介孔碳—金属纳米复合材料的制备及雷达/红外隐身特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合运用嵌入气腔法和分块设计法,制备具有介孔结构的碳/金属(金属氧化物)复合材料,利用这种复合材料丰富的多孔结构和阻抗匹配能力有效衰减雷达波,同时通过成分调整,使这种复合材料在8~14μm波段具有较低的红外发射率,从而为制备轻质、高效的隐身材料提供理论和技术参考。主要内容有:
     运用分块设计法,制备介孔碳和铁氧体的纳米复合体,实现介观尺度的阻抗匹配。实验过程中采用两步溶剂热法制备葡萄糖基碳包覆铁氧体,经500℃热处理后获得介孔碳为壳、铁氧体为核的微粒,1000℃煅烧后为Fe/C核壳结构粒子。这种葡萄糖基碳包覆铁氧体粒子在8~14μm波段的红外发射率可以降低至0.5以下,且对0.5~18 GHz频段电磁波的吸收较强,有效吸收带宽超过4 GHz。1000℃热处理后,吸波剂的匹配厚度2~9 mm范围内最小反射率均低于-20 dB,其吸收峰主要集中在低频段。
     提出运用嵌入气腔设计的理念,尝试用三元共组装法制备碳与金属氧化物的复合材料。依据表面活性剂F127的模板导向作用,分别以柠檬酸铁、异丙醇铝、酞酸丁酯为金属源,制备C-Fe_2O_3、C-Al_2O_3和C-TiO_2复合材料。这种复合材料中金属氧化物与碳互为支撑,具有二维六方有序介孔结构。实验发现,加入金属氧化物后,复合材料的红外发射率保持在0.4~0.55之间,较纯介孔碳有明显降低。同时,该复合材料对电磁波的吸收峰明显宽化,有效吸收带宽可达6.7 GHz,最小反射率为-52.4 dB。
     在嵌入气腔设计理念的基础上,进一步发挥磁性金属具有较大饱和磁化强度的效能。首先采用溶剂蒸发诱导自组装方法获得含磁性金属的有序介孔C-SiO_2纳米复合材料,通过高温热处理在复合材料中实现α-Fe纳米晶原位生长。这种方法增强了复合材料的磁损耗,700℃煅烧后表现出多频段吸收特性,有效吸收带宽可达5.1 GHz。继续添加第二种金属(如Co、Ni、Cu等),调节匹配厚度可使反射损耗频段涵盖2.8~18 GHz。同时,该复合材料的红外发射率可由纯C-SiO_2的0.677降低至0.498。
     另外,有序介孔碳中磁性金属的植入还能通过浸渍负载法实现。有序介孔碳粉体浸渍四羧基酞菁铁溶液负载后,经700℃煅烧,通过调节匹配厚度可使该复合材料的电磁波吸收峰覆盖3.1~18 GHz。
     阻抗匹配和电磁能量的快速损耗是有序介孔复合材料具有较好电磁波吸收性能的主要原因。介孔碳中引入磁性组分形成纳米复合材料,容易实现材料与自由空间的阻抗匹配。另外,复合材料具有丰富的孔道结构、高的比表面积和独特的界面效应,可以发挥磁性组分高损耗的优势,结合介孔碳的电导损耗和介电弛豫,电磁波经介孔结构定向传导后被耗散,得以充分吸收,并能获得较低的红外发射率,形成了符合需要的轻质、高效的隐身复合材料。
This dissertation presents ordered mesoporous carbon/metal or metal oxide nanocomposites with the comprehensive use of inserting air cavity and sub-division methods. These nanocomposites can efficiently attenuate electromagnetic wave taking the advantages of robust channel structure and proper impedance matching. They also exhibit low infrared emissivities at 8~14μm through the component adjustment, which would provide the theory and technology reference for the development of lightweight and highly efficient stealth materials. The main contents are as follows:
     On the basis of sub-division method, we prepare mesoporous carbon and ferrite nanocomposites to realize meso-scopic impedance matching. Glucose-based carbon coated ferrite was prepared under solvothermal conditions. After heat treatment at 500℃, the composites are composed of mesoporous carbon as shell and ferrite as core. They are tuned into Fe/C core-shell nanoparticles when heat treatment at 1000℃. After carbon coating, the infrared emissivity at 8~14μm of the ferrite particles can be lowered to 0.5, and the absorption of electromagnetic wave at 0.5~18 GHz is enhanced. The effective absorption bandwidth can exceed 4 GHz. At the elevated temperature of 1000℃, it presents the minimum reflectivity below -20 dB with the matching thickness of 2~9 mm, with the absorption peaks focusing on the low frequency bands.
     We propose the idea of inserting air cavity and attempt to prepare carbon/metal oxide nanocomposites using triconstituent co-assembly method. On the basis of template direction of surfactant F127, C-Fe_2O_3, C-Al_2O_3, and C-TiO_2 nanocomposites were prepared using ferric citrate, aluminum isopropoxide, and titanium isobutoxide as metal precursors, respectively. The metal oxides sustain with carbon in the framework of these nanocomposites with a typical two-dimensional hexagonal mesoporous structure. The results show that the infrared emissivity can be controlled within 0.4~0.55 after the introduction of metal oxide particles, which is much lower than that of pure mesoporous carbon. Additionally, the absorption peak is also widened. The effective absorption bandwidth can reach 6.7 GHz and the minimum reflectivity is as low as -52.4 dB.
     In order to further develop the efficiency of the large saturation magnetization of magnetic metal based on the idea of inserting air cavity, ordered mesoporous carbon-silica nanocomposites with magnetic metal constituents were prepared by a facile solvent-evaporation-induced self-assembly approach. Magneticα-Fe nanocrystallines are in situ grown in the nanocomposites through a high temperature heat treatment. This strategy would enhance the magnetic loss. CS-Fe-700 exhibits multi-band absorption characteristics, its effective absorption bandwidth is found to exceed 5.0 GHz. With the addition of the second metal such as Co, Ni, Cu, etc., the frequency of reflection loss could cover 2.8~18 GHz by changing the matching thickness. In addition, the infrared emissivity could be reduced from 0.677 of pure C-SiO2 to 0.498.
     Furthermore, magnetic metal embedded into ordered mesoporous carbon can also be realized through impregnation-loading method. Ordered mesoporous carbon powders were used to impregnate tetracarboxy phthalocyanine iron solution for loading. After heat treatment of 700℃, the frequency of reflection loss could cover 3.1~18 GHz by changing the matching thickness.
     Impedance matching and fast loss of electromagnetic energy are the main causes to the super microwave absorption property of ordered mesoporous nanocomposites. Ordered mesoporous carbon materials with the introduction of magnetic constituents are easy to realize the impedance matching between the materials and free space. Furthermore, the nanocomposites possess robust channel structure, high surface area, and unique interface effect. It could take the advantages of high loss with magnetic constituents as well as the conductance loss and dielectric relaxation with mesoporous carbon. Electromagnetic wave can be dissipated through the directional conduct of the mesoporus structure and the electromagnetic energy would be fully absorbed. It can also obtain the lower infrared emissivity, meeting the needs of lightweight and highly efficient stealth materials.
引文
[1]邢丽英.隐身材料[M].北京:化学工业出版社, 2004: 42-60.
    [2]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版杜, 1998: 269-284.
    [3]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社, 1989: 16-82.
    [4]宛德福,罗世华.磁性物理[M].北京:电子工业出版社, 1987: 259-308.
    [5] Sugimoto S, Okayama K, Kondo S, et al. Barium M-type ferrite as an electromagnetic microwave absorber in the GHz range [J]. Mater. Trans. JIM, 1998, 39(10): 1080-1083.
    [6] Yang Y, Zhang B S, Xu W D, et al. Microwave absorption studies of W-hexaferrite prepared by co-precipitation/mechanical milling [J]. J. Magn. Magn. Mater., 2003, 265(2): 119-122.
    [7] Abbas S M, Dixit A K, Chatterjee R, et al. Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites [J]. J. Magn. Magn. Mater., 2007, 309(1): 20-24.
    [8] Sun C, Sun K N. Preparation and characterization of magnesium-substituted LiZn ferrites by a sol-gel method [J]. Physica B-Cond. Mater., 2007, 391(2): 335-338.
    [9]李貌,方庆清,熊为华,等. PANI包覆单一铁氧体的结构和吸波性能[J].安徽大学学报(自然科学版), 2008, 32(4): 60-63.
    [10] Han Z, Li D, Liu X G, et al. Microwave-absorption properties of Fe(Mn)/ferrite nanocapsules [J]. J. Phys. D: Appl. Phys., 2009, 42(5): 055008.
    [11] Liu X G, Geng D Y, Meng H, et al. Electromagnetic-wave-absorption properties of wire-like structures self-assembled by FeCo nanocapsules [J]. J. Phys. D: Appl. Phys., 2008, 41(17): 175001.
    [12]陈利民,亓家钟,朱学琴,等.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性[J].微波学报, 1999, 15(4): 312-316.
    [13]李灿权,张学峰,王威娜,等.铁、镍及其合金纳米粒子的制备及电磁性能研究[J].材料工程, 2006, (2): 46-50.
    [14] Lu B, Huang H, Dong X L, et al. Influence of alloy components on electromagnetic characteristics of core/shell-type Fe-Ni nanoparticles [J]. J. Appl. Phys., 2008, 104(11): 114313.
    [15] Liu J R, Itoh M, Machida K. Magnetic and electromagnetic wave absorption properties of alpha-Fe/Z-type Ba-ferrite nanocomposites [J]. Appl. Phys. Lett., 2006, 88(6): 062503.
    [16] Yan S J, Zhen L, Xu C Y, et al. Microwave absorption properties of FeNi_3 submicrometre spheres and SiO_2@FeNi_3 core-shell structures [J]. J. Phys. D: Appl. Phys., 2010, 43(24): 245003.
    [17] Liu J R, Itoh M, Horikawa T, et al. Complex permittivity, permeability and electromagnetic wave absorption of alpha-Fe/C(amorphous) and Fe_2B/C(amorphous) nanocomposites [J]. J. Phys. D: Appl. Phys., 2004, 37(19): 2737-2741.
    [18] Liu J R, Itoh M, Jiang J H, et al. Electromagnetic wave absorption properties of epsilon-Fe_3N/Y_2O_3 nanocomposites derived from Y_2Fe_(17) intermetallic compoud [J]. J. Magn. Magn. Mater., 2004, 277(3): 251-256.
    [19]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社, 2006: 1-10.
    [20]赵东林,沈曾民,迟伟东,等.碳纤维结构吸波材料及其吸波碳纤维的制备[J].高科技纤维与应用, 2000, 25(3): 8-14.
    [21] Shen G Z, Xu Z, Li Y. Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites [J]. J. Magn. Magn. Mater., 2006, 301(2): 325-330.
    [22]沈国柱,徐政,蔡瑞琦.短切碳纤维-铁氧体填充的复合材料吸波性能[J].同济大学学报(自然科学版), 2006, 34(7): 933-936.
    [23]庞永强,程海峰,唐耿平,等. Fe-Co合金和中空碳纤维吸波材料的吸波特性研究[J].材料导报, 2009, 23(22): 5-8.
    [24]赵东林,李怀玉,沈曾民.螺旋形碳纤维手性吸收剂的制备及其生长过程研究[J].功能材料, 2007, 38(A08): 2942-2945.
    [25] Liu L D, Duan Y P, Ma L X, et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black [J]. Appl. Surf. Sci., 2010, 257(3): 842-846.
    [26]卿玉长,周万城,罗发,等.多壁碳纳米管/环氧有机硅树脂吸波涂层的介电和吸波性能研究[J].无机材料学报, 2010, 15(2): 181-185.
    [27] Zhang L, Zhu H. Dielectric, magnetic, and microwave absorbing properties of multi-walled carbon nanotubes filled with Sm2O3 nanoparticles [J]. Mater. Sci. Eng. B, 2006, 132(1-2): 85-89.
    [28]曾国勋,张海燕,葛鹰,等.碳纳米管/电介质双层吸波涂层衰减特性分析[J].材料工程, 2009, (5): 49-52.
    [29] Kim H M, Kim K, Lee C Y, et al Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst [J]. Appl. Phys. Lett., 2004, 84(4): 589-591.
    [30] Wu J H, Kong L B. High microwave permittivity of multiwalled carbon nanotube composites [J]. Appl. Phys. Lett., 2004, 84(24): 4956-4958.
    [31] Yang Y L, Gupta M C, Dudley K L. Novel carbon nanotubes-polystyrene foam composites for electromagnetic interference shielding [J]. Nano Lett., 2005, 5(11): 2131-2134.
    [32] Liu Z F, Bai G, Huang Y, et al. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites [J]. Carbon, 2007, 45(4): 821-827.
    [33] Xiang C S, Pan Y B, Liu X J, et al. Microwave attenuation of multiwalled carbon nanotube-fused silica composites [J]. Appl. Phys. Lett., 2005, 87(12): 123103.
    [34] Xu H, Anlage S M, Hu L B, et al. Microwave shielding of transparent and conducting single-walled carbon nanotube films [J]. Appl. Phys. Lett., 2007, 90(18): 183119.
    [35] Wang J C, Xiang C S, Liu Q, et al. Ordered mesoporous carbon/fused silica composites [J]. Adv. Funct. Mater., 2008, 18(19): 2995-3002.
    [36] Han M G, Cho S K, Oh S G, et al. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution [J]. Synth. Met., 2002, 126(1): 53-60.
    [37]孔德明,胡慧芳,冯建辉,等.掺杂聚苯胺吸波材料的研究[J].高分子材料科学与工程, 2000, 16(3): 169-171.
    [38] Olmedo L, Hourquebie P, Jousse F. Microwave absorbing materials based on conducting polymers [J]. Adv. Mater., 1993, 5(5): 373-377.
    [39] Chandrasekhar P, Naishadham K. Broadband microwave absorption and shielding properties of a polyaniline [J]. Synth. Met., 1999, 105(2): 115-120.
    [40] Truong V T, Riddell S Z, Muscat R F. Polypyrrole based microwave absorbers [J]. J. Mater. Sci., 1998, 33(20): 4971-4976.
    [41] Courric S, Tran V H. The electromagnetic properties of blends of poly(p-phenylene-vinylene) derivatives [J]. Polym. Adv. Technol., 2000, 11(6): 273-279.
    [42] Xu P, Han X J, Wang C, et al. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole [J]. J. Phys. Chem. B, 2008, 112(10): 2775-2781.
    [43] Xu P, Han X J, Wang C, et al. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites [J]. J. Phys. Chem. B, 2008, 112(34): 10443-10448.
    [44] Dong X L, Zhang X F, Huang H, et al. Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations [J]. Appl. Phys. Lett., 2008, 92(1): 013127.
    [45]沐磊,王丽熙,黄芸,等.红外隐身涂料的研究与发展趋势[J].材料导报, 2007, 21(1): 122-125.
    [46]付伟.飞机的光电隐身技术[J].航空兵器,2001, (4): 9-13.
    [47]施德恒,熊水英.现代作战飞机的红外隐身技术述评[J].航天电子对抗, 2000, (3): 59-62.
    [48]张凯,马艳,郭静,等.低红外发射率韧性涂料的制备与表征[J].红外技术, 2009, 31(2): 87-89.
    [49]宋兴华,於定华,马新胜,等.涂料型红外隐身材料研究进展[J].红外技术, 2004, 26(2): 9-12.
    [50] Chiba K, Takahashi T, Kageyama T, et al. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass [J]. Appl. Surf. Sci., 2005, 246(1-3): 48-51.
    [51] Ye X Y, Zhou Y M, Chen J, et al. Coating of ZnO nanorods with nanosized silver particles by electroless plating process [J]. Mater. Lett., 2008, 62(4-5): 666-669.
    [52]王自荣,余大斌. ITO涂料在8-14μm波段红外发射率的研究[J].红外技术, 1999, 21(1): 41-44.
    [53] Cao M S, Zhu J, Yuan J, et al. Computation design and performance prediction towards a multi-layer microwave absorber [J]. Mater. Design, 2002, 23(6): 557-564.
    [54]蒋跃强,唐先忠,王建华,等.纳米掺锡氧化铟涂料的制备及其红外特性分析[J].化学与生物工程, 2007, 24(1): 10-12.
    [55] Zhou Y M, Shan Y, Sun Y Q, et al. Adsorption of collagen to indium oxide nanoparticles and infrared emissivity study thereon [J]. Mater. Res. Bull., 2008, 43(8-9): 2105-2112.
    [56]陈黄鹂,罗发,张玲. Sol-gel法制备ZAO薄膜及其红外发射率的研究[J].陕西科技大学学报(自然科学版), 2007, 25(2): 58-62.
    [57] Yu X L, Zhang X C, Li H H, et al. Simulation and design for stratified iron fiber absorbing materials [J]. Mater. Design, 2002, 23(1): 51-57.
    [58]宋兴华,于定华,马新胜,等.红外低发射率ATO粉末的制备及其特性研究[J].红外技术, 2003, 25(6): 49-53.
    [59] Jaggard D L, Liu J C, Sun X. Spherical chiroshield [J]. Eletron. lett., 1991, 27(1): 77-79.
    [60]曹晔,刁训刚,孟超,等. TiO2/TiN/PI低红外发射率迷彩薄膜制备及其特性研究[J].真空科学与技术学报, 2009, 29(2): 213-217.
    [61]王科伟,时家明,樊祥.宽频带吸波材料的设计方法[J].兵器材料科学与工程, 2005,28(6): 42-45.
    [62] Park M J, Kim S S. Control of complex permeability and permitivity by air cavity in ferrite-tubber composite sheets and their wide-band absorbing characteristics [J]. IEEE Trans. Magn., 1999, 35(5): 3181-3183.
    [63]王相元,钱鉴,伍瑞新,等.微波吸收材料的分块设计方法[J].南京大学学报(自然科学版), 2001, 37(5): 625-629.
    [64]王相元,盛玉宝,邱志强.吸波材料电磁参量与吸收剂百分体积关系[J].南京大学学报(自然科学版), 1992, 28(4): 551-554.
    [65]穆武第,程海峰,唐耿平,等.添加导电纤维对羰基铁粉吸波性能的影响[J].材料科学与工程学报, 2005, 23(4): 557-560.
    [66] Graf C, Vossen D L J, Imhof A, et al. A general method to coat colloidal particles with silica [J]. Langmuir, 2003, 19(17): 6693-6700.
    [67] Cho S J, Idrobo J C, Olamit J, et al. Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles [J]. Chem. Mater., 2005, 17(12): 3181-3186.
    [68] Papadimitriou S, Tegou A, Pavlidou E, et al. Preparation and characterization of platinum- and gold-coated copper, iron, cobalt and nickel deposits on glassy carbon substrates [J]. Electrochim. Acta, 2008, 53(22): 6559-6567.
    [69] Euliss L E, Grancharov S G, O'Brien S, et al. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media [J]. Nano Lett., 2003, 3(11): 1489-1493.
    [70] Ang K H, Alexandrou I, Mathur N D, et al. The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water [J]. Nanotechnology, 2004, 15(5): 520-524.
    [71]汤慧利.新型磁性纳米材料和介孔氧化硅材料的设计合成及应用研究[D].博士学位论文,上海:复旦大学, 2008.
    [72] St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Colloid Interface Sci., 1968, 26(1): 62-69.
    [73] Kobayashi Y, Horie M, Konno M, et al. Preparation and properties of silica-coated cobalt nanoparticles [J]. J. Phys. Chem. B, 2003, 107(30): 7420-7425.
    [74] Zhao W R, Gu J L, Zhang L X, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. J. Am. Chem. Soc., 2005, 127(25): 8916-8917.
    [75] Yi D K, Lee S S, Papaefthymiou G C, et al. Nanoparticle architectures templated bySiO_2/Fe_2O_3 nanocomposites [J]. Chem. Mater., 2006, 18(3): 614-619.
    [76] Chen J, Wang Y G, Li Z Q, et al. Synthesis and characterization of magnetic nanocomposites with Fe3O4 core [J]. J. Phys.: Conf. Ser., 2009, 152(1): 012041.
    [77] Wei J Q, Wang J B, Liu Q F, et al. Enhanced microwave absorption properties of Fe_3Al/Al_2O_3 fine particle composites [J]. J. Phys. D: Appl. Phys., 2010, 43(11): 115001.
    [78] Xuan S H, Wang Y X J, Leung K C F, et al. Synthesis of Fe_3O_4@polyaniline core/shell microspheres with well-defined blackberry-like morphology [J]. J. Phys. Chem. C, 2008, 112(48): 18804-18809.
    [79] Dey A, De S, De A, et al. Characterization and dielectric properties of polyaniline-TiO_2 nanocomposites [J]. Nanotechnology, 2004, 15(9): 1277-1283.
    [80] Phang S W, Tadokoro M, Watanabe J, et al. Effect of Fe3O4 and TiO_2 addition on the microwave absorption property of polyaniline micro/nanocomposites [J]. Polym. Adv. Technol., 2009, 20(6): 550-557.
    [81] Nesper R, Ivabtchenko A, Krumeich F. Synthesis and characterization of carbon-based nanoparticles and highly magnetic nanoparticles with carbon coatings [J]. Adv. Funct. Mater., 2006, 16(2): 296-305.
    [82] Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application [J]. Angew. Chem. Int. Ed., 2007, 46(8): 1222-1244.
    [83] Geng J F, Jefferson D A, Johnson B F G. Direct conversion of iron stearate into magnetic Fe and Fe3C nanocrystals encapsulated in polyhedral graphite cages [J]. Chem. Commun., 2004, (21): 2442-2443.
    [84] Lu A H, Li W C, Matoussevitch N, et al. Highly stable carbon-protected cobalt nanoparticles and graphite shells [J]. Chem. Commun., 2005, (1): 98-100.
    [85] et al. Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon [J]. Chem. Mater., 2006, 18(8): 2086-2094.
    [86] Lv R T, Kang F Y, Wang W X, et al. Soft magnetic performance improvement of Fe-filled carbon nanotubes by water-assisted pyrolysis route [J]. Phys. Status Solidi A, 2006, 204(3): 867-873.
    [87] Wang C, Lv R T, Kang F Y, et al. Synthesis and application of iron-filled carbon nanotubes coated with FeCo alloy nanoparticles [J]. J. Magn. Magn. Mater., 2009, 321(13): 1924-1927.
    [88]张光寅,戴松涛,张存洲,等.多孔材料红外反射光谱的下塌现象——红外吸波材料机理探讨之二[J].红外与毫米波学报, 1995, 14(4): 283-288.
    [89]刘云芳,沈曾民,于建民.活化碳纳米管的孔结构及微波吸收性能的研究[J].炭素, 2005, (1): 3-6.
    [90]杜波,袁华,刘俊峰,等.多壁碳纳米管/环氧树脂复合材料雷达波吸收性能[J].南昌大学学报(理科版), 2008, 32(5): 439-442.
    [91]汪忠柱,姚学标,胡国光,等.应用微波网络分析仪测量固态双复介质的电磁特性参数及其误差评估[J].磁性材料及器件, 2001, 32(4): 59-62.
    [92]冯永宝,丘泰.传输/反射法测量微波吸收材料电磁参数的研究[J].电波科学学报, 2006, 21(2): 293-297.
    [93]吴明忠,姚熹,张良莹.同轴探头法测量片状介质材料的微波介电常数[J].压电与声光, 2001, 23(1): 63-67.
    [94]何山.雷达吸波材料性能测试[J].材料工程, 2003, (6): 25-29.
    [95]田步宁,杨德顺,唐家明,等.传输/反射法测量复介电常数的若干问题[J].电波科学学报, 2002, 17(1): 10-15.
    [96]景莘慧,蒋全兴.基于同轴线的传输/反射法测量射频材料的电磁参数[J].宇航学报, 2005, 26(5): 630-634.
    [97] Hong Y K, Lee C Y, Jeong C K, et al. Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges [J]. Rev. Sci. Instrum., 2003, 74(2): 1098-1102.
    [98] Yusoff A N, Abdullah M H, Ahmad S H, et al. Electromagnetic and absorption properties of some microwave absorbers [J]. J. Appl. Phys., 2002, 92(2): 876-882.
    [99] Terada M, Itoh M, Liu J R, et al. Electromagnetic wave absorption properties of Fe3C/carbon nanocomposites prepared by a CVD method [J]. J. Magn. Magn. Mater., 2009, 321(9): 1209-1213.
    [100] Liu Z F, Bai G, Huang Y, et al. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites [J]. J. Phys. Chem. C, 2007, 111(37): 13696-13700.
    [101] Michielssen E, Sajer J M, Ranjithan S, et al. Design of lightweight, broadband microwave absorbers using genetic algorithms [J]. IEEE Trans. Microwave Theory Technol., 1993, 41(6): 1024-1031.
    [102] Peng C H, Hwang C C, Wan J, et al. Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method [J]. Mater. Sci. Eng. B, 2005, 117(1): 27-36.
    [103] Yusoff A N, Abdullah M H. Microwave electromagnetic and absorption properties of some LiZn ferrites [J]. J. Magn. Magn. Mater., 2004, 269(2): 271-280.
    [104] Chen N, Mu G H, Pan X F, et al. Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders [J]. Mater. Sci. Eng. B, 2007, 139(2-3): 256-260.
    [105] Tang X, Hu K. Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites [J]. Mater. Sci. Eng. B, 2007, 139(2-3): 119-123.
    [106]周建华,王涛,王道军,等.葡萄糖基碳包覆ZnFeO的合成及其红外发射率研究[J].无机材料学报,2009, 24(5): 1045-1048.
    [107]谢炜,程海峰,楚增勇,等.短切中空多孔碳纤维复合材料的吸波性能[J].无机材料学报, 2008, 23(3): 481-485.
    [108] Shen G Z, Xu M, Xu Z. Double-layer microwave absorber based on ferrite and short carbon fiber composites [J]. Mater. Chem. Phys., 2007, 105(2-3): 268-272.
    [109] Oikonomou A, Giannakopoulou T, Litsardakis G. Design, fabrication and characterization of hexagonal ferrite multi-layer microwave absorber [J]. J. Magn. Magn. Mater., 2007, 316(2): e827-e830.
    [110] Liu X G, Geng D Y, Shang P J, et al. Fluorescence and microwave-absorption properties of multi-functional ZnO-coatedα-Fe solid-solution nanocapsules [J]. J. Phys. D: Appl. Phys., 2008, 41(17): 175006.
    [111] Peng C H, Wang H W, Kan S W, et al. Microwave absorbing materials using Ag-NiZn ferrite core-shell nanopowders as fillers [J]. J. Magn. Magn. Mater., 2004, 284: 113-119.
    [112] Shen Y, Lin Y H, Li M, et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer [J]. Adv. Mater., 2007, 19(10): 1418-1422.
    [113] Shen Y, Lin Y H, Nan C W. Interfacial effect on dielectric properties of polymer nanocomposites filled core/shell-structured particles [J]. Adv. Funct. Mater., 2007, 17(14): 2405-2410.
    [114] Guo X H, Deng Y H, Gu D, et al. Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites [J]. J. Mater. Chem., 2009, 19(37): 6706-6712.
    [115] Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed., 2005, 44(18): 2782-2785.
    [116] Shan Y, Zhou Y M, Cao Y, et al. Preparation and infrared emissivity study of collagen-g-PMMA/In_2O_3 nanocomposite [J]. Mater. Lett., 2004, 58(10): 1655-1660.
    [117] He N Y, Guo Y F, Deng Y, et al. Carbon encapsulated magnetic nanoparticles produced by hydrothermal reaction [J]. Chin. Chem. Lett., 2007, 18(4): 487-490.
    [118] Wang Z F, Xiao P F, He N Y. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction [J]. Carbon, 2006, 44(15): 3277-3284.
    [119]胡传炘.隐身涂层技术[M].北京:化学工业出版社, 2004: 124-183.
    [120]孙艳青,周钰明.胶原/TiO2纳米复合红外低发射率材料的制备与表征[J].无机材料学报, 2007, 22(2): 227-231.
    [121]宛德福,马兴隆.磁性物理学[M].成都:电子科技大学出版社, 1994: 303-312.
    [122] Wu M Z, Zhang Y D, Hui S, et al. Microwave magnetic properties of Co50/(SiO_2)50 nanoparticles [J]. Appl. Phys. Lett., 2002, 80(23): 4404-4406.
    [123] Viau G, Fiévet-Vincent F, Fiévet F, et al. Size dependence of microwave permeability of spherical ferromagnetic particles [J]. J. Appl. Phys., 1997, 81(6): 2749-2754.
    [124] Li J G, Huang J J, Qin Y, et al. Magnetic and microwave properties of cobalt nanoplatelets [J]. Mater. Sci. Eng. B, 2007, 138(3): 199-204.
    [125]张春雷,李爽,彭艳兵,等.氧缺位铁酸盐MFe_2O_4-δ的性质研究[J].高等学校化学学报, 1998, 19(10): 1537-1541.
    [126] Zhang W, Wang H J, Jin Z H. Preparation and properties of macroporous silicon nitride ceramics by gelcasting and carbonthermal reaction [J]. J. Mater. Sci. Technol., 2005, 21(6): 894-898.
    [127] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angew. Chem. Int. Ed., 2004, 43(5): 597-601.
    [128] Liu Q L, Zhang D, Fan T X, et al. Amorphous carbon-matrix composites with interconnected carbon nano-ribbon networks for electromagnetic interference shielding [J]. Carbon, 2008, 46(3): 461-465.
    [129]赵木,宋怀河,连文涛,等.金属对炭黑转化为洋葱状中空结构纳米碳的影响[J].无机材料学报, 2007, 22(4): 599-603.
    [130]吕瑞涛,康飞宇,韦进全,等.填充α-Fe碳纳米管的电磁性能研究[J].无机材料学报, 2008, 23(1): 23-28.
    [131] Narayanan T N, Sunny V, Shaijumon M M, et al. Enhanced microwave absorption in nickel-filled multiwall carbon nanotubes in the S band [J]. Electrochem. Solid-State Lett., 2009, 12(4): K21-K24.
    [132] Liu X G, Li B, Geng D Y, et al. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber inthe whole Ku-band [J]. Carbon, 2009, 47(2): 470-474.
    [133] Zhang H T, Zhang J S, Zhang H Y. Computation of radar absorbing silicon carbide foams and their silica matrix composites [J]. Comput. Mater. Sci., 2007, 38(4): 857-864.
    [134] Kim S S, Kim S T, Ahn J M, et al. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density [J]. J. Magn. Magn. Mater., 2004, 271(1): 39-45.
    [135]朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的微波吸收特性[J].无机材料学报, 2002, 17(6): 1152-1156.
    [136] Hsu P F, Howell J R. Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia [J]. Exp. Heat Transfer, 1992, 5(4): 293-313.
    [137]刘欣,薛向欣,段培宁.多孔结构对材料吸波性能的影响[J].材料与冶金学报, 2007, 6(4): 306-310.
    [138]凤仪,郑海务,朱震刚,等.闭孔泡沫铝的电磁屏蔽性能[J].中国有色金属学报, 2004, 14(1): 33-36.
    [139] Tang X, Tian Q, Zhao B Y, et al. The microwave electromagnetic and absorption properties of some porous iron powders [J]. Mater. Sci. Eng. A, 2007, 445-446: 135-140.
    [140] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359(6397): 710-712.
    [141] Liu R L, Shi Y F, Wan Y, et al. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas [J]. J. Am. Chem. Soc., 2006, 128(35): 11652-11662.
    [142] Yu T, Deng Y H, Wang L, et al. Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction [J]. Adv. Mater., 2007, 19(17): 2301-2306.
    [143] Dong W Y, Sun Y J, Lee C W, et al. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures [J]. J. Am. Chem. Soc., 2007, 129(45): 13894-13904.
    [144] Liu R L, Ren Y J, Shi Y F, et al. Controlled synthesis of ordered mesoporous C-TiO2nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly [J]. Chem. Mater., 2008, 20(3): 1140-1146.
    [145] Zhai Y P, Dou Y Q, Liu X X, et al. One-pot synthesis of magnetically separable ordered mesoporous carbon [J]. J. Mater. Chem., 2009, 19(20): 3292-3300.
    [146] Mu G H, Chen N, Pan X F, et al. Microwave absorption properties of hollowmicrosphere/titania/ M-type Ba ferrite nanocomposites [J]. Appl. Phys. Lett., 2007, 91(4): 043110.
    [147] Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation [J]. Angew. Chem. Int. Ed., 2005, 44(43): 7053-7059.
    [148] Liu X. G., Geng D. Y., Meng H., et al. Microwave absorption properties of FCC-Co/Al_2O_3 and FCC-Co/Y_2O_3 nanocapsules [J]. Solid State Commun., 2009, 149(1-2): 64-67.
    [149] Gorkunov E S, Zakharov V A, Ulyanov A I, et al. Effect of pore shape and pore orientation on internal demagnetization factor of porous ferromagnetic materials [J]. Russ. J. Nondestruct. Test., 2001, 37(3): 186-191.
    [150] Ohlan A, Singh K, Chandra A, et al. Conjugated polymer nanocomposites: Synthesis, dielectric, and microwave absorption studies [J]. J. Appl. Phys., 2009, 106(4): 044305.
    [151] Chen Y J, Gao P, Wang R X, et al. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties [J]. J. Phys. Chem. C, 2009, 113(23): 10061-10064.
    [152] Shi X L, Cao M S, Yuan J, et al. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability [J]. Appl. Phys. Lett., 2009, 95(16): 163108.
    [153] Deng L J, Han M G. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability [J]. Appl. Phys. Lett., 2007, 91(2): 023119.
    [154] Wang C, Han X J, Xu P, et al. Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties [J]. J. Phys. Chem. C, 2010, 114(7): 3196-3203.
    [155]王涛.有序介孔碳-金属氧化物纳米复合材料的制备及其应用[D].硕士学位论文,南京:南京航空航天大学, 2009.
    [156]王涛,周建华,王道军,孙盾,狄志勇,何建平.有序介孔C/Al2O3纳米复合材料的合成及其红外发射率[J].物理化学学报, 2009, 25(10) : 2155-2160.
    [157] Wing Z N, Wang B, Halloran J W. Permittivity of porous titanate dielectrics [J]. J. Am. Ceram. Soc., 2006, 89(12): 3696-3700.
    [158] Che R C, Peng L M, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J]. Adv. Mater., 2004, 16(5): 401-405.
    [159] Thomassin J M, Lou X D, Pagnoulle C, et al. Multiwalled carbonnanotube/poly(ε-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties [J]. J. Phys. Chem. C, 2007, 111(30): 11186-11192.
    [160] An Z G, Pan S L, Zhang J J. Facile preparation and electromagnetic properties of core-shell composite spheres composed of aloe-like nickel flowers assembled on hollow glass spheres [J]. J. Phys. Chem. C, 2009, 113(7): 2715-2721.
    [161] Xu P, Han X J, Jiang J J, et al. Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites [J]. J. Phys. Chem. C, 2007, 111(34): 12603-12608.
    [162] Annadurai P, Mallick A K, Tripathy D K. Studies on microwave shielding materials based on ferrite- and carbon black-filled EPDM rubber in the X-band frequency [J]. J. Appl. Polym. Sci., 2002, 83(1): 145-150.
    [163] Fan Y Z, Yang H B, Li M H, et al. Evaluation of the microwave absorption property of flake graphite [J]. Mater. Chem. Phys., 2009, 115(2-3): 696-698.
    [164] Yang Y, Zhang B S, Xu W D, et al. Preparation and properties of a novel iron-coated carbon fiber [J]. J. Magn. Magn. Mater., 2003, 256(1-3): 129-132.
    [165] Lv R T, Kang F Y, Gu H L, et al. Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber [J]. Appl. Phys. Lett., 2008, 93(22): 223105.
    [166] Song W L, Cao M S, Hou Z L, et al. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band [J]. Appl. Phys. Lett., 2009, 94(23): 233110.
    [167] Zhang X G, Liu Y, Qin J G. The dielectric properties of (N-doped carbon)- and carbon-coated iron nanocrystals in the X band [J]. Carbon, 2004, 42(4): 888-890.
    [168] Zhao D L, Shen Z M. Preparation and microwave absorption properties of carbon nanocoils [J]. Mater. Lett., 2008, 62(21-22): 3704-3706.
    [169] Liu J R, Itoh M, Horikawa T, et al. Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites [J]. J. Appl. Phys., 2005, 98(5): 054305.
    [170] Che R C, Zhi C Y, Liang C Y, et al. Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite [J]. Appl. Phys. Lett., 2006, 88(3): 033105.
    [171] Zheng Z, Xu B, Huang L, et al. Novel composite of Co/carbon nanotubes: Synthesis, magnetism and microwave absorption properties [J]. Solid State Sci., 2008, 10(3): 316-320.
    [172] Zhu H, Lin H Y, Guo H F, et al. Microwave absorbing properties of Fe-filled carbon nanotubes synthesized by a pratical route [J]. Mater. Sci. Eng. B, 2007, 138(1): 101-104.
    [173] Wang C, Lv R T, Kang F Y, et al. Synthesis and application of iron-filled carbon nanotubescoated with FeCo alloy nanoparticles [J]. J. Magn. Magn. Mater., 2009, 321(13): 1924-1927.
    [174] Liu Q L, Zhang D, Fan T X. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites [J]. Appl. Phys. Lett., 2008, 93(1): 013110.
    [175] Chen Y J, Gao P, Zhu C L, et al. Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods [J]. J. Appl. Phys., 2009, 106(5): 054303.
    [176] Stein A, Wang Z Y, Fierke M A. Functionalization of porous carbon materials with designed pore architecture [J]. Adv. Mater., 2009, 21(3): 265-293.
    [177] Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification [J]. Angew. Chem. Int. Ed., 2008, 47(20): 3696-3717.
    [178] Gao P, Wang A Q, Wang X D, et al. Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic-organic self-assembly [J]. Chem. Mater., 2008, 20(5): 1881-1888.
    [179] Yao J Y, Li L X, Song H H, et al. Synthesis of magnetically separable ordered mesoporous carbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites [J]. Carbon, 2009, 47(2): 436-444.
    [180] Zhou J H, He J P, Wang T, et al. NiCl2 assisted synthesis of ordered mesoporous carbon and a new strategy for a binary catalyst [J]. J. Mater. Chem., 2008, 18(47): 5776-5781.
    [181] Wang X Q, Dai S. A simple method to ordered mesoporous carbons containing nickel nanoparticles [J]. Adsorption, 2009, 15(2): 138-144.
    [182] Wan Y, Shi Y F, Zhao D Y. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons [J]. Chem. Mater., 2008, 20(3): 932-945.
    [183] Park I S, Choi M, Kim T W, et al. Synthesis of magnetically separable ordered mesoporous carbons using furfuryl alcohol and cobalt nitrate in a silica template [J]. J. Mater. Chem., 2006, 16(33): 3409-3416.
    [184] Grosso D, Boissiere C, Smarsly B, et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides [J]. Nat. Mater., 2004, 3(11): 787-792.
    [185] Sadaki S, Nakamura K, Hamabe Y, et al. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering [J]. Nature 2001, 410(6828): 555-557.
    [186] Ji Z H, Liang S G, Jiang Y B, et al. Synthesis and characterization of ruthenium-containing ordered mesoporous carbon with high specific surface area [J]. Carbon, 2009, 47(9): 2194-2199.
    [187] Yu B, Qi L, Ye J Z, et al. Preparation and radar wave absorbing characterization of bicomponent fibers with infrared camouflage [J]. J. Appl. Polym. Sci., 2007, 104(4): 2180-2186.
    [188] Liu X G, Geng D Y, Zhang Z D. Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules [J]. Appl. Phys. Lett., 2008, 92(24): 243110.
    [189] Zhang X F, Dong X L, Huang H, et al. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules [J]. J. Phys. D: Appl. Phys., 2007, 40(17): 5383-5387.
    [190] Zhuo R F, Feng H T, Chen J T, et al. Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures [J]. J. Phys. Chem. C, 2008, 112(31): 11767-11775.
    [191] Zhuo R F, Feng H T, Liang Q, et al. Morphology-controlled synthesis, growth mechanism, optical, and microwave absorption properties of ZnO nanocombs [J]. J. Phys. D: Appl. Phys., 2008, 41(18): 185405.
    [192] Grigorenko A N, Geim A K, Gleeson H F, et al. Nanofabricated media with negative permeability at visible frequencies [J]. Nature, 2005, 438(7066): 335-338.
    [193] Han Z, Li D, Wang H, et al. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules [J]. Appl. Phys. Lett., 2009, 95(2): 023114.
    [194] Mdarhri A, Carmona F, Brosseau C, et al. Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites [J]. J. Appl. Phys., 2008, 103(5): 054303.
    [195]万梅香.导电高聚物的微波吸收机理的研究[J].物理学报, 1992, 41(6): 917-923.
    [196]邓科,陈杰,林云,等.酞菁-二茂铁型高分子吸波材料的合成与表征[J].四川师范大学学报(自然科学版), 2007, 30(3): 368-373.
    [197]唐红梅,袁茂林,邓科,等.酞菁改性聚苯乙炔高分子的微波介电性能研究[J].化学研究与应用, 2008, 20(2): 152-157.
    [198] Nalwa H S. The effect of central metal atom on the electric properties of phthalocyanine macromolecule [J]. J. Electron. Mater., 1988, 17(4): 291-295.
    [199] Vijayakumar P S, Pohl H A. Giant polarization in stable polymeric dielectrics [J]. J. Polym. Sci., 1984, 22(8): 1439-1452.
    [200] Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host [J]. Science, 1994, 264(5166): 1757-1759.
    [201] Achar B N, Fohlen G G, Parker J A. Phthalocyanine polymers.Ⅱ. Synthesis andcharacterization of some metal phthalocyanine sheet oligomers [J]. J. Polym. Sci., Part A: Polym. Chem., 2003, 20(7): 1785-1790.
    [202] Sakai Y, Ueda M, Yahagi A, et al. Synthesis and properties of aluminum phthalocyanine side-chain polyimide for third-order nonlinear optics [J]. Polymer, 2002, 43(12): 3497-3503.
    [203] Vinod M P, Das T K, Chandwadkar A J, et al. Catalytic and electrocatalytic properties of intrazeolitically prepared iron phthalocyanine [J]. Mater. Chem. Phys., 1999, 58(1): 37-43.
    [204] Lever A B P, Pickens S R, Minor P C, et al. Charge-transfer spectra of metallophthalocyanines: correlation with electrode potentials [J]. J. Am. Chem. Soc., 1981, 103(23): 6800-6806.
    [205] Lee K T, Ji X L, Rault M, et al. Simple synthesis of graphitic ordered mesoporous carbon materials by a solid-state method using metal phthalocyanines [J]. Angew. Chem. Int. Ed., 2009, 48(31): 5661-5665.
    [206]赵东林,沈增民,迟伟东.碳纤维及其复合材料的吸波性能和吸波机理[J].新型碳材料, 2001, 16(2): 66-72.
    [207]龚中麟,徐承和.近代电磁理论[M].北京:北京大学出版社, 1990: 32-42.
    [208] Verma A, Saxena A K, Dube D C. Microwave permittivity and permeability of ferrite-polymer thick films [J]. J. Magn. Magn. Mater., 2003, 263(1-2): 228-234.
    [209] Ni S B, Wang X H, Zhou G, et al. Designed synthesis of wide range microwave absorption Fe3O4-carbon sphere composite [J]. J. Alloys Compd., 2010, 489(1): 252-256.
    [210] Liu X G, Jiang J J, Geng D Y, et al. Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules [J]. Appl. Phys. Lett., 2009, 94(5): 053119.
    [211] Liu X G, Geng D Y, Meng H, et al. Microwave-absorption properties of ZnO-coated iron nanocapsules [J]. Appl. Phys. Lett., 2008, 92(17): 173117.
    [212] Qiao L, Wen F S, Wang J B, et al. Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites [J]. J. Appl. Phys., 2008, 103(6): 063903.
    [213] Suhl H, Bertram H N. Localized surface nucleation of magnetization reversal [J]. J. Appl. Phys., 1997, 82(12): 6128-6137.
    [214] Chen C, Kitakami O, Shimada Y. Particle size effects and surface anisotropy in Fe-based granular films [J]. J. Appl. Phys., 1998, 84(4): 2184-2188.
    [215] Zhang X F, Dong X L, Huang H, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules [J]. Appl. Phys. Lett., 2006, 89(5): 053115.
    [216] Zhao D L, Li X, Shen Z M. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes [J]. J. Alloys Compd., 2009, 471(1-2): 457-460.
    [217] Gui X C, Ye W, Wei J Q, et al. Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption [J]. J. Phys. D: Appl. Phys., 2009, 42(7): 075002.
    [218] Zhou J H, He J P, Li G X, et al. Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers [J]. J. Phys. Chem. C, 2010, 114(17): 7611-7617.
    [219]陈衡.红外物理学[M].上海:上海科学技术出版社, 1985: 71-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700