低轨空间监视的天地协同轨道确定与误差分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为突破地域限制,提高系统效能,我国的低轨空间监视应当在发展地基监视系统的同时,探索论证天基监视系统。论文以天基雷达网协同地基雷达执行低轨空间监视任务为背景,针对地基雷达测站布局、定轨误差传播及基于天基雷达观测数据的轨道改进等问题进行了系统而深入的研究。
     讨论了地基雷达的站址选择条件,分析了单基地与多基地雷达系统对空间目标的定位误差,仿真结果表明,三基地以上的雷达系统,主站与辅站的布局为几何对称时,定位误差最小。在最优构型的基础上分析了地基雷达的定轨性能,仿真结果表明,增加辅站可以降低定轨误差,辅站数目达到3时,在测角精度较差的情况下,只需测距信息参与定轨即可获得较高的精度。
     引入协方差描述函数法,假设状态变量服从高斯分布,推导了高精度轨道预报中均值和协方差的传播公式。与线性系统的Ricatti方程相比,拟线性函数考虑了微分方程Taylor展开二阶偏导的影响,统计学描述更准确。误差传播分析表明,位置误差的迹向分量与速度误差的径向分量决定了误差量级,轨道预报的精度取决于初始状态和动力学模型的准确性。
     针对天地协同空间监视任务,提出了高精度轨道预报推衍与轨道改进相结合的定轨算法流程,即从上一次轨道改进时刻出发,采用精确动力学模型推衍状态和协方差,计算单点观测数据引入时刻的状态和协方差,以此作为初值与观测数据进行轨道改进,推衍与改进循环交替。
     为了保证天基雷达稀疏单点观测数据参与轨道改进的精度,给出了基于3σ法则的异常数据剔除条件。仿真表明,高精度轨道推衍与EKF相结合时,天基雷达的稀疏单点数据参与轨道改进,在控制轨道面内误差发散方面,效果显著。对于法向误差,尽管位置误差在改进时刻可以得到修正,但由于测速精度不高,单点观测的信息量少,法向速度误差修正效果不明显,综合影响导致法向误差不再是小幅度范围内振荡,振幅增大,误差波峰处仍维持在初始精度附近,因此误差不能得到整体抑制,只能部分改善。引入Hill方程,给出了法向误差传播方式的数学描述,从数学上解释了测速精度不高的情况下单点观测不能抑制法向误差的原因。
     天基雷达的密集短弧观测数据参与轨道改进时,因观测量增加,在提高定轨精度的同时,法向误差也逐渐得到了整体抑制。引入UKF滤波,仿真表明,不仅在精度上稍优于EKF,收敛速度也比EKF快,因此观测数据量较少时可以获得比EKF更高的精度,同时对法向速度误差的滤波效果优势更为明显。
     最后,引入Hill方程给出了初始偏差发散的近似解析表达式,直观地解释了数值法初始状态误差传播的仿真结果:位置迹向误差和速度径向误差迅速发散的原因在于,这两个方向的偏差传播公式中含有初始偏差引起的关于时间的一次项。在此基础上,分析了两行轨道根数(TLE)单点拟合发散的初始偏差影响因素,给出了提高单点推衍精度的初始偏差条件,该条件也对应高精度轨道预报采样拟合中残差平方和最小的最优条件,同时对影响残差发散的主要因子进行了分离,为TLE的选择和使用提供了理论依据。
     论文采用理论分析与数值仿真相结合的方法,重点探讨了天地协同低轨空间监视中涉及的误差传播和轨道确定等问题,研究成果对我国空间监视系统的设计和发展具有一定的参考价值。
Within the confines of the territory, the space-based sensors should be explored and demonstrated while the ground-based sensors are developed to improve the space surveillance system for low earth orbit (LEO). Assumed that the space-based radar (SBR) net cooperates with the ground-based radar (GBR) for LEO surveillance, the thesis investigates the site arrangement, error propagation and differential correction with observations from SBRs.
     The criterion for choosing the site of the GBR is presented. The analysis of the positioning precision about the GBR with multi-bases shows that the optimal arrangement is symmetrical in geometry if the numbers of the auxiliary sensors is over three. And with the optimal arrangement, the high precision of orbit determination could be achieved only with the range measurements from three or more auxiliary sensors, if the standard deviation of the angle measurements is much worse than that of range measurement.
     The Covariance Analysis DEscribing function Technique (CADET) is implemented in high-precision orbit prediction to obtain the propagation of the mean vector and covariance supposed that the state is a gaussian variable. Compared with the linear variance equation i.e. matrix Ricatti equation, the quasi-linear approximation technique considers the second order of the partial derivatives of the differential equation with respect to the state vector which is more precise in statistics. According to the simulation, the along-track error in position and the radial error in velocity are dominative during propagation. And the propagating precision is determined by the priori standard deviation and the state noise.
     The orbit determination algorithm combined with the high-precision orbit propagation and differential correction is presented for the space surveillance with the cooperation of the GBR and the SBRs. In other words the latest estimated mean and covariance are propagated until the time that observations are available. And the predicted mean and covariance at that time as the priori are updated with the observations, then the propagation continues.
     For the precision of the sparse observational data from SBRs the pre-process based on 3σrule is derived. The simulation shows that the high-precision orbit propagation and update by the extended Kalman filter (EKF) can control the along-track error in position and the radial error in velocity very well. While the cross-track error could not be controlled in whole with the low precision measurement of range rate almost helpless against cross-track error in velocity if the observation is single set. And this could be explained by the Hill equation clearly.
     When the short-arc dense observational data is used in differential correction, the precision is improved and the cross-error is controlled well in comparison with the sparse data. And when the unscented Kalman filter (UKF) is applied to update, the filter converges quicker and the precision is higher than that of EKF, especially the cross-track error in velocity could be controlled much better.
     The error propagation resulted from initial deviation could be described by Hill equation to explain the numerical simulation above: the along-track error in position has the linear factor about time so does the radial error in velocity, while the equation of the cross-error is a simple harmonic oscillator. And the initial deviation condition is given by Hill equation to control the error propagation of the TLE generated from the single point. And the condition is consistent with the minimal sum of squares of residuals of the TLE generated from sampling. Also the main divergent factor in initial deviation is separated, which may be operational in selecting TLE.
     The thesis mainly discusses the error propagation and the orbit determination in space surveillance with the cooperation of the SBRs and the GBR, and the achievement could be some help for the design and the development of the national space surveillance system.
引文
[1]United States Space Surveillance Network.From Wikipedia,the free encyclopedia,http://en.wikipedia.org/
    [2]Schumacher P.Prospects for Improving the Space Catalog[C].AIAA 96-4290.1996 AIAA Space Programs and Technologies Conference,September 24-26,Huntsville,AL,1996.
    [3]朱毅麟.空间碎片缓减标准(试拟稿)[J].空间碎片研究,2001,1:29-45.
    [4]http://www.space-track.org
    [5]国防科工委.空间碎片行动计划.2005.
    [6]McCall G H.Space Surveillance[R].Air Force Space Command,2001.
    [7]史仁杰.美国空间监视网[J].空间碎片研究,2006,3:27-32.
    [8]AU Space Primer.Chapter 3 Space Operations and Tactical Application U.S.Navy.2003
    [9]Francoeur A R.Naval Space Surveillance System(NAVSPASUR) Solid State Transmitter Modernization.IEEE 1989,89CH2685-6:147-152.
    [10]http://www.globalsecurity.org/space/
    [11]魏晨曦.俄罗斯的空间目标监视、识别、探测与跟踪系统[J].中国航天,2006,29(8):39-41.
    [12]http://www.onera.fr/synindex-en/graves-radar.html
    [13]Michal T H,Eglizeaud J P,Bouchard J.GRAVES:The New French System for Space Surveillance[C].Proceedings of the European Conference on Space Debris,2005.
    [14]袁振涛,胡卫东,郁文贤等.基于双基地连续波雷达的空间目标监测系统研究[J].空间碎片研究,2008,1:25-32.
    [15]Grant H S,Curt B,Ramaswamy Set al.The Space-Based Visible Program[C].AIAA 2000-5334.AIAA Space 2000 Conference & Exposition,Long Beach,CA,September,2000.
    [16]Office of the Secretary of Defense.Department of Defense Space Technology Guide FY2000-01.(美国国防部空间技术指南,2000-01财政年度.国家高技术航天领域专家委员会编译,2001)
    [17]The U.S.Air Force Transformation Flight Plan,2003.
    [18]Counterspace Operations,Air Force Doctrine Document 2-2.1,2004.
    [19]Paz I,Carl J R,Shaw R W,et al.Design of an Orbital Debris Radar Ground Demonstration[C].1989 IEEE Aerospace Applications Conference.
    [20]Chang K,Pollock M A and Skrehot M K.Space-based Millimeter-wave Debris Tracking Radar.Proc.SPIE,1991,1475:257-266
    [21]Paz I,Stansbery E G,Mclntyre K,et al.Simulation of Orbital Debris Radar Operation Using ALCOR.NASA/JSC publication,JSC-32211,April 1992.
    [22]Paz I,et al.Debris Radar Project:The Ground Test and Demonstration System.NASA/JSC publication,JSC-26111,Dec 1992
    [23]Carl J R,Bourgeois B A,and Paz I.Space-Borne Radar Detection of Orbital Debris[C].IEEE GlobeCom-93 Conference,Dec,1993:939-943.
    [24]Graves R H W.Conceptual Design for Orbiting Debris Detection Radar[J].IEEE AES Systems Magazine,1995,12:19-24
    [25]Houpert A.A Space Based Radar on a Micro-Satellite for In-situ Detection of Small Orbital Debris.Acta Astronautica,1999,44:313-321
    [26]Arndt G D,Bourgeois B A,Carl J R,et al.Signal Processing Requirement For a Space-borne Radar for Detecting Orbital Debris[C].Proc.SPIE,2214:102-110
    [27]Hildebrand A R,Carroll K A,Balam D D,et al.The Near-Earth Space Surveillance(NESS) Mission:Discovery,Tracking and Characterization of Asteroids,Comets and Artificial Satellites With a Microsatellite.Space Resources Roundtable Ⅱ,Jan 2000.
    [28]吴季,孙波.空间碎片的天基雷达观测[J].空间碎片研究,2001,2:31-39.
    [29]Oswald M,Wiedemann C,Wegener P,et al.Space-Based Radars for the Observation of Orbital Debris in GEO[C].Space 2003.AIAA 2003-6294.
    [30]吕洁,吴季,孙波.利用天基雷达观测低地轨道上的危险空间碎片[J].遥感技术与应用,2006,21(2):103-108.
    [31]马志昊.天基空间监视雷达星座设计与任务规划研究[D].国防科学技术大学研究生院.2007
    [32]Hoots F,Schumacher Paul and Glover R.History of Analytical Orbit Modeling in the U.S.Space Surveillance System[J].Journal of Guidance,Control,and Dynamics,2004,27(2):174-185.
    [33]Brouwer D.Solution of the Problem of Artificial Satellite Theory without Drag [J].The Astronomical Journal,1959,64,No.1274:378-397.
    [34]Kozai Y.The Motion of a Close Earth Satellite[J].The Astronomical Journal,1959,64,No.1274:367-377.
    [35]Kozai Y.Note on the Motion of a Close Earth Satellite with a Small Eccentricity [J].The Astronomical Journal,1961,66(3):132-134.
    [36]Brouwer D,Hori G.Theoretical Evaluation of Atmospheric Drag Effects in the Motion of an Artificial Satellite[J].The Astronomical Journal,1961,66(5):193-225.
    [37]Brouwer D,Hori G.Appendix to Theoretical Evaluation of Atmospheric Drag Effects in the Motion of an Artificial Satellite[J].The Astronomical Journal,1961,66(6):264-265.
    [38]Cain B J.Determination of Mean Elements for Brouwer's Satellite Theory[J].The Astronomical Journal,1962,67(6):391-392.
    [39]Kozai Y.Second-Order Solution of Artificial Satellite Theory without Air Drag [J].The Astronomical Journal,1962,67(7):446-461.
    [40]Kozai Y.Secular Perturbation of Asteroids with High Inclination and Eccentricity[J].The Astronomical Journal,1962,67(9):591-598.
    [41]Aoki S.Contribution to the Theory of Critical Inclination of Close Earth Satellites[J].The Astronomical Journal,1963,68(6):355-365.
    [42]Aoki S.Contribution to the Theory of Critical Inclination of Close Earth Satellites.2.Case fo Asymmetrical Potential.[J].The Astronomical Journal,1963,68(6):365-391.
    [43]Izsak I G.A Note on Perturbation Theory[J].The Astronomical Journal,1963,68(8):559-560.
    [44]Kozai Y.New Determination of Zonal Harmonic Coefficients of the Earth's Gravitational Potential[R].Smithsonian Astrophys.Obs.Special Report 165,1964.
    [45]Kozai Y.Note on Expressions for Second-Order Short-Periodic Perturbations[R].Smithsonian Astrophys.Obs.Special Report 234,1966.
    [46]Kozai Y.Lunisolar Perturbations with Short Periods[R].Smithsonian Astrophys.Obs.Special Report 235,1966.
    [47]Lambeck K.Precession,Nutation and the Choice of Reference System for Close Earth Satellite Orbits[J].Celestial Mechanics,1973,7:139-155.
    [48]Kozai Y.Effects of Motion of the Equatorial Plane on the Orbital Elements of an Earth Satellite[J].Celestial Mechanics,1973,7:356-366.
    [49]Hoots F R.Theory of the Motion of an Artificial Earth Satellite[J].Celestial Mechanics,1981,23:307-363.
    [50]Hoots F R.An Analytic Satellite Theory Using Gravity and a Dynamic Atmosphere[J].Celestial Mechanics,1987,40:1-18.
    [51]Lane M H,Fitzpatrick P M,Murphy J J.On the Representation of Air Density in Satellite Deceleration Equations by Power Functions with Integral Exponents.APGC-TDR-62-15,1962.
    [52]Lane M H.The Development of an Artificial Satellite Theory Using Power-Law Atmospheric Density Representation.AIAA Paper 65-35,1965.
    [53]Lane M H,Cranford K H.An Improved Analytical Drag Theory for the Artificial Satellite Problem.AIAA Paper 69-925,1969.
    [54]Lyddane R H.Small Eccentricities or Inclinations in the Brouwer Theory of the Artificial Satellite[J].The Astronomical Journal,1963,68(8):555-558.
    [55]Message P J.On Mr King-Hele's Theory of the Effect of the Earth's Oblateness on the Orbit of a Close Satellite[J].Monthly Notices of the Royal Astronomical Society,1960,121(1).
    [56]King-Hele D.Theory of Satellite Orbits in an Atmosphere[M].Butterworths,London,1964,Chap 4:40-77.
    [57]Arsenault J L,Chaffee L,Kuhlman J R.General Ephemeris Routine Formulation Document[R].ESD-TDR 64-522,1964.
    [58]Hoots F R,Roehrich R L.Models for Propagation of the NORAD Element Sets [R].Project SPACETRACK Rept.3,U.S.Air Force Aerospace Defense Command,Colorado Springs,CO,1979.
    [59]Schumacher P,and R.A.Glover,Analytical Orbit Model for U.S.Space Surveillance:An Overview,AAS/AIAA Astrodynamics Specialist Conference,August 1995.
    [60]刘林.人造地球卫星轨道力学[M].北京:高等教育出版社,1992:257.
    [61]刘林.航天器轨道理论[M].北京:国防工业出版社,2000:222-239
    [62]李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995.125-131
    [63]李济生.航天器轨道确定[M].北京:国防工业出版社,2003:10-14
    [64]James R W.Optimal Orbit Determination.Analytical Graphics.Inc.Technical report.2002.
    [65]Herrick,Samuel.Astrodynamics,Vol.1,Van Nostrand,London,1971.
    [66]Chioma V J.Orbit Estimation Using Track Compression and Least Squares Differential Correction[D].US Air University,1997.
    [67]Danielson D A,Canright D,Perini D N,et al.The Naval Space Command Automatic Differential Correction Process[C].Paper AAS 99-366.
    [68]Marshall P.Least Squares Solutions in Statistical Orbit Determination Using Singular Value Decomposition[D].Naval Postgraduate School,Monterey,California,1999.
    [69]Swerling P.A Proposed Stagewise Differential Correction Procedure for Satellite Tracking and Prediction.P-1292,Rand Corporation,1958.
    [70]Kalman R E.New Methods in Wiener Filtering Theory.Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability.John Wiley & Sons,New York,1963.
    [71]Buoy R S,Joseph,Peter D.Filtering for Stochastic Processes with Applications to Guidance.Interscience Publishers,John Wiley & Sons,New York,1968.
    [72]Jazwinski A H.Stochastic Processes and Filtering Theory.Academic,New York,1970.
    [73]Gelb A,Kasper J,Price C,et al.,Applied Optimal Estimation[M].MIT Press,Cambridge,MA,1974.
    [74]Ljung L.Asymptotic Behavior of the Extended Kalman Filter as a Parameter Estimator for Linear System[J].IEEE Transaction on Automatic Control,1979,AC-24(1):36-50.
    [75]蔡金狮.飞行器系统辨识学[M].北京:国防工业出版社,2003:80-94.
    [76]Dyer P,McReynolds S R.Extension of Square Root Filter to Include Process Noise[J].JOTA,1969,3(6):147-158.
    [77]McReynolds S R.Covariance Factorization Algorithms for Fixed-Interval Smoothing of Linear Discrete Dynamic Systems[J].IEEE Transaction on Automatic Control,1990,35(10):1181-1183.
    [78]Sherman S.A Theorem on Convex Sets with Applications[J].Ann.Math.Stat.,1955,26:763-767.
    [79]Sherman S.Non-Mean-Square Error Criteria[J].IRE Transactions on Information Theory,1958,IT-4.
    [80]Meditch J S.Stochastic Optimal Linear Estimation and Control.McGraw-Hill,New York,1969.
    [81]Four Satellite Breakups in February Add to Debris Population.Orbit Debris Quarterly News,April 2007,11(2):3.(www.orbitaldebris.jsc.nasa.gov)
    [82]Vallado D,Alfano S.A Future Look at Space Surveillance and Operations[C].Space Surveillance Workshop,Washington DC,Oct 20-23,1998.
    [83]Vallado D.Fundamentals of Astrodynamics and Applications[M],2nd ed.,Microcosm Press,CA,2004.
    [84]Fonte D J.HI-Class.1995,Paper STK-235,Vol.1 presented at the Space Surveillance Workshop at MIT Lincoln Laboratory,MA.
    [85]Fonte D J,Chris S.Optimal DSST Input Decks for Various Orbit Types.Phillips Laboratory Technical Report,1995,PL 95-1072.
    [86]Vallado D,Carter S S.Accurate Orbit Determination from Short-arc Dense Observational Data[C].Paper AAS 97-704 presented at the AAS/AIAA Astrodynamics Specialist Conference.Sun Valley,ID,1997.
    [87]Hoots F,France R.The Future of Artificial Satellite Theories-Hybrid Ephemeris Compression Model[J].Celestial Mechanics and Dynamical Astronomy,199766:51-60.
    [88]Neal H L,Coffey S L,Knowles S H.Maintaining the Space Object Catalog with Special Perturbations.AAS 97-687,AAS/AIAA Astrodynamics Meeting,Sun Valley,ID,Aug 4-7,1997(Astrodynamics 1997 v.97 Part Ⅱ,pp.1349-1360).
    [89]Coffey S L et al.Demonstration of a Special-Perturbations-Based Catalog in the Naval Space Command System[C].AAS/AIAA Astrodynamics Specialist Conference,Monterey,1998,CA.AAS 98-113.
    [90]Danielson D A,Sagovac C P,Neta B,et al.Semianalytic Satellite Theory[M].Naval Postgraduate School,Monterey,CA,1995.
    [91]Metris G and Exertier R Semi-analytical Theory of the Mean Orbital Motion[J].Astronomy and Astrophysics,1995,294:278-286.
    [92]Fonte D J,Neta B,Sabol C,et al.Comparison of Orbit Propagators in the Research and Development Goddard Trajectory Determination System(R&D GTDS).Part Ⅰ:Simulated Data[R].August 20,1995.
    [93]Vallado D,Crawford P and Hujsak R.Revisiting Spacetrack Report #3.AIAA 2006-6753.
    [94]Vallado D.An Analysis of State Vector Propagation Using Differing Flight Dynamics Programs[C].AAS 05-199.
    [95]Kaya D A,Peugh J A,Bohannon B C.AFSPC Astrodynamic Standards-The Way of the Future[R].Lincoln Laboratory,2001,No0704-0188.
    [96]Montenbruk O.and Gill E.Satellite Orbits[M],2nd ed.,Springer Press,New York,2001.
    [97]McCarthy,Dennis.IERS Technical Note #13.Naval Observatory,1992.
    [98]McCarthy,Dennis.IERS Technical Note #21.Naval Observatory,1996.
    [99]McCarthy,Dennis.IERS Technical Note #32.Naval Observatory,2003.
    [100]Re-definition of Barycentric Dynamical Time,TDB.IAU 2006 Resolution 3.The ⅩⅩⅥth International Astronomical Union General Assembly.
    [101]Seidelmann,Kenneth.1980 IAU Theory of Nutation:The final Report of the IAU Working Group on Nutation[J].Celestial Mechanics,1982,27(3):79-106.
    [102]Capitaine N,Wallace P T and Chapront J.Expressions for IAU 2000 Precession Quantities.A&A,2003,412:567-586.
    [103]Capitaine N.Implementing the IAU 2006 Resolutions in the Transformation between Celestial and Terrestrial Systems.IERS Workshop on Conventions,BIPM,Septembe 2007.
    [104]Adoption of the P03 Precession Theory and Definition of the Ecliptic.IAU 2006Resolution 1.The ⅩⅩⅥth International Astronomical Union General Assembly.
    [105]Supplement to the IAU 2000 Resolutions on Reference Systems.IAU 2006Resolution 2.The ⅩⅩⅥth International Astronomical Union General Assembly.
    [106]Seago J,Vallado D.Coordinate Frames of the U.S.Space Object Catalogs[C].Paper AIAA 2000-4025.AIAA/AAS Astrodynamics Specialist Conference,Denver Co.
    [107]Montenbruck O,Gill E and Terzibaschian T.Note on the BIRD ACS Reference Frames.DLR-GSOC TN 00-01 Issue 2000/05/01.
    [108]张守信.外弹道测量与卫星轨道测量基础[M].北京:国防工业出版社,1992.
    [109]任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社,1988.
    [110]柳仲贵.空间监视系统设计[D].南京:南京大学硕士学位论文,2001.
    [111]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D].长沙:国防科技大学 博士学位论文,2006:19-31.
    [112]Gelb A,Warren R S.Direct Statistical Analysis of Nonlinear System-CADET [C].AIAA Guidance and Control Conference,1972,Paper 72-875.
    [113]Taylor J H,Price C F.Direct Statistical Analysis of Missile Guidance Systems Via CADET[R].The Analytic Sciences Corporation,1 Aug,1974.
    [114]张金槐.非线性系统误差协方差阵的鞅表示——关于CADET的一个注记[J].飞行器测控技术,1990(1):1-5.
    [115]张金槐.若干非线性滤波的迫近[J].国防科技大学学报.1985(2).
    [116]Junkins J,Akella M,and Alfriend K.Non-Gaussian Error Propagation in Orbital Mechanics.Journal of the Astronautical Sciences.Vol.44,No.4,October-December 1996:541-563.
    [117]Vallado D.Covariance Transformations for Satellite Flight Dynamics Operations [C],Paper AAS-03-526.Presented at the AAS/AIAA Spaceflight Mechanics Conference.Big Sky,MT.
    [118]Bowker A H,Lieberman G J.Engineering Statistics[M].Prentice-Hall,Inc.Englewood Cliffs,NJ,1959.
    [119]Shampine L F,and Baca L S.Fixed versus Variable Order Runge-Kutta[J].ACM Transactions on Mathematical Software,March 1986,12(1):1-23.
    [120]Dormand J R,Prince P J.New Runge-Kutta algorithms for numerical simulation in dynamical astronomy[J].Celestial Mechanics,1978,18:223-232.
    [121]Dormand J R,Prince P J.A family of embedded Runge-Kutta formulae[J].Journal of Computational and Applied Mathematics,1980,6(1):19-26.
    [122]Dormand J R,Prince P J.Runge-Kutta triples[J].Computers and Mathematics with Applications,1986,12A:1007-1017.
    [123]Dormand J R,Prince P J.Runge-Kutta-Nystr(o|¨)m triples[J].Computers and Mathematics with Applications,1987,13A:937-949.
    [124]Dormand J R,Prince P J.Priactical Runge-Kutta Processes[J].SIAM J.Sci.Stat.Comput.,1989,5:977-989.
    [125]Dormand J R,El-Mikkawy M E A,Prince P J.High Order Embedded Runge-Kutta-Nystr(o|¨)m Formulae[J].IMA J.Numer.Anal.,1987,7:425-430.
    [126]Brankin R W,Dormand J R,Gladwell I,et al.A Runge-Kutta-Nystr(o|¨)m Code[R].Num.Anal.Rep.136,University Manchester,1987.
    [127]肖峰.球面天文学与天体力学基础[M].长沙:国防科技大学出版社,1989.
    [128]Hoots F R,Crawford L L,Roehrich R L.An Analytic Method to Determine Future Close Approaches between Satellites[J].Celestial Mechanics,1984,33(2):143-158.
    [129]张金槐,蔡洪.飞行器试验统计学[M].长沙:国防科技大学出版社,1995:148-149.
    [130]Julier S J,Uhlmann J K and Durrant-Whyte H.A New Approach for Filtering Nonlinear Systems[C].Proceedings of the American Control Conference,1995:1628-1632.
    [131]Julier S J,Uhlmann J K.A New Method for the Nonlinear Transformation of Means and Covafiances in Filters and Estimators[J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
    [132]Julier S J,Uhlmann J K.Unscented Filtering and Nonlinear Estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
    [133]Wang G,Xiu J,and HE Y.An Unbiased Unscented Transform Based Kalman Filter for 3D Radar.Chinese Journal of Electronics,2004,13(4):697-700.
    [134]Cui P,Cui H,Huang X,et al.Autonomous determination of orbit for probe around asteroids using unscented Kalman filter[J].Journal of Harbin Institute of Technology(New Series),2003,10(3):229-234.
    [135]徐慧娟,吴美平,罗兵.EKF和UKF在INS/GPS组合导航申的应用分析[J].航天控制,2006,24(6):7-10.
    [136]傅建国,王孝通,金良安等.Sigma点卡尔曼滤波及其应用[J].系统工程与电子技术,2005,27(1):141-144.
    [137]Savage C O,Cramer R L,Schmitt H A.TDOA Geolocation with the Unscented Kalman Filter.IEEE 2006,1-4244-0065-1:602-606.
    [138]Tenne D,Singh T.The Higher Order Unscented Filter.IEEE 2003,0-7803-7896-2:2441-2446.
    [139]周桃庚,郝群.U-卡尔曼滤波在状态估计中的应用[J].仪器仪表学报,2004,24(4S):410-412.
    [140]Lei M,Han C.UKF-Based Target Tracking Using Direct Doppler Measurements [J].Chinese Journal of Electronics,2000,15(4):654-659.
    [141]王淑一,程杨,杨涤等.UKF方法及其在方位跟踪问题中的应用[J].飞行力学,2003,21(2):59-62.
    [142]张红梅,邓正隆.UKF方法在陆地车辆组合导航中的应用[J].中国惯性技术学报,2004,12(4):20-23.
    [143]练军想,吴文启,李涛等.UKF滤波技术在AUV组合导航中的应用研究[J].中国惯性技术学报,2005,13(1):30-34.
    [144]冯志全,孟祥旭,蔺永政.UKF滤波器的强跟踪性研究[J].小型微型计算机系统,2006,27(11):2142-2145.
    [145]吴玲,卢发兴,刘忠.UKF算法及其在目标被动跟踪中的应用[J].系统工程与电子技术,2005,27(1):49-51.
    [146]Tsogas M,Polychronopoulos A,Amditis A.Unscented Kalman Filter Design for Curvilinear Motion Models Suitable for Automotive Safety Applications[C]. IEEE 2005,0-7803-9286-8.
    [147]刘元,谢京稳,刘利生等.Unscented Kalman滤波在空间飞行器被动测距中的应用[J].飞行器测控学报,2005,24(2):49-55.
    [148]唐波,崔平远,陈阳舟.Unscented卡尔曼滤波在状态估计中的应用[J].计算机仿真,2006,23(4):82-84.
    [149]张树春,胡广大,刘思华.关于UKF方法的新探索及其在目标跟踪方面的应用[J].控制理论与应用,2006,23(4):569-574.
    [150]周战馨,高亚楠,陈家斌.惯导初对准中的平方根无轨迹卡尔曼滤波[J].北京理工大学学报,2005,25(11):941-943.
    [151]李少军,王宏,柴天佑.基于t-分布粒子滤波器的目标跟踪[J].机器人,2006,28(6):598-604.
    [152]管旭军,芮国胜.基于UKF的单站无源定位算法[J].电光与控制,2004,11(1):34-36.
    [153]宁晓菊,梁军利.基于UKF的高斯和滤波算法[J].计算机仿真,2006,23(12):100-103.
    [154]刘军,韩潮.基于UKF的雷达高度计自主定轨.北京航空航天大学学报,2006,32(8):889-893.
    [155]张涛,安玮,周一宇.基于UKF的主动段弹道跟踪算法.弹道学报,2006,18(2):15-18.
    [156]王建琦,曹喜滨,孙兆伟.基于UKF算法的航天器自主导航研究.飞行力学,2004,22(2):41-44.
    [157]姜雪原,马广富.基于平方根Unscented卡尔曼滤波的无陀螺卫星的姿态估计.南京理工大学学报,2005,29(4):399-402.
    [158]张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法.航空学报,2004,25(6):598-601.
    [159]胡峰.线性随机系统Kalman滤波的野值修正[J].飞行器测控技术,1996(2):5-9.
    [160]中山大学数学系.概率论及数理统计[M].北京:人民教育出版社,1980.
    [161]http://celestrak.com/
    [162]Osweiler V P.Covariance Estimation and Autocorrelation of NORAD Two-Line Element Sets[D].Air Force Institute of Technology,Wright-Patterson Air Force Base,Ohio,2006.
    [163]Walter H.Conversion of Osculating Orbital Elements into Mean Elements[J].The Astronomical Journal.Vol.72,No.8.October 1967:994-997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700