天线雷达截面控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐身技术在现代电子战中占有重要的地位,由于隐身技术对作战平台战场生存能力的巨大影响,对于未来的高科技综合电子战而言隐身技术将得到大量的应用。天线是各种无线电子设备不可或缺的外部设备,只有天线正常工作才能保证电子设备整体正常工作,所以天线必须在复杂的战场环境中稳定有效的收发电磁波。天线这种工作特点使其成为战场上重要的目标,如何使己方电子设备天线正常工作的同时对敌方隐身成为隐身技术中亟待解决的问题之一。论文紧密结合“十一五”国防科技预研重点项目,着重围绕天线散射理论和天线雷达截面(Radar Cross Section, RCS)控制技术展开研究,针对目前军用雷达和通讯系统的隐身化需求,对超宽带天线、圆极化天线、单极子天线及圆极化阵列天线的RCS控制技术进行了研究。所取得的成果可以概括为:
     1、推导了天线辐射场的远场表达式,将其具体应用到了不同极化天线的分析中,推导了线极化天线和圆极化天线的辐射远场表达式。根据互易定理推导了接收天线的匹配接收幅度表达式,推导了线极化和圆极化接收天线的匹配接收幅度。推导了天线散射的基础理论公式以及线极化和圆极化被测天线的散射场表达式。这部分内容是后续章节对于线极化天线和圆极化天线分析的理论基础。
     2、根据天线设计和RCS控制的先后关系,提出了先根据辐射指标设计天线,再根据散射指标进行RCS减缩,最后根据实际情况对天线辐射性能进行补偿的天线RCS控制思路。根据以往的方法我们需要在天线设计之初就对天线的辐射性能留出一定的余量以弥补RCS减缩过程中对于辐射性能的损害,但是由于我们难以准确预估天线RCS减缩对于其辐射性能的影响,所以这一余量也是无法准确预知的。作者提出的新思路避免了由于余量过大而造成浪费和由于余量过小而造成重复工作。
     3、依据所提出的新思路,以超宽带平面单极子天线为参考,设计了一种具有低RCS特性的超宽带天线。对低RCS超宽带单极子天线的辐射和散射特性进行了研究,尤其针对天线上关键部位的尺寸对天线性能的影响进行了详细分析,通过与具有类似结构和性能的参考天线进行对比,研究了超宽带天线的散射机理。最后通过仿真和实验证明了设计天线的优异性能。
     4、根据对圆极化微带天线辐射和散射机理的研究,以矩形微带天线为参考,设计了一种可以在宽频带内保持低RCS的圆极化微带天线。对低RCS圆极化微带天线的辐射和散射特性进行了研究,分析了设计天线与一般天线在天线辐射性能的尺寸参数影响方面的异同,通过对比参考天线,分别从时域和频域的角度研究了天线的散射特性。最后通过仿真和实验证明该天线的优秀性能。
     5、根据来波频率与其工作频带的关系,天线散射可以划分为带内散射和带外散射;根据产生机理的不同,天线散射可以划分为天线模式项散射和结构模式项散射;作者综合以上两种划分标准,根据减缩频带和散射机制的不同将天线散射分成了相互关联的四部分:带内天线模式项,带内结构模式项,带外天线模式项和带外结构模式项。作者分析了各部分的特点,提出了天线带内结构模式项RCS控制的天线RCS控制技术。
     6、根据上面提出的方法,将带通型频率选择表面(Frequency Selective Surface, FSS)技术引入到单极子天线带内RCS控制当中,设计了具有低带内RCS特性的单极子天线。分析了低带内RCS单极子天线的辐射和散射特性。通过仿真和实验证明了该天线的良好辐射性能以及带内结构模式项RCS减缩在带内RCS减缩中的应用价值。
     7、利用对圆极化微带天线RCS控制技术的研究,采用第四章中提出的低RCS圆极化微带天线为阵列单元,设计了具有低RCS特性的圆极化微带阵列天线。对低RCS圆极化阵列天线的辐射和散射特性进行了研究,通过对比参考天线,研究了天线的结构模式项散射以及频域散射特性。最后通过仿真和实验证明该天线的优秀性能。
Stealth technique is playing an important role in the modern warfare because the battlefield survivability of the combat platform is greatly affected by its stealth performances. The stealth technique will be applied more and more widely in the future integrated electronic warfare. Antennas are the necessary components on radio equipments such as radars, communication systems and so on. The radio equipments work only if the electromagnetic waves are well transmitted and received by the antennas in the complex battlefield environment. Antennas become one of the most important targets due to their special operating characteristics. One of the most urgent problems in the stealth technique is how to make the antenna invisible to the enemies while maintaining good working performance. Being associated with national research projects, this dissertation focuses on the antenna scattering theory and antenna radar cross section (RCS) control techniques. The antenna RCS control techniques on the ultra wide band (UWB) antenna, circular polarization antenna, monopole antenna and antenna array are studied. The author’s major contributions are outlined as follows:
     1. The far field expressions of the antenna radiation field are derived and applied on the derivation of the far field expressions of the linear and circular polarization antennas. Expression of the incoming traveling-wave amplitude received by the linear and circular polarization antennas is derived based on the reciprocity theorem. According to the theoretical formulas of the antenna scattering, the scattered field expressions of the linear and circular polarization antennas are also derived. This is the theory foundation of the study on the linear and circular polarization antennas in the following sections.
     2. Based on the sequence of antenna design and RCS control, a novel method for antenna RCS control is proposed, which designs the antennas according to the radiation and scattering requirements and then compensates the loss of the radiation performance. In the conventional methods a design margin of radiation performance should be made in order to reckon in the deterioration of radiation performance resulted from the RCS reduction. Generally it is difficult to precisely predict the loss of the radiation performance, so it is a big challenge to determine the design margin. However this problem is totally avoided by the novel method proposed by the author.
     3. According to the new method, a UWB antenna with low RCS level is designed. The radiation and scattering characteristics of the proposed antenna are analyzed. Compared with the reference antenna, the scattering mechanism of the UWB antenna is studied by applying the parameter analysis. At last, the validity of the new method is proved by simulations and measurements.
     4. Based on the study on the radiation and scattering mechanism of the circular polarization antenna, a novel circular polarization microstrip antenna with low RCS level is designed. The radiation mechanism of the proposed antenna is studied by applying the parameter analysis. And the time and frequency domain characteristics are studied and compared with those of the reference antenna. At last, the radiation and scattering characteristics of the proposed antenna are proved by simulations and measurements.
     5. According to the frequency of the incoming wave the antenna scattering can be separated into the in-band scattering and out-band scattering. According to the scattering mechanism the antenna scattering can be separated into the antenna mode scattering and structural mode scattering. Based on the two standards above, the antenna scattering can be classified in four related parts: in-band antenna mode scattering, in-band structural mode scattering, out-band antenna mode scattering and out-band structural mode scattering. By the analysis on the difference between the four parts, a novel method for antenna in-band structural mode RCS control is proposed.
     6. According to the new method, band pass frequency selective surface (FSS) is applied in the monopole antenna in-band RCS control. A monopole antenna with low in-band RCS is designed and its radiation and scattering characteristics are studied. The validity of the new method is proved by simulated and measured results.
     7. Based on the research on the circular polarization antenna RCS control technique, the low RCS circular polarization antenna proposed in chapter 4 is used in the design of circular polarization array. The radiation and scattering characteristics of the proposed array are studied. The structural mode scattering and frequency domain scattering characteristics are analyzed and compared with thoses of the reference antenna. At last the performances of the proposed array are proved by simulations and measurements.
引文
[1]张连仲,王炳如,陈玲等,军用雷达技术在现代化战争中的应用,现代雷达, 2008, 30 (4), 6-9.
    [2]陈次兮,居安思危-研制隐身雷达的紧迫性,中国电子科学研究院学报, 2008, 3 (2), 111-116.
    [3]林卫明,高军波,邵长军,信息战与雷达“四抗”,电子对抗, 2000, 6, 14-19.
    [4]王洪先,寇朋韬, LPI雷达技术及其在战场侦察雷达上的应用,火控雷达技术, 2006, 35(3), 30-34.
    [5]张锡熊,低截获概率(LPI)雷达的发展,现代雷达, 2003, 12, 1-4.
    [6]马井军,赵明波,张开锋等,飞机隐身技术及其雷达对抗措施,国防科技, 2009, 30(3), 38-44+64.
    [7]王瑞凤,杨宪江,张彦朴,解析武器装备的隐身问题,探测与控制学报, 2008, S1, 77-83.
    [8]阮颖铮等编著,雷达截面与隐身技术,北京:国防工业出版社, 1998.
    [9] R. B. Green, The general theory of antenna scattering, Report 1223-17, Antenna Laboratory, Ohio State University, November 30, 1963.
    [10] R. E. Collin, The receiving antenna, Antenna theory, Part 1, R. E. Collin and F. J. Zucker(eds.), New York: McGraw-Hill, 1969, pp. 123-133.
    [11] R. C. Hansen, Relationships between antennas as scatters and as radiators, IEEE Proceedings, Vol. 77, 1989, pp. 659-662.
    [12] Edward H. Newman, and David Forrai, Scattering from a microstrip patch, IEEE Transactions on Antennas and Propagation, Vol. 35, No. 3, 1987, pp. 245-251.
    [13] D. M. Pozar, Radiation and scattering from a microstrip patch on a uniaxial substrate, IEEE Transactions on Antennas and Propagation, Vol. 35, No. 6, 1987, pp. 613-621.
    [14] D. R. Jackson, The RCS of a rectangular microstrip patch in a substrate -superstrate geometry, IEEE Transactions on Antennas and Propagation, Vol. 38, No. 1, 1990,pp. 2-8.
    [15] James T. Aberle, David M. Poazr, and Craig R.Birtcher, Evaluation of input impedence and radar cross section of probe-fed microstrip patch elements using an accurate feed model, IEEE Transactions on Antennas and Propagation, Vol. 39, No. 12, 1991, pp. 1691-1996.
    [16] Jin-Ming Jin, and John L.volakis, A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity, IEEE Transactions on Antennas and Propagation, Vol. 39, No. 11, 1991, pp. 1598- 1604.
    [17] J. L. Volakis, et al., Broadband RCS reduction of rectangular patch by using distributed loading, Electronic letters, Vol. 28, No. 25, 1992, pp. 2322-2325.
    [18] J. L. Volakis, et al., Radar cross section analysis and control of microstrip patch antennas, 1992 IEEE Antennas and Propagation Society International symposium, 1992, pp. 2225-2228.
    [19] J. T. Aberle, et al., Scattering and radiation properties of varactor-tuned microstrip antennas, 1992 IEEE Antennas and Propagation Society International symposium, 1992, pp. 2229-2232.
    [20] H. Y. Yang, et al., Mulifunctional antennas with low RCS, 1992 IEEE Antennas and Propagation Society International symposium, 1992, pp. 2240-2243.
    [21] David M. Pozar, RCS reduction for a microsrip antenna using a normally biased ferrite substrate, IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, 1992, pp. 196-198.
    [22] Adrian S. King, and Wallace J. Bow, Scattering from a finite array of microstrip patches, IEEE Transactions on Antennas and Propagation, Vol. 40, No. 7, 1992, pp. 770-774.
    [23] Feng Ling, and Jian-Ming Jin, Scattering and radiation analysis of microstrip antennas using discrete complex image method and reciprocity theorem, Microwave and optical technology letters, Vol. 16, No. 4, 1997, pp. 212-216.
    [24] Vikram Jandhyala, Eric Michielssen, Balasubramaniam Shanker, and Weng C. Chew, A fast algorithm for the analysis of radiation and scattering from microstrip arrays on finite substrates, Microwave and Optical Technology Letters, Vol. 23, No. 5, 1999, pp. 306-310.
    [25] S. Hu, H. Chen, and C. K. Law et al., Backscattering cross section of ultrawideband antennas, IEEE Antennas and Wireless Propagation Letters, Vol. 6, 2007, pp. 70-73.
    [26] Mats Gustafsson, RCS reduction of integrated antenna arrays and radome withresistive sheets, 2006 IEEE Antennas and Propagation Society International symposium, 2006, pp. 3479-3482.
    [27] R. Chiniard, A. Barka, and O. Pascal, Hybrid FEM/Floquet Modes/PO technique for multi-incidence RCS prediction of array antennas, IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 2008, pp. 1679-1686.
    [28]阮颖铮,冯林等,天线RCS减缩技术研究,机械电子工业部科学研究院成果鉴定文集, 1990, 16-66.
    [29]阮颖铮,天线的散射机理和雷达截面减缩,宇航学报, 1990, 11(4), 94-100.
    [30] Liu Ying, Gong Shuxi, and Fu Demin, Theory study of antenna scattering, ACTA ELECTRONICA SINICA, Vol. 33, No. 9, 2005, pp. 1611-1613.
    [31] Ying Liu, Shu-xi Gong, and De-min Fu, Scattering analysis of antenna array, Asia-Pacific Microwave Conference 2003 (APMC’03), Korea, 2003, pp. 1252- 1255.
    [32] Ying Liu, Demin Fu, and Shuxi Gong, A novel model for analyzing the RCS of microstrip antenna, Journal of Electromagnetic Waves and Applications, Vol. 17, No. 9, 2003, pp. 1301-1310.
    [33] He Xiulian, Gong Shuxi, and Liu Qizhong, On the Scattering of arbitrary shape microstrip patch, Journal of Electronics (China), Vol. 21, No. 5, 2004, pp. 432-436.
    [34] Xiulian He, Shuxi Gong, and Qizhong Liu, Fast computation of spatial green’s functions of multiplayered microstrip antennas, Microwave and Optical Technology Letters, Vol. 45, No. 1, 2005, pp. 85-88.
    [35] Ying Liu, and Shuxi Gong, A novel UWB clover-disc monopole antenna with RCS reduction, Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 2008, pp. 1115-1121.
    [36] W. He, R. Jin, and J. Geng, Low radar cross-section and high performances of microstrip antenna using fractal uniplanar compact electromagnetic bandgap grouond, IET Microwaves, Antennas and Propagation, Vol. 1, No. 5, 2007, pp. 986-991.
    [37] Li Y.-Q., Zhang H., Fu Y.-Q., and Yuan N.-C., RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material, IEEE Antennas and Wireless Propagation Letters, Vol. 7, 2008, pp. 473-476.
    [38]丁君,程春霞,郭陈江,一种微带天线RCS减缩方法研究,计算机仿真, 2008, 25(9), 130-133.
    [39]徐利明,刘颖,张国全,基于端口加载的天线RCS减缩与散射控制, 2009天线年会论文集, 2009, 1123-1126.
    [40]龚书喜,刘英等编著,天线雷达截面预估与减缩,西安:西安电子科技大学出版社, 2010.
    [1] Y. T. Lo, and S. W. Lee, Antenna Handbook: Theory, Applications, and Design, New York: Van Nostrand Reinhold Company, 1988.
    [2]刘英,天线雷达散射截面预估与减缩,西安电子科技大学博士论文, 2004.
    [3] E. F. Knott, John Shaeffer, and Michael Tuley, Radar Cross Section(2nd edition), New York: Artech House, 1993.
    [4] R. E. Collin, The receiving antenna, Antenna theory, Part 1, R.E. Collin and F.J. Zucker(eds.), McGraw-Hill, New York, 1969, pp. 123-133. (1.9,表示首次引用位置为第一章第九个参考文献,下同)
    [5] R. C. Hansen, Relationships between antennas as scatters and as radiators, IEEE Proceedings, Vol. 77, 1989, pp. 659-662. (1.10)
    [6] R. B. Green., The general theory of antenna scattering, Report 1223-17, Antenna Laboratory, Ohio State University, November 30, 1963. (1.8)
    [1] FCC, FCC Report and Order for Part 15 acceptance of Ultra Wideband (UWB) systems from 3.1-10.6GHz, Washington, 2002.
    [2] D. Chen, and C.-H. Cheng, A novel compact ultra-wideband(UWB) wide slot antenna with via holes, Progress in Electromagnetics Research, 2009, PIER 94, pp. 343-349.
    [3] J. Lee, and J. K. Park, Compact UWB chip antenna design using the coupling concept, Progress in Electromagnetics Research, 2009, PIER 90, pp. 341-351.
    [4] C. Lin, and H.-R. Chuang, A 3-12GHz UWB planar triangular monopole antenna with ridged ground-plane, Progress in Electromagnetics Research, 2008, PIER 83, pp. 307-321.
    [5] F. Geran, G. Dadashzadeh, and M. Fardis. A rectangular slot with a novel triangle ring microstrip feed for UWB applications, Journal of Electromagnetic Waves and Applications, 2007, Vol. 21, No. 3, pp. 387-396.
    [6] M. Razalli, A. Ismail, M. Mahdi, and M. Hamidon, Via-less UWB filter using patched microstrip substrate, Journal of Electromagnetic Waves and Applications, 2009, Vol. 23, No. 2-3, pp. 377-388.
    [7] J. Deng, Y. Yin, X. Ren, and Q. Liu, Study on a dual-band notched aperture UWB antenna using resonant strip and CSRR, Journal of Electromagnetic Waves and Applications, 2009, Vol. 23, No. 5, pp. 627-634.
    [8] R. Fallahi, A. A. Kalteh, and M. G. Roozbahani, A novel UWB elliptical slot antenna with band-notched characteristics, Progress in Electromagnetics Research, 2008, PIER 82, pp. 127-136.
    [9]唐军,超宽带无线技术—UWB,现代通信, 2003, 10, 3.
    [10] Wu Tao, Li Yan, Gong Shu-xi, and Liu Ying, A novel low RCS microstrip antenna using aperture coupled microstrip dipoles, Journal of Electromagnetic Waves and Applications, 2008, Vol. 22, pp. 953–963.
    [11] Ling Jin, Gong Shu-xi, Lu Bao, Yuan Hong-wei, Wang Wen-tao, and S. Liu, A microstrip printed dipole antenna with UC-EBG ground for RCS reduction, Journal of Electromagnetic Waves and Applications, 2009, Vol. 23, No. 5, pp. 607–616.
    [12] Liu Ying, and Gong Shu-xi, A novel UWB clover-disc monopole antenna with RCS reduction, Journal of Electromagnetic Waves and Applications, 2008, Vol. 22, No. 8-9, pp. 1115-1121. (1.35)
    [13] W. Jiang, Y. Liu, S.-X. Gong, and T. Hong, Application of bionics in antenna radar cross section reduction, IEEE Antennas and Wireless Propagation Letters, 2009, Vol. 8, pp. 1275-1278.
    [14] Junhao Zheng, Ying Liu, and Shuxi Gong, Aperture coupled microstrip antenna with low RCS, Progress in Electromagnetics Research, 2008, PIERL 3, pp. 61-68.
    [15] G. Cui, Y. Liu and S. Gong, A novel fractal patch antenna with low RCS, Journal of Electromagnetic Waves and Applications, 2007, Vol. 21, pp. 2403-2411.
    [16] W.-T. Wang, S.-X. Gong, Y.-J. Zhang, F.-T. Zha, and J. Ling. Low RCS dipole array synthesis based on MOM-PSO hybrid algorithm, Progress in Electromagnetics Research, 2009, PIER 94, pp. 119-132.
    [17]张明旭,龚书喜,刘英,利用接地板开槽减缩微带贴片天线的RCS,电子与信息学报, 2008, 30 (2), 498-500.
    [18] Bao Lu, Shu Xi Gong, Jin Ling, and Hong Wei Yuan, Radar cross section reduction of antennas using a stop-band frequency selective surface, Microwave Journal, 2009, August, pp. 6-18.
    [19] Yan Li, Ying Liu, and Shuxi Gong, Microstrip antenna using ground-cut slots and miniaturization techniques with low RCS, Progress in Electromagnetics Research Letters, 2008, pp. 211-220.
    [20]张宏波,龚书喜,贺秀莲,分形开槽减缩微带天线RCS,微波学报, 2006, 22 (6),34-36.
    [21] J. X. Liang. Antenna study and design for ultra-wideband communication applications. July, 2006.
    [22] N. P. Agrawall, G. Kumar, and K. P. Ray, Wide-band planar monopole antenna, IEEE Transactions on Antennas and Propagation, 1998, Vol. 46, No. 2, pp. 294-295.
    [23] J. Liang, C. Chiau, X. Chen, and C. Parini, Study of a printed circular disc monopole antenna for UWB systems, IEEE Transactions on Antennas and Propagation, 2005, Vol. 53, No. 11, pp. 3500-3504.
    [24] D. M. Pozar, Radiation and scattering from a microstrip patch on a uniaxial substrate, IEEE Transactions on Antennas and Propagation, 1987, Vol. 35, pp. 613–621. (1.12)
    [25]阮颖铮等编著,雷达截面与隐身技术,北京:国防工业出版社, 1998. (1.8)
    [1] David M. Pozar, Microstrip Antennas, Proceedings of the IEEE, 1992, pp. 79-91.
    [2]钟顺时,微带天线理论与应用(第1版),西安:西安电子科技大学出版社, 1991.
    [3] V. Palanisamy, and R. Garg. Analysis of circularly polarized square ring and crossed-strip microstrip antennas, IEEE Transactions on Antennas and Propagation, Vol. 34, No. 11, 1986, pp. 1340-1346.
    [4] D. Pozar, A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas, IEEE Transactions on Antennas and Propagation, Vol. 34, No. 12, 1986, pp. 1439-1446.
    [5] S. Chuang, L. Tsang, J. Kong, and W. Chew, The equivalence of the electric and magnetic surface current approaches in microstrip antenna studies, IEEE Transactions on Antennas and Propagation, Vol. 28, No. 4, 1980, pp. 569-571.
    [6] U. K. Revankar, and A. Kumar, Broadband stacked three-layer circular microstrip antenna arrays, Electronics Letters, Vol. 28, No. 21, 1992, pp. 1995-1997.
    [7] A. Demeryd, A theoretical investigation of the rectangular microstrip antenna dements, IEEE Transactions on Antennas and Propagation, Vol. 26, No. 4, 1978, pp. 532-535.
    [8] J. Howell, Microstrip antennas, IEEE Transactions on Antennas and Propagation, Vol. 23, No. 1, 1975, pp. 90-93.
    [9] R. Munson, Conformal microstrip antennas and microstrip phased arrays, IEEE Transactions on Antennas and Propagation, Vol. 22, No. 1, 1974, pp. 74-78.
    [10] J. R. James, and P. S. Hall (eds.), Handbook of microstrip antennas, Peter Oeregrinus, 1989.
    [11]薛睿峰,钟顺时,微带天线圆极化技术概述与进展,电波科学学报, 2002, 17 (4), 331-336.
    [12] K-L Wong, and Y-F Lin. Circularly polarized microstrip antenna with a tuning stub, Electronics Letters, Vol. 34, No. 9, 1998, pp. 831-832.
    [13] J. H. Lu, and C. L. Tang, Circular polarization design of a single-feed equilateral- triangular microstrip antenna, Electronics Letters, Vol. 34, No. 4, 1998, pp. 319-321.
    [14] I. J. Bahl, and P. Bhartia,微带天线,北京:电子出版社, 1984.
    [15]常树茂,弹载圆极化微带天线设计,弹箭与制导学报, 2010, 30 (4), 187-189.
    [16]张鑫,同相馈电十字振子圆极化天线的设计,现代雷达, 2009, 31 (2), 67-70.
    [17]张辉,张晓发,闫敦豹,袁乃昌,基于H形缝隙耦合的宽带圆极化微带天线,电子与信息学报, 2007, 29 (4), 991-993.
    [18] Boyon Kim, Bo Pan, S. Nikolaou, Young-Sik Kim, J. Papapolymerou, and M. M. Tentzeris, A novel single-feed circular microstrip antenna with reconfigurable polarization capability, IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 2008, pp. 630-638.
    [19]张钧,刘克诚,张贤铎,赫祟骏,微带天线理论与工程,北京:国防工业出版社, 1988.
    [20] Y. T. Lo, D. Solomon, and W. F. Richards, Theory and experiment on microstrip antennas, IEEE Transactions on Antennas and Propagation, Vol. 27, No. 2, 1979, pp. 137-145.
    [21]肖绍球,王秉中,微带可重构天线的初步探讨,电波科学学报, 2002, 17 (4), 386-390.
    [22]商锋,王保平, GPS圆极化微带天线的研究,弹箭与制导学报, 2009, 29 (3) 193-198.
    [23]万国宾,沈静,万伟,王振宇,马凤军,背腔双负微带天线的仿真与实验研究,电波科学学报, 2008, 23 (4), 689-693.
    [24]杨向华,角馈双极化微带贴片天线的辐射特性和极化特性研究,微波学报, 2003, 19 (1), 9-12.
    [25] W. He, R. Jin and J. Geng, Low radar cross-section and high performance of microstrip antenna using fractal uniplanar compact electromagnetic bandgap
    ground, IET Microwaves, Antennas and Propagation, Vol. 5, No. 1, 2007, pp. 986-991.
    [26]阮颖铮等编著,雷达截面与隐身技术,北京:国防工业出版社, 1998. (1.8)
    [1]龚书喜,刘英等编著,天线雷达截面预估与减缩,西安:西安电子科技大学出版社, 2010. (1.40)
    [2]阮颖铮,冯林等,天线RCS减缩技术研究,机械电子工业部科学研究院成果鉴定文集, 1990, 16-66. (1.27)
    [3]阮颖铮等编著,雷达截面与隐身技术,北京:国防工业出版社, 1998. (1.8)
    [4]朱华邦,杜娟,焦淑瑜,十字型振子FSS在机(弹)载雷达天线隐身中的应用研究,海军工程大学学报, 2007, 19(2), 50-54.
    [5]方芳,频率选择表面天线副反射面研制,电子机械工程, 2009, 25(2), 41-43.
    [6]杨超,阮颖铮,冯林,微带天线RCS减缩技术及分析方法,电波科学学报, 1994, 9(4), 52-56.
    [7] G. Cui, Y. Liu, and S. Gong, A novel fractal patch antenna with low RCS, Journal of Electromagnetic Waves and Application, Vol. 21, 2007, pp. 2403-2411. (3.15)
    [8] Tao Wu, Yan Li, Shuxi Gong, and Ying Liu, Low RCS microstrip antenna using aperture coupled microstrip dipoles, Journal of Electromagnetic Waves and Application, Vol. 22 , 2008, pp. 953-963.
    [9] W. K. Kahn, and H. Hurss, Minimum-scattering antennas, IEEE Transactions on Antennas and Propagation, Vol. 13, No. 5, 1965, pp. 671-675.
    [10] R. K. Schneider, A re-look at antenna in-band RCSR via load mismatching, 1996 Antennas and Propagation Society International Symposium, 1996, pp. 1398-1401.
    [11] A. Munk Ben, Frequency Selective Surface: Theory and Design. New York: John Wiley & Sons, 2000.
    [12]罗国清,基片集成频率选择表面的研究,东南大学博士学位论文, 2006.
    [13]杜庆荣,频率选择表面电磁仿真,北京航空航天大学学位论文, 2004.
    [14] Masataka Ohira, Hiroyuki Deguchi, and Mikio Tsuji et al., Analysis of frequency selective surface with arbitrarily shaped element by equivalent circuit model, Electronics and Communications in Japan, Part2, Vol. 88, No. 6, 2005, pp. 9-17.
    [15] R. Dubrovka, J. Vazquez, C. Parini et al., Analysis of ring and rectangular slot FSS using a new equivalent circuit method, 5th International Conference on Antenna Theory and Techniques, May, Kyiv, Ukraine, 2005, pp. 417-420.
    [16] S. B. Savia, and E. A. Parker, Equivalent circuit model for superdense linear dipole FSS, IEE Proceedings Microwaves, Antennas and Propagation, Vol. 150, No. 1, 2003, pp. 37-42.
    [17] R. Dubrovka, J. Vazquez, C. Parini, and D. Moore, Equivalent circuit method for analysis and synthesis of frequency selective surface, IEE Proceedings Microwaves, Antennas and Propagation, Vol. 153, No. 3, 2006, pp. 213-220.
    [18] L. Fernandez, E. Garcia, and D. Castro et al., Tool to designer frequency selective curface using an equivanlent circuit nodel, Microwave and Optical Technology Letters, Vol. 47, No. 5, 2005, pp. 464-467.
    [19]侯新宇,崔尧,张玉英等,应用等效电路模型的频率选择表面有效分析,西北工业大学学报, 2006, 24(6), 686-689.
    [1] J. D. Kraus,天线(第三版)(英文版),北京:电子工业出版社, 2008.
    [2] R. Haupt, Antenna Arrays: A Computational Approach, Wiley-IEEE Press, 2010, pp. 1-44.
    [3] Frank Gross,薛泉,智能天线,北京:电子工业出版社, 2009.
    [4] Ramesh Garg, Prakash Bhartia, Inder Bahl, Apisak Ittipiboon, Microstrip Antenna Design Handbook, Artech House Publishers, 2000.
    [5] Constantine A. Balanis, Modern Antenna Handbook, Wiley Press, 2008.
    [6] A. E. Zooghby,何业君,黄磊,李霞,智能天线工程,北京:电子工业出版社, 2008.
    [7] John L. Volakis, Antenna Engineering Handbook, McGraw-Hill, 2007.
    [8] Robert J. Mailloux,相控阵天线手册(第二版),北京:电子工业出版社, 2007.
    [9] M. Elhefnawy, and W. Ismail, A microstrip antenna array for indoor wireless dynamic environments, IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 2009, pp. 3998-4002.
    [10] Hao Wang, Da-gang Fang, and X. G. Chen, A compact single layer monopulse microstrip antenna array, IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 2006, pp. 503-509.
    [11] Z. Iluz, R. Shavit, and R. Bauer, Microstrip antenna phased array with electromagnetic bandgap substrate, IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 2004, pp. 1446-1453.
    [12] J. Huang, A. C. Densmore, Microstrip yaqi array antenna for mobile satellitevehicle application, IEEE Transactions on Antennas and Propagation, Vol. 39, No. 7, 1991, pp. 1024-1030.
    [13] M. Palandoken, A. Grede, H. Henke, Broadband microstip antenna with left-handed metamaterials, IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 2009, pp. 331-338.
    [14]林昌禄,近代天线设计,北京:人民邮电出版社, 1990.
    [15]龚书喜,刘英等编著,天线雷达截面预估与减缩,西安:西安电子科技大学出版社, 2010. (1.40)
    [16] Y. T. Lo, and S. W. Lee, Antenna Handbook: Theory, Applications, and Design, New York: Van Nostrand Reinhold Company, 1988. (2.1)
    [17] Yongle Wu, Yuanan Liu, Quan Xue, Shulan Li, and Cuiping Yu, Analytical design method of multiway dual-band planar power dividers with arbitrary power division, IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 12, 2010, pp. 3832-3841.
    [18] Kaijun Song, Yong Fan, and Yonghong Zhang, Eight-way substrate integrated waveguide power divider with low insertion loss, IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 6, 2008, pp. 1473-1477.
    [19] Lei Wu, Zengguang Sun, H. Yilmaz, and M. Verroth, A dual-frequency Wilkinson power divider, IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 2006, pp. 278-284.
    [20] Yongle Wu, Yuanan Liu, Yaxing Zhang, Jinchun Gao, and Hui Zhou, A dual band unequal wilkinson power divider without reactive components, IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 1, 2009, pp. 216-222.
    [21] David M. Pozar,微波工程(第三版),北京:电子工业出版社, 2007.
    [22]梁昌洪,简明微波,北京:高等教育出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700