,HAN C D.Bubble Nucleation in Polymeric Liquids Ⅱ:Theoretical Considerations[J].Journal of Polymer Science,Part B:Polymer Physics,1990,28(5):743-761.
    [30]COLES DONALD.Transition in circular Couette flow[J].Journal of Fluid Mechanics,1965,21:385-425.
    [31]ANDERECK C DAVID,LIU S S,SWINNEY HARRY L.Flow regimes in a circular Couette system with independently rotating cylinders[J].Journal of Fluid Mechanics,1986,164(3):155-183.
    [32]LANDAU L D,LIFSHITZ E M.Translated from the Russian by J B Sykes and W H Reid:Fluid mechanics[M].London:Adison-Wesley Pub Co,1960.
    [33]FRENKEL J.Kinetic Theory of Liquids[M].Dover,New York:1979.
    [34]BALIBAR S,CAUPIN F.Metastable Liquids[J].Journal of Physics:Condensed Matter,2003,15:S74-S82.
    [35]REYNOLDS O.The cause of the racing of the engines of screw steamers investigated theoretically and by experiment[J]. Trans Inst Naval Arch, 1873, 14: 56-67.
    [36]PARSONS C A. The steam turbine on land and at sea[C]. Lecture to the Royal Institution, London, 1906.
    
    [37]YOUNG F R. Cavitation[M]. London: Imperial College Press, 1999.
    [38]LUBETKIN S D, BLACKWELL M. The nucleation of bubbles in supersaturated solutions[J]. Journal of Colloid Interface of Science, 1988, 26: 610.
    [39]KELLER A P, Investigations concerning scale effects of the inception of cavitation. Proc. I. Mech. E. Conf. on Cavitation, 1974, 109-117.
    [40]JONES S F, EVANS G M, GALVIN K P. Bubble nucleation from gas cavities—a review[J]. Advances in Colloid and Interface Science, 1999, 80: 27-50.
    [41]FOX F E, HERZFELD K F. Gas bubble with organic skin as cavitation nuclei[J]. Journal of Acoustic Social American, 1954, 26: 984-989.
    [42]CHRISTOPHER EARLS BRENNEN. Cavitation And Bubble Dynamics[M]. Oxford University Press, 1995.
    [43]BECKER R, DORING W. The kinetic treatment of nuclear formation in supersaturated vapors[J]. Ann Phys, 1935, 24: 719-752.
    [44]BERNATH L. Theory of bubble formation in liquids[J]. Ind Eng Chem, 1952, 44(6): 1310-1313.
    
    [45]CAREY V P. Liquid-vapor phase-change phenomena[M]. London: Hemisphere, 1992.
    [46]ZELDOVICH J B. On the theory of new phase formation: cavitation[J]. Acta Physichimica, 1943, 18: 1-22.
    [47]BERNATH L. Theory of bubble formation in liquids[J]. Ind Eng Chem, 1952, 44(6): 1310-1313.
    
    [48]SKRIPOV V P. Metastable Iiquids[M]. London: John Wiley and Sons, 1974.
    [49]DAVIES R M, TREVENA D H, REES N J M, LEWIS G M. The tensile strength of liquid under dynamic stressing[J]. Proc N P L Symp on Cavitation in Hydrodynamics, 1956.
    [50]FARKAS L. The velocity of nucleus formation in supersaturated vapors[J]. J Physik Chem, 1927, 125(236).
    [51]VINCENT R S, SIMMONDS G H. Examination of the Berthelot method of measuring tension in liquids[J]. London: Proc Phys Soc, 1943, 55: 376-382.
    [52]DIXON H H. Note on the tensile strength of water[J]. Sci Proc Royal Dublin Soc, 1909, 12.
    [53]MEYER J. Zur Kenntnis des negative Drucks in Flussigkeiten[J].Abhandl Dent Bunsen Ges, 1909, 1.
    [54]VINCENT R S. The measurement of tension in liquids by means of a mental bellows[J].Proc Phys Soc(London), 1941, 53: 126-140.
    [55]REES E P, TREVENA D H. Cavitation thresholds in liquids under static conditios[J].Proc ASME Cavitation Forum, 1966, 12.
    [56]KELL G. Early Observations of Negative Pressures Liquids[J]. Am J Phys, 1983(51): 1038-1041.
    [57]REES E P, TREVENA D H. Cavitation thresholds in liquids under static conditios[J].Proc ASME Cavitation Forum, 1966, 12.
    [58]HARVEY E, BARNES K, MCELROY W, WHITELY A, PEASE D, COOPER K. Bubble Formation in Animals. I. Physical Factors[J]. J Cell Comp Physiol, 1944(25): 1-22.
    [59]APFEL R E. The role of Impurities in Cavitation-threshold Determination[J]. J Acoust Soc Am., 1970(48): 1179-1186.
    [60]CRUM L A. Nucleation and Stabilization of Mirobubbles in Liquids[J]. Appl Sci Res., 1982(38): 101-115.
    [61]KOTTKE PETER A, SCOTT S BAIR, WARD O WINER. The Measurement of Viscosity of Liquids under Tension[J]. Journal of Tribology, 2003,125: 260-266.
    [62]JOHNSON C A. Cavitation inception on headforms, further teste[J].Rome: Proc 12~(th) Int Towing Tank Conf, 1969: 381-392.
    [63]COSTA A J A, PARKIN B R. Cavitation inception-a selectivereview[J].J Ship Res, 1975, 19:193-205.
    [64]KNAPP R T, KARIMI J W, HAMMITT F G. Cavitation[M].New York: McGraw-Hill, 1970.
    [65]HOLL J W, WISLICENUS G F. Cavitation hysteresis[J].ASME J Basic Eng, 1966, 88: 199-212.
    [66]SHEPHERD J E, STURTEVANT B. Rapid evaporation near the superheat limit[J]. Journal of Fluid Mechanics, 1982, 121: 379-402.
    
    [67]FROST D, STURTEVANT B. Effects of ambient pressure on the instability if a liquid . boiling explosively at the superheat limit[J]. ASME J Heat Transfer, 1986, 108: 418-424.
    
    [68]HICKLING R, PLESSET M S. Collapse and rebound of a spherical bubble in water[J]. Phys Fluids, 1964, 7: 7-14.
    [69]FUJIKAWA S,AKAMATSU T.Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid[J].Journal of Fluid Mechanics,1980,97:481-512.
    [70]TOMITA Y,SHIMA A.High-speed photographic observations of laser-induced cavitation bubbles in water[J].Acustica,1990,71(3):161-171.
    [71]KIMOTO H.An experimental evaluation of the effects of a water microjet and a shock wave by a local pressure sensor[J].Int ASME Syrup on Cavitation Res.Facilities and Techniques,1987,FED 57:217-224.
    [72]李流远.油液含气量对液压系统的影响[J].液压与气动,2001(1):27-28.
    [73]贺小峰,张铁华,李壮云.海、淡水液压阀的研究.机床与液压,2000(3):44-45.
    [74]TAYLOR C M.Gaseous cavitation in lightly loaded liquid film journal bearings[J].International Journal of Mechanical Science,1975,17:177-185.
    [75]DOWNSON D.Investigation of Cavitation in Lubricating Films Supporting Small Loads[J].London:Confon Lubrication and Wear,Paper 9,1957.
    [76]COLE J A,HUGHES C J.Visual Study of Film Extent in Dynamically Loaded Complete Journal Bearings[J].London:Conf on Lubrication and Wear,Paper 87,1957.
    [77]COGSWELL F N.The influence of pressure on the viscosity of polymer melts[J].Plast Polym,1973(14):39-43.
    [78]VINOGRADOV G V.Viscoelasticity and fracture phenomenon in uniaxial extension of high-molecular linear polymer[J].Rheol Acta,1975(14):942-954.
    [79]ARCHER L A,TERNET D and LARSON R G.'Fracture' phenomena in shearing flow of viscous liquids[J].Rheologica Acta,1997,36:579-584.
    [80]SON Y,MIGLER K B.Cavitation of polyethylene during extrusion processing instabilities.J Polym Sci Part B:Polym Phys.2002(40):2791-2799.
    [81]FAVELUKIS M,TADMOR Z,SEMIAT R.Bubble growth in a viscous liquid in simple shear.AIChE J.1999(45):691-695
    [82]BAIR S,WINER W.The high pressure high shear stress rheology of liquid lubricant[J].Journal of Tribology,1992(114):1-9.
    [83]JOSEPH DANIEL D.Cavitation and the state of stress in a flowing liquid[J].Journal of Fluid Mechanics,1998,366:367-378.
    [84]KOTTKE PETER A.Rheologieal implications of tension in liquids[D].Atlanta:Georgia Institute of Technology,A Dissertation Presented to The Academic Faculty,2004:11-24.
    [85]DELLIS P,ARCOUNMANIS C.Cavitation Development in the Lubricant Film of a Reciprocating Piston-Ring Assembly[J].Proceeding of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2004,218:157-171.
    [86]PEREIRA A,MCGRATH G,JOSEPH D D.Flow and stress induced cavitation in a journal bearing with axial throughput[J].Journal of Tribology,2001,123(4):742-754.
    [87]HINCH E J,ACRIVOS A.Long slender in a simple shear flow[J].Journal of fluid mechanics,1980,98(2):305-328.
    [88]EDUARDO L CANEDO,MOSHE FAVELUKSI,ZEHEV TADMOR,YESHAYAHU TALMON.An experimental study of bubble deformation in viscous liquids in simple shear flow[J].AlchE.Journal,1993,39(4):553-559.
    [89]LEE CHEN,WANG XIANG,RICH STRAFF,KENT BLIZARD.Shear Stress Nucleation in Microcellular Foaming Process[J].Poylmer Engineering and Science,2002,42(6):1151-1158.
    [90]LEE S T,BIESENBERGER J A.Polymer Engineering and Science,1989,29(12):782
    [91]LEE S T.Shear Effects on Thermoplastic Foam Nucleation[J],Poylmer Engineering and
    [92]国明成,彭玉成,吴晓丹,蔡业彬.剪切流场中气泡成核理论的研究[J].塑料工业,2004,32(7):20-22.
    [93]GUO M C,PENG Y C.Study of shear nucleation theory in continuous microcellular foam extrusion[J].Polymer Testing,2003,22(7):705-709.
    [1]FUNG Y C.A first course in continuum mechanics[M].New Jersey:Prentice-Hall Inc,1977.
    [2]ANDERECK C DAVID,Liu S S,SWINNEY HARRY L.Flow regimes in a circular Couette system with independently rotating cylinders[J].Journal of Fluid Mechanics,1986,164(3):155-183.
    [3]LANDAU L D,LIFSHITZ E M.Translated from the Russian by J B Sykes and W H Reid:Fluid mechanics[M].London:Adison-Wesley Pub Co,1960.
    [4]HERMANN SCHLICHTING.Boundary layer theory(Fourth Edition):Mechanical Engineering[M].Columbus:Mcgraw Hill book company,1960.
    [5]郭关柱,王云,王浩源.自密封高压气动快速通断阀密封研究[J].液压与气动,2003(1):43-45.
    [6]马占镖.甲基丙烯酸树脂及其应用[M].北京:化学工业出版社材料科学与工程出版中心,2002.
    [7]黄文润.硅油及二次加工品[M].北京:化学工业出版社,2004.
    [8]BIRD R BYRON,WARREN E STEWART,EDWIN N LIGHTFOOT.Transport phenomena[M].New York:John Wiley & Sons,1960.
    [9]黄文润.有机硅材料的市场与产品开发[J].有机硅材料及应用,1994(1):1-12.
    [10]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [11]德意志联邦共和国工程师协会工艺与化学工程学会.传热手册[M].北京:化学工业出版社,1974:218.
    [12]CHRISTOPHER W M.'Rheology:principles measurements,and applications'[M].Canada:Wiley-VCH Inc,1993.
    [13]LINDON C THOMAS.Heat Transfer[M].New Jersey:A Simon& Schuster Company,1992.
    [14]贾力,方肇洪,钱兴华.高等传热学[M].北京:高等教育出版社,2005:40.
    [1]YOUNGGON SON,KALMAN B MIGLER.Cavitation of polyethylene during extrusion processing instabilities[J].Journal of Polymer Science Part B:Polymer Physics,2002,40:2791-2799.
    [2]ARCHER L A,TERNET D,LARSON R G.'Fracture' phenomena in shearing flow of viscous liquids[J].Rheologica Acta,1997,36:579-584.
    [3]KOTTKE PETER A,SCOTT S BAIR,WARD O WINER.Cavitation in Creeping Shear Flows[J].Journal of American Institute of Chemical Engineers,2005,51:2150-2170.
    [4]郭关柱,范毓润,杨华勇.可调压可视化微间隙Couette流变仪的研究及应[J].机械工程学报,2007,43:81-87.
    [5]黄文润.硅油及二次加工品[M].北京:化学工业出版社,2004.
    [6]FOGG P G T,GERRARD W.Solubility of Gases in liquids[M].New York:John Wiley & Sons,1990,6:22-27.
    [7]BRASS I J,KODAMA Y,MEARES P.Measurement of the solubilities of gases in liquids at moderate pressures[J].Journal of Physicals E:Scientific Instruments,1982,15:62-70.
    [8]FAN YURUN,GUO GUANZHU.Instrument of Measuring the Solubility of Gases In Liquids:CN Patent of Invention,1945275A.2006-10-12.
    [9]EIKE BREITBATH,MATTHEW M MILLS,GERNOT FRIEDRICHS,JULIE LAROCHE.The Bunsen gas solubility coefficient of temperature and its importance for nitrogen fixation assays[J].Limnology and Oceanography:Methods,2004,2:282-288.
    [10]JOHN M PRAUSNITZ,RUDIGER N L,EDMUNDO G D A.Molecular Thermodynamics of Fluid-Phase Equilibria 3rd Ed.Indianapolis:Prentice Hall PTR,1998.
    [11]HAYWARD A T J.Aeration in Hydraulic System-Its Assessment and Control,Oil Hydraulic Power Transmission and Control[M].Institute of Mechanical Engineers,1961:216-224.
    [12]黄文润.有机硅材料的市场与产品开发[J].有机硅材料及应用,1994,1:1-12.
    [13]王利生.流体的高压相平衡与传递性质,北京:科学出版社,2002.
    [14]KOTTKE PETER A.Rheological implications of tension in liquids[D].Atlanta:Georgia Institute of Technology,A Dissertation Presented to The Academic Faculty,2004:11-24.
    [17]单雯雯,徐嘉靖,张林,唐永健,杨向东.毛细管内高分子溶液的浓度分布[J].物理化学学报,2007,23(9):1405-1410.
    [18]陈福明,于磊.四维基团溶解度参数及其与分子溶解度参数的关联[J].清华大学学报(自然科学版),2000,40(6):17-21.
    [19]PATTERSON D,TEWARI Y B,SCHREIBER H P,GUILLET J E.Application of Gas-Liquid Chromatography to the Thermodynamics of Polymer Solutions[J].Macromolecules,1971,4:356-359.
    [20]DELLIS P,ARCOUNMANIS C.Cavitation Development in the Lubricant Film of a Reciprocating Piston-Ring Assembly[J].Proceeding of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2004,218:157-171.
    [21]吴华,范开忠,李晶,任天辉,及开元.含氮杂环润滑油添加剂抗摩擦和膜化学性能[J].物理化学学报,2007,23(6):911-915.
    [1]CHRISTOPHER EARLS BRENNEN.Cavitation And Bubble Dynamics[M].Oxford University Press,1995.
    [2]ANTHONY A ATCHLEY,ANDREA PROSPERETTI.The crevice model of bubble nucleation[J].J Acoust Soc Am,1995,86(3):1065-1084.
    [3]JONES S F,EVANS G M,GALVIN K P.Bubble nucleation from gas cavities-a review[J].Advances in Colloid and Interface Science,1999,80:27-50.
    [4]AITKEN F,MC CLUSKEY F,DENNAT A.An energy model for artificially generated bubbles in liquids[J].Journal of Fluid Mechanics,1996,327:373-392.
    [5]JOMNI F,AITKEN F,DENAT A.Dynamics of microscopic bubbles generated by a corona discharge in insulating liquids:influence of pressure[J].Journal of Electrostatics,1999,47:49-59.
    [6]LUBETKIN S D,BLACKWELL M.The nucleation of bubbles in supersaturated solutions[J].Journal of Colloid Interface of Science,1988,26:610.
    [7]MICHEL J M.Fundamentals of Cavitation[S].Series of lectures:China Ship Scientific Research Center,1995.
    [8]PLESSET M S,HSIEH D H.Theory of gas bubble dynamics in Oscillating Pressure Fields[J].Physics of Fluids,1960,3:882-892.
    [9]黄文润.有机硅材料的市场与产品开发[J].有机硅材料及应用,1994,1:1-12.
    [10]REYNOLDS O.On the internal cohesion of liquids and the suspension of a column of mercury to a height of more than double that of a barometer[J].Mere.Manchester Lit.Phil.Soc.,1882,7:1-19.
    [11]EPSTEIN P S,PLESSET M S.On the Stability of Gas Bubbles in Liquid-Gas Solutions[J].The Journal of Chemical Physics,1950,18:1505-1509.
    [12]KOTTKE PETER A.Rheological implications of tension in liquids[D].Atlanta:Georgia Institute of Technology,A Dissertation Presented to The Academic Faculty,2004:11-24.
    [13]PLESSET M S,ANDREA PROSPERETTI.Bubble Dynamics and Cavitation[J].Annual Reviews of Fluid Mechanics,1977,9:145-185.
    [14]MILTON BLANDER.Bubble Nucleation in Liquids[J].Advances in Colloid and Interface Science,1979,10:1-32.
    [15]BLANDER M,KATZ J L.Bubble nucleation in liquids[J].Journal of American Institute of Chemical Engineers,1975,21(5):833-848.
    [16]郭关柱,范毓润,杨华勇.可调压力的可视化微间隙Couette流变仪的研究及应[J].机械工程学报,2007(7):81-87.
    [17]HARVEY E N,MC ELROY W D,WHITELEY A H.On cavity formation in water[J]. Journal of Applied Physics, 1947, 18: 162-172.
    [1]JOSEPH DANIEL D.Cavitation and the state of stress in a flowing liquid[J].Journal of Fluid Mechanics,1998,366:367-378.
    [2]KOTTKE PETER A,BAIR SCOTT S,WINER WARD O.Cavitation in Creeping Shear Flows[J].Journal of American Institute of Chemical Engineers,2005,51(8):2150-2170.
    [3]雷一东,葛喜臣.化工热力学[M].重庆:重庆大学出版社,1989.
    [4]朱自强.化工热力学[M].北京:化学工业出版社,1980.
    [5]STEVEN LUBETKIN,MARK BLACKWELL.The nucleation of bubbles in supersaturated solutions[J].Journal of Colloid and Interface Science,1988,126(2):610-615.
    [6]陈锦文,张建候.无限稀释液相扩散系数的新关联方程[J].化学工程,1994,22(3):43-46.
    [7]KOTTKE PETER A.Rheologicaf implications of tension in liquids[D].Atlanta:Georgia Institute of Technology,A Dissertation Presented to The Academic Faculty,2004:11-24.
    [8]MILTON BLANDER,JOSEPH L KATZ.Bubble nucleation in liquids[J].AIChE Journal,1975,21(5):833-848
    [9] HAN J H, HAN C D. Bubble Nucleation in Polymeric Liquids II: Theoretical Considerations[J]. Journal of Polymer Science, Part B: Polymer Physics, 1990, 28(5): 743-761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700