聚醚醚酮/羟基磷灰石复合涂层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚醚醚酮(PEEK)优良的力学性能和羟基磷灰石(HA)的生物活性已引起医学专家和材料学专家的广泛关注,目前PEEK/HA复合材料已广泛被学者研究,但是HA在复合材料中的含量过高将降低复合材料的力学性能,故在基体PEEK上附着HA涂层被认为是一种有应用前景的生物材料,它综合利用了HA涂层的生物活性和基体PEEK的力学性能。目前对在基体PEEK上附着HA涂层的研究还较少,本研究为在PEEK上高温烧结制备性能优异的PEEK/HA复合涂层材料。
     首先用不同含量(1wt.%、2wt.%、3wt.%和4wt.%)的偶联剂KH560对羟基磷灰石进行表面改性,通过傅氏转换红外线光谱分析仪(FTIR)表征可知:当KH560含量为2wt.%时,它对羟基磷灰石的改性效果达到饱和;通过X射线衍射仪(XRD)分析表明KH560不会影响羟基磷灰石的晶体结构。
     然后通过溶液共混法制备PEEK/HA和PEEK/KH560-HA(HA含量为45wt.%)复合材料,然后倾倒在基板PEEK(25mm×6mm×3mm)上,然后放在高温270℃烧结8min制备出具有复合涂层的材料,随后对其通过热处理提高材料的力学性能。对不同热处理条件下制得的复合涂层材料进行XRD表征分析,其结果表明:随着热处理温度的升高和时间的延长,基板PEEK的表面结晶度增加。力学性能分析结果表明:PEEK/HA和PEEK/KH560-HA复合涂层材料样品的拉伸强度均小于无涂层样品的拉伸强度,且PEEK/KH560-HA复合涂层样品的拉伸强度和韧性均优于PEEK/HA复合涂层样品的拉伸强度和韧性。这说明了用KH560对HA进行表面改性的必要性,KH560引入改善了基体PEEK与HA之间的界面结合性能。随着热处理温度的升高和时间的延长,提高了PEEK/HA和PEEK/KH560-HA复合涂层材料的拉伸强度,这与结晶度的变化相对应。
     最后,本文通过扫描电子显微镜的配套仪器能谱仪(EDS)分析试样的复合涂层部分可知:经KH560改性的HA较均匀地分散在基体PEEK中且KH560-HA与涂层中的基体PEEK结合紧密;通过扫描电子显微镜研究拉伸断裂和弯曲断裂的断面形貌表明:PEEK/HA和PEEK/KH560-HA复合涂层与基板PEEK结合均紧密,这表明通过高温烧结和后续的热处理能制备出兼具良好的生物活性和力学性能的PEEK/HA复合涂层材料。
HA/PEEK biocomposite materials have been recently investigated due to the favorable biocompatibility of hydroxyapatite (HA) and good mechanical properties of polyetheretherketone (PEEK) polymers. However, a large HA content in PEEK composites could deteriorate the mechanical properties of the composite materials, therefore, HA-coated PEEK is a promising implant material to meet the needs of both good mechanical properties and excellent bioactivity. So far HA-coated PEEK has not been studied in depth. In this thesis bioactive HA/PEEK coatings were fabricated successfully by a high temperature sintering process, and the good properties were expected.
     The HA particles were modifed by the different content (1wt.%, 2wt.%, 3wt.%, and 4wt.%) of silane coupling agent (KH560), and the silane modified HA particles were characterized by fourier transform infrared spectroscopy (FTIR). The results show that 2wt.% KH560 can play the best performance. What’s more, the result of X-ray diffraction (XRD) analysis show that KH560 has not influenced the HA crystal structure.
     The PEEK/HA and PEEK/KH560-HA (HA content is 45wt.%) composite materials were prepared by a solution blending method. These composite were placed on the PEEK substrate (25mm×6mm×3mm), and samples with PEEK/HA and PEEK/KH560-HA composite coatings were prepared after sintering at 270℃for 8min in furnace. XRD results show that the crystallinity of PEEK substrate increased with the increase of the temperature and time of heat treatment. The mechanical properties of different samples were measured, and the results illustrated that the tensile strength of samples with PEEK/HA and PEEK/KH560-HA composite coatings decreased, compared with the samples without coatings, and the samples with PEEK/KH560-HA composite coatings show higher tensile strength and toughness than the samples with PEEK/HA composite coatings, which explained the necessity of the surface modification of HA with KH560. With the increase of the temperature and time of heat treatment, the tensile strength of samples with PEEK/HA and PEEK/KH560-HA composite coatings was enhanced, which was alterated in accordance with crystallinity.
     The microstructure of the tensile and bending fracture section of the composites was observed using scanning electron microscope (SEM), and the composition of the composite coatings of samples with modified HA by KH560 were investigated by energy dispersive spectrometer (EDS). These results show that the good adhesion between PEEK/HA or PEEK/KH560-HA composite coatings and the PEEK substrate was achieved, therefore, the composite coating materials with both high mechanical properties and good bioactivity can be prepared by this coating process.
引文
[1]唐锋意,周正诚.生物医用材料及其应用前景[J].右江民族医学院学报,2009,(5):893-894.
    [2]杨春莉.羟基磷灰石表面改性、功能化及其应用研究[D].浙江:浙江大学博士论文,2009:16-20.
    [3]宋禹奠.溶液共混法制备聚醚醚酮/羟基磷灰石复合材料[D].深圳:哈尔滨工业大学深圳研究生院学位论文,2010:16-19,37-42.
    [4]邓迟,李秀芬,邓敏等.生物材料表面改性的研究进展[J].乐山师范学院学报,2009,19(5):78-81.
    [5]刘敬肖,杨大智,王伟强等.表面改性在生物医用材料研究中的应用[J].材料研究学报,2000,14(3):225-233.
    [6] Huang Yuhong, Zheng Haixing. Audrey Lin et al. Functionalization of Implant Surface[J]. Rare Metal Materials and Engineering,2010,39(2):1-9.
    [7]付涛,张玉梅,憨勇等.羟基磷灰石生物涂层的复合制备与生物相容性[J].无机材料学报,2001,16(3):522-528.
    [8]申剑锋,常程康,毛大立等.羟基磷灰石涂层材料的制备及其性能表征[J].无机材料学报,2001,16(5):993-998.
    [9]徐益,秦传江,赵柏森等.钛基羟基磷灰石涂层的界面结构及梯度设计[J].表面技术,2005,34(1):58-61.
    [10] Siddharth M Vyawahare. Protective Thermal Spray Coatings for Polymer Matrix Composites[D]. India: The Degree of Master from Pune University,2003:22-32.
    [11]程怀兵.类金刚石薄膜血液相容性及人脐静脉内皮细胞种植实验研究[D].安徽:安徽医科大学硕士学位论文,2008:15-16.
    [12] Suzanne Kemp Coco, D.D.S. Mechanical and Histological Study of Functionally Graded Hydroxyapatite Implant Coatings[D]. The Degree Master of Dental Science from the University of Tennessee,2008:12-13.
    [13]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000:13.
    [14]王文静,黄剑锋,李颖华等.生物材料中基体及涂层材料的理论研究与进展[J].中国组织工程研究与临床康复,2010,14(3):505-508.
    [15]王迎军,宁成云,赵子衷等.生物活性梯度涂层中羟基磷灰石的相转变与结构稳定性[J].硅酸盐学报,1998,26(5):656-660.
    [16]戴建平,刘金龙,刘爱辉.人工关节材料及其改性研究[J].淮阴工学院学报,2010,19(5):10-13.
    [17] B.J. Meenan, C. Mcclorey, M. Akay. Thermal Analysis Studies of Poly(etheretherketone)/hydroxyapatite biocomposite mixtures[J]. J. Mater. Sci.-Mater. Med.,2000,11:481-489.
    [18] Baidya KP, Ramakrishna S, Rahman M, et al. Quantitative Radiographic Analysis of Fiber Reinforced Polymer Composites[J]. J. Biomater. Appl.,2001,15(3):279-289.
    [19] M.S.Abu Baker, P. Cheang, K.A. Khor. Tensile Properties and Micro structural Analysis of Spheroid Hydroxyapatite/Poly(etheretherketone) Biocomposites[J]. Mater. Sci. Eng., A.,2003,345(1-2):55-63.
    [20] S.M. Tang, P. Cheang, M.S. Abu Baker et al. Tension-tension Fatigue Behavior of Hydroxyapatite Reinforced Polyetheretherketone Composites[J]. Int. J. Fatigue,2004,26(1):49-57.
    [21] Converse GL, Yue W, Roeder RK. Processing and Tensile Properties of Hydroxyapatite-Whisker Reinforce Polyetheretherketone[J]. J. Appl. Biomater.,2007,28(6):927-935.
    [22] Briem D, Strametz S, Schroder S, et al. Response of Primary Fibroblasts and Osteoblast to Plasma Treated Polyetheretherketone(PEEK)Surface[J]. J. Mater. Sci. Mater. Med.,2005,16(7):671-677.
    [23] Sagomonyants KB, Jarman-Smith ML, Devine JN, et al. The in Vitro Response of Human Osteoblasts to Polyetheretherketone(PEEK) Substrates Compared to Commercially Pure Titanium[J]. J. Appl. Biomater.,2008,29(11):1563-1572.
    [24] M.S.Abu Baker, P. Cheang, K.A. Khor. Mechanical Properties of Injection Molded Hydroxyapatite Polyetheretherketone Biocomposites[J]. Compos. Sci. Technol.,2003,63(3-4):421-425.
    [25] M.S.Abu Baker, P. Cheang, K.A. Khor. Thermal Processing of Hydroxyapatite Reinforced Polyetheretherketone Composites[J]. J. Mater. Process. Technol.,1999,89:462-466.
    [26] M.S.Abu Baker, M.H.W.Cheng, S.M. Tang, et al. Tensile Properties, Tension-Tension Fatigue and Biological Response of Polyetheretherketone Hydroxyapatite Composites for Load-Bearing Orthopedic Implants[J]. J. Appl. Biomater.,2003,24(13):2245-2250.
    [27] Yu S, Hariram KP, Kumar R, et al. In Vitro Apatite Formation and Its Growth Kinetics On hydroxyllapatite/Polyetheretherketone[J]. Biomaterials,2005,26(15):2343-2352.
    [28]邓余琴,谢美菊,余自力.纳米羟基磷灰石的预处理及在聚醚醚酮中的分散性[J].高分子材料科学与工程,2009,25(5):89-92.
    [29]冯惺,隋国鑫,杨锐. PEEK-HA-CF复合材料的力学性能和体外生物活性[J].材料研究学报,2008,22(1):18-25.
    [30]徐淑华,罗承萍,王迎军.羟基磷灰石生物活性梯度涂层材料的界面特点[J].中国有色金属报,2002,12(2):163-167.
    [31]梁芳慧,周廉.钛和钛合金生物活化研究现状[J].稀有金属材料与工程,2003,32(4):241-243.
    [32]张钊,赵玉涛,林东洋等.射频磁控射技术制备羟基磷灰石生物涂层及其微观结构[J].硅酸盐学报,2004,32(7):84-93.
    [33] Wolke, J., K. De Groot, et al. In Vivo Dissolution Behavior of Various RF Magnetron Sputter Ca-P coatings[J]. J Biomed Mater Res.,1998,39(4):524-530.
    [34]陈民芳,刘技文,王玉红.射频磁控溅射HA/TiO2复合生物膜的制备和表征[J].复合材料学报,2003,(6):52.
    [35] Thiana E S, Huanga J, Besta S M, et al. Magnetron Co-sputtered Silicon- Containing Hydroxyapatite Thin Films-An Invitro Study[J]. Biomaterials,2005,26(16):2947-2956.
    [36] KUO M C, YEN S K. The Process of Electro Chemical Deposited Hydroxyapatite Coatings on Biomedical Titanium at Room TemperaturelJ]. Mater. Sci. Eng., C,2002,20(1-2):153-160.
    [37]黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展[J].硅酸盐学报,2003,31(6):591-596.
    [38]韩建业,于振涛,周廉.溶胶凝胶法制备羟基磷灰石/TiO2复合生物活性涂层的研究[J].硅酸盐通报,2008,27(2):334-339.
    [39]韩建业,于振涛,周廉.溶胶凝胶法制备羟基磷灰石/TiO2复合生物活性涂层及其体外活性[J].硅酸盐通报,2008,37(4):551-554.
    [40]龚沛,王欣宇,郭洁.仿生法制备纯镁/羟基磷灰石复合涂层的研究[J].生物骨科材料与临床研究,2008,5(4):39-42.
    [41] [41]杨灵芳,左禹.类仿生溶液中电沉积羟基磷灰石涂层机理的探讨[J].北京化工大学学报,2009,36(1):55-58.
    [42]廖建国,王学江,左奕等.硅烷偶联剂对纳米羟基磷灰石表面改性的研究[J].无机材料学报,2008,23(1):145-149.
    [43] Zhang S M, Liu J, Zhou W, Cheng L, Guo X D. Interfacial Fabrication and Property of Hydroxyapatite/Polylactide Resorbable Bone Fixation
    [44]邓纯博,刘学勇,刘冬研等. PEEK复合材料的力学性能及对成骨细胞增殖影响的实验研究[J].中国现代医学杂志,2009,19(23):3560-3563.
    [45]王晶彦,李慕勤.偶联剂改性对多孔生物材料的影响研究[J].佳木斯大学学报,2010,28(5):736-739.
    [46] R. Zhou, D.H. Lu, Y.H. Jiang, Q.N. Li. Mechanical Properties and Erosion Wear Resistance of Polyurethane Matrix Composites[J]. Wear,2005,(259):679-680.
    [47]胡福增.材料表面与界面[M].上海市:华东理工大学出版社,2008:157-164.
    [48] Menaa, B., M. Mizuno, et al. Polycarboxylic Acids As Network Modifiers for Water Durability Improvement of Inorganic-Organic Hybrid Tin-Silico-Phosphate Low-melting Glasses[J]. J. Solid State Chem.,2006,179(2):492-499.
    [49] H.Niida,M. Takahashi, T. Uchino, T. Yoko. Preparation and Structure of Organic-Inorganic Hybrid Precursors for New Type Low-Melting Glasses[J]. J. Non-Cryst. Solids,2002,306(3):292-299.
    [50] Roeder, R. K., G. L. Converse, et al. Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes[J]. JOM,2008,60(3):38-45.
    [51]刘廷岳,金石,潘强余等.热处理对聚醚醚酮力学性能影响的研究[J].北京服装学院学报,1992,12(2):36-40.
    [52]冯海兵,付静,欧迎春等.热处理对透明耐磨有机/无机复合涂层性能的影响[J].上海涂料,2007,45(6):7-10.
    [53]刘天西,张宏放,韩平等.热处理对聚醚醚酮晶体结构参数及结晶度的影响[J].高等学校化学学报,1996,(7):1142-1146.
    [54]莫志深,张宏放. X射线衍射方法测定聚合物结晶度[J].高分子材料科学与工程,1998,(3):9-20.
    [55]郑扣松. HA生物活性涂层的制备和性能研究[D].湖北:华中科技大学硕士论文,2006:24-32.
    [56]王林.纳米羟基磷灰石的制备、改性及其填充聚醚醚酮生物复合材料的性能研究[D].深圳:哈尔滨工业大学深圳研究生院硕士论文,2006:33-42.
    [57]傅政.高分子材料强度及破坏行为[M].北京:化学工业出版社,2005:39-40,47-48,83-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700