风电并网电力系统充裕性决策模型和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大规模风电并网给以传统的电力系统可靠性理论为基础的电力系统规划和运行决策带来了新问题。电力系统可靠性包括充裕性和安全性两个方面。充裕性是指电力系统稳态运行时,在元件额定容量、母线电压和系统频率等允许的范围内,考虑系统中元件计划停运及合理的非计划停运的条件下,向用户提供全部所需的电力和电量的能力。与传统电源不同,风电的逆调峰性、随机性和间歇性造成风电并网电力系统的充裕性决策问题更加复杂;虽然从节能减排的意义上看,大规模风电并网改善了电源结构,但从可靠性乃至经济性的角度来看,充裕性保障未必优化,而且还使得互联电网输电断面的充裕性面临更大的不确定性。本文以风电场投资建设的时序优化、互联电网输电断面的可靠性裕度优化和容量效益裕度优化等为侧重点,围绕风电并网电力系统的充裕性决策模型和方法开展研究,以期为大规模风电并网电力系统的充裕性保障提供决策工具。在当前我国乃至全球大力发展风电的形势下,本论文领域的科学研究不仅具有学术价值,而且具有重要的现实意义。
     论文的主要研究工作和取得的创新性成果如下:
     为保证系统调峰容量的充裕性,提出风电场群时序规划的思想以及规划模型和方法。针对待建风电场与常规机组在投建时机上的协同,考虑风电场间的风速相关性,定义了投资时序矩阵和投运状态矩阵用以刻画风电场群和常规机组在投资与运行中的时序关联关系;采用调峰能力缺额风险值(value at risk, VaR)指标量度投资时序的调峰容量充裕性风险,并提出计及风速相关性的调峰充裕性风险评估方法;采用期权组合价值衡量风电场群投资时序的经济性,并建立考虑风电投资成本学习效应的投资时序经济性评估模型;构建统筹风电场群投资经济性和调峰充裕性风险的双层模型,引入风险当量系数解释模型中罚因子的技术经济意义;通过算例分析验证模型和方法的有效性。
     基于保险理论建立风电并网互联系统的输电可靠性裕度(Transmission Reliability Margin, TRM)决策模型。借鉴广义保险理论,提出TRM虚拟保险的概念以实现对可靠性和经济性的广义量度,将含风电互联系统TRM决策问题转化为虚拟保险最优购买决策问题分析建模;引入效用函数问接刻画决策者的可靠性偏好,运用保险资产选择理论建立决策模型;通过蒙特卡罗模拟评估模型参数。以IEEE30节点算例分析验证了上述方法和模型的有效性和自身优势。
     应用期权理论建立计及可中断负荷的含风电互联系统容量效益裕度(Capacity Benefit Margin, CBM)决策模型。在研究含风电互联系统中备用增量可靠性价值的基础上,提出备用增量期权的概念,进而提出将计及可中断负荷的含风电互联系统CBM决策问题转化为备用增量期权组合的最优购买决策问题建模的思想,以实现决策模型对多种决策影响因素的有机统合。针对备用增量期权具有以发电容量事故发生为行权触发条件、可多次行权且受行权次序制约的奇异期权特征,为化解由奇异期权特征所造成的备用增量期权组合价值衡量的困境,进一步提出备用增量期权组合单元化分解重组的思路,建立以单元期权组合序列价值最大化为目标的决策模型。RTS-79系统算例验证了该模型的有效性和自身优势。
     保障风电并网电力系统充裕性需要充裕性资源的协同策略。风电大规模集中接入模式下,从资源调用灵活性的角度出发,界定并识别电力系统发电、输配电、用电等环节上的灵活型充裕性资源,提出协同灵活充裕性资源以促进风电消纳的理念。在此基础上,建立综合考虑火电、水电和风电发电技术特性、电力和热力负荷平衡、输电容量等多种约束的风电消纳能力分析模型。实际算例模拟分析了不同类型灵活资源对系统风电消纳能力的影响。
     在风电经由微电网分散接入模式下,考虑微电网对配电网充裕性的互济效应,提出了刻画充裕性互济效应的微电网“成岛能力”指标及其计算方法,建立了计及互济效应的含微电网的配电网网架柔性规划模型。将改进的细菌群体趋药性(BCC)算法应用于模型求解,提出基于sigmoid函数的布尔困境解决策略和基于操纵子理论的孤岛、孤链和环网判断修复策略。IEEE54节点算例验证了模型的适用性和改进BCC算法的有效性。
With the integration of large-scale wind power, new problems arise from electric power system planning and operation decisions based on the traditional power system reliability theory. Reliability of power system includes two aspects, namely, adequacy and security. Adequacy of an electric power system is defined as the power and energy supply capability of power system for the user in the allowable ranges of components rated capacity, bus voltage and frequency considering planned and unplanned outage of components under the condition of power system steady-state operation. Different from traditional power, the characteristics of wind power such as inverse peak-regulation, randomness and intermittent output result in the complexity of decision about adequacy. Although the integration of large-scale wind power improves the power structure in the sense of energy saving and emission reduction, there is still optimization space in decision about adequacy safeguarding, and uncertainty of adequacy on transmission section increases, too. In order to provide decision-making tools for adequacy safeguarding, adequacy decision-making models and methods were researched around the optimization problems such as construction timing of clustering wind farms, transmission reliability margin and capacity benefit margin on the transmission section in the interconnected power system. In the current situation of developing wind power at home and abroad, research in this paper has not only academic value but also important practical significance.
     Main research work and innovative achievements obtained in the paper are as follows:
     In order to ensure the adequacy of peak regulation capacity, timing planning thought, models and methods of wind farms were proposed. Taking the correlation of wind speed and coordination of construction time into account, the relationship between investment and operation of wind farms and conventional units was depicted with investment timing matrix and operation state matrix. The index of value at risk (VaR) of peak-load regulating capacity vacancy was presented to measure the adaptability risk and risk assessment method considering correlation of wind speed was proposed. The value of options portfolio was introduced to measure the economy of investment timing of clustering wind farms, and economic value evaluation model was established considering the learning effect. Based on the above study, bi-level programming model was built to realize the organic unity of investment economy and adaptability risk of peak-load regulation and risk equivalent coefficient was introduced to endow the penalty factor with definite techno-economic significance. Mixed algorithm of Monte-Carlo simulation and genetic algorithm was proposed to solve the above model. The study results on IEEE30test system shows that the proposed models and methods are feasible and effective.
     Generalized insurance theory was applied to develop a new TRM decision model suitable for interconnected grid with wind power integrating. In order to measure the generalized reliability and economy, the concept of TRM virtual insurance was put forward. And by application of this concept, the problem of optimum TRM decision was reconstructed into the problem of optimum purchase decision of virtual insurance. With the introduction of utility function, reliability preference was indirect described. Optimum purchase decision model was proposed on the basis of theory of assets choice, and Monte-Carlo simulation method was used to evaluate the model parameters. A case study of IEEE30bus verifies the effectiveness and advantages of the model proposed.
     To adapt to the new characteristics of the decision-making problem of capacity benefit margin for interconnected system with wind power integrating, methods and models based on option theory were proposed. Reliability value of generation reserve increment was researched, and the concept of virtual reserve increment option was put forward. The problem of CBM decision was brought into the analytical framework of optimum purchase decision of options portfolio, so that multiple factors influencing decision could be given all-round consideration effectively. Due to the exotic characteristics of reserve increment options, such as trigger conditions, times and order of execution, value evaluation of options portfolio encountered difficulties. Due to the exotic characteristics of reserve increment options, such as trigger conditions, times and order of execution, value evaluation of options portfolio encountered difficulties. A case study of modified IEEE-RTS79verifies the effectiveness and advantages of the model proposed.
     Coordination strategy of adequacy resources is necessary to safeguard the adequacy of Electricity Power System with Wind Power Integrating. Under the concentrated mode of large-scale wind power integration, from the viewpoint of delimitating and identifying flexible adequacy resources, the basic idea and method were proposed that flexible adequacy resources in the links of power generation, transmission, distribution and consumption should be coordinated so as to promote digestion of wind power. Comprehensively considering technical characteristics of various power generations and such constrains as the balance of power, thermal loads and transfer capacity, a model was built to analyze wind power accommodation capacity of power grid. Taking a certain province in China, which is rich in wind power resources, as calculation example, the changes of wind power accommodation capability were simulated and analyzed under different scenes of introducing in different flexible resources. Results of simulation and analysis show that the accommodation capability of wind power can be improved by increasing various flexible resources in which the resource of peak load regulation capacity plays the most important part.
     Under the scattered integration mode of wind power via micro grid, the concept of 'island-shaping ability' was put forward to describe the'mutual-aiding effect', and its calculation method was also proposed. Considering the'mutual-aiding effect', a distribution network flexible planning model containing MG was established. Improved bacteria colony chemotaxis (BCC) algorithm was applied to solve the above model. Sigmoid function was adopted to solve the Boolean dilemma and the judgment and recovery strategy for the infeasible solutions arising from the iterative process was presented, which was based on operon theory and could repair the islands, isolated chains and rings simultaneously. IEEE54example shows the applicability of the model, and the effectiveness and feasibility of the improved BCC algorithm in the distribution network programming containing MG.
引文
[1]国家电力监管委员会.2011年风电安全监管报告[R].北京:2011
    [2]http://www.coal.com.cn/Gratis/2012-3-23/ArticleDisplay_297961.shtm
    [3]中华人民共和国国家发展和改革委员会.DL/T861-2004.中华人民共和国电力行业标准电力可靠性基本名词术语[R].北京:中国电力出版社,2004
    [4]李文沅.电力系统风险评估模型、方法和应用[M].北京:科学出版社,2006
    [5]Billinton. R, Allan R. N, Reliability Evaluation of Power Systems [M]. New York: Plenum press,1996
    [6]郭永基.可靠性工程原理[M].北京:清华大学出版社,2002
    [7]袁季修.电力系统安全稳定控制[M].北京:中国电力出版社,1996
    [8]R. Billinton, L. Gan. Use of Monte Carlo Simulation in Teaching Generating Capacity Adequacy Assessment [J]. IEEE Transactions on Power Systems,1991, 6 (4):1571-1577
    [9]蔡亮,向铁元,黄辉.发电系统可靠性评估的盲数模型和指标[J].电网技术,2003,27(8):29-32
    [10]Roy Billinton, Rajesh Karki. Application of Monte Carlo Simulation to Generating System Well-being Analysis [J]. IEEE Transactions on Power Systems,1999,14 (3):1172-1177
    [11]Roy Billinton, Bagen. A Sequential Simulation Method for the Generating Capacity Adequacy Evaluation of Small Stand-Alone Wind Energy Conversion Systems [A]. Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering:72-77
    [12]Billinton. R, Dange Huang. Peaking Unit Considerations in Generating Capacity Adequacy Assessment[C]. Electrical and Computer Engineering, Canadian Conference,2006,5:386-389
    [13]Ivar Wangensteen, Audun Botterud, Nils Flatabq. Power System Planning and Operation in International Markets—Perspectives from the Nordic Region and Europe [J]. Proceedings of the IEEE, Vol.93, No.11, November 2005:2049-2059
    [14]T. Sawa, T. Furukawa, M. Nomoto, etc. Automatic Scheduling Method Using Tabu Search for Maintenance Outage Tasks of Transmission and Substation System with Network Constraints [J]. IEEE Transactions on Power Systems,2000,12(3): 1172-1177
    [15]T. Creemers, L. Ros, J. Riera, et al. Smart schedules streamline distribution maintenance [J]. IEEE Computer Applications in Power,1998,11(3):48-53
    [16]Tande J O G. Impact of large scale wind power on system adequacy in a regional power system with weak interconnections [A]. Power Engineering Society General Meeting [C],2007:1-4
    [17]Atwa, Y. M, ElSaadany. E. F, Guise. A. C. Supply Adequacy Assessment of Distribution System Including Wind-Based DG During Different Modes of Operation[J]. IEEE Transactions on Power Systems,2010,25(1):78-86
    [18]D'Annunzio C, Shun-Hsien H, Santoso S. Generation adequacy assessment of power systems with wind generation:A system operations perspective [A]. Power & Energy Society General Meeting [C],2009:1-7
    [19]Lingfeng W, Singh C. Adequacy assessment of power-generating systems including wind power integration based on ant colony system algorithm [J]. Power Tech, 2007,25(1):1629-1634
    [20]Billinton R, Guang B. Generating capacity adequacy associated with wind energy [J]. IEEE Transactions on Energy Conversion,2004,19(3):641-6461998, 11(3):48-53
    [21]Miranda, M S, Dunn R W. Spatially Correlated Wind Speed Modelling for Generation Adequacy Studies in the UK[J]. Power Engineering Society General Meeting,2007:1-6
    [22]Billinton R, Hua C. Effect of wind turbine parameters on the capacity adequacy of generating systems using wind energy [A]. Communications, Power and Computing Conference Proceedings[C]. WESCANEX, IEEE,1997:47-52
    [23]文福拴,吴复立,倪以信.电力市场环境下的发电容量充裕性问题[J].电力系统自动化,2002,26(19):16-22
    [24]鲁刚.电力市场环境下中长期发电容量充裕性问题的研究[D].杭州:浙江大学,2008
    [25]蒋东荣.电力市场环境下发电容量充裕性问题研究[D],成都:西南交通大学,2006
    [26]鲁刚,文福拴,薛禹胜.电力市场环境下的发电容量充裕性(一)单一能量市场情形[J].电力系统自动化,2008,32(20):5-10
    [27]鲁刚,文福拴,薛禹胜.电力市场环境下的发电容量充裕性(二)几种现有方法的分析[J].电力系统自动化,2008,32(21):1-7
    [28]鲁刚,文福拴,薛禹胜.电力市场环境下的发电容量充裕性(三)市场设计要素 与原则[J].电力系统自动化,2008,32(22):12-18
    [29]王勇,钟志勇,文福拴,黄杰波.发电装机容量市场适当价格水平的确定[J].电力系统自动化,2005,29(9):5-10
    [30]王勇.电力市场环境下发电投资决策与容量充裕性问题的研究[D].杭州:浙江大学,2005
    [31]王勇,文福拴,钟志勇,黄杰波.基于实物期权理论的发电投资决策和容量充裕性评估[J].电力系统自动化,2005,29(19):1-9
    [32]李萍,龚乐年,燕敏.电力市场发电容量充裕度分析系统设计[J].电力系统自动化,2006,30(13):47-50
    [33]赵新宇,王锡凡,陈皓勇.火电厂投资风险决策的模型与整体框架[J].中国电机工程学报,2004,24(8):7-11
    [34]王文,贺峰,李远德,等.PGA在水火电混合系统电源规划中的应用[J].电力系统及其自动化学报,2003,15(5):14-18
    [35]赵新宇,王锡凡,陈皓勇.火电厂投资风险决策的算法和灵敏度分析[J].中国电机工程学报,2004,24(10):15-20
    [36]梁志宏,杨昆,孙耀唯,等.电力市场下基于实物期权理论的电源投资动态决策模型研究[J].中国电机工程学报,2006,26(16):74-79
    [37]刘敏,吴复立.基于实物期权理论的风电投资决策[J].电力系统自动化,2009,33(21):19-23
    [38]王勇,文福拴,钟志勇,等.基于实物期权理论的发电投资决策和容量充裕性评估[J].电力系统自动化,2005,29(19):1-9
    [39]周辉,侯云鹤,吴耀武,等.现货市场中考虑系统运行约束的发电投资风险估计[J].中国电机工程学报,2008,28(13):99-105
    [40]贾德香,程浩忠,韩净.发电投资的期权博弈决策方法[J].电力系统自动化,2007,31(8):17-21,26
    [41]王建斌.基于实物期权和博弈理论的电源投资动态模型[J].电工技术学报,2007,22(4):163-167
    [42]许诺,文福拴,黄民翔.基于期权博弈理论的发电投资决策[J].电力系统自动化,2007,31(14):25-30,42
    [43]黄文杰,黄奕.基于投资者风险偏好和期权博弈理论的发电投资决策模型[J].华北电力大学学报:自然科学版,2010,37(2):99-103
    [44]Chuang A S, Wu F, Varaiya P. A game-theoretic model for generation expansion planning:problem formulation and numerical comparisons [J]. IEEE Trans on Power Systems,2001,16(4):885-891
    [45]梁文举,罗滇生,李军.电力市场环境下备用容量的社会效益分析[J].电力系统及其自动化学报,2010,22(4):127-131
    [46]齐先军,丁明.电力市场环境下旋转备用费用分摊的新方法[J].中国电机工程学报,2009,29(16):69-74
    [47]何永秀,黄文杰,谭忠富,王怡,黄辉.电力备用市场化运营需求研究[J].中国电机工程学报,2004,24(3):46-50
    [48]王建学,王锡凡,张显.电力市场中弹性运行备用研究[J].中国电机工程学报,2005,25(18):20-27
    [49]陈志姚,毕天姝,倪以信,文福拴,吴复立.两种备用容量分散决策方法及其比较[J].电力系统自动化,2003,27(2):12-18
    [50]陈志姚,刘有飞,倪以信,文福拴.电力市场环境下备用容量的集中和分散优化决策[J].电力系统自动化,2004,28(22):5-12
    [51]苏鹏,刘天琪,李兴源.含风电的系统最优旋转备用的确定[J].电网技术,2010,34(12):158-162
    [52]葛炬,王飞,张粒子.含风电土场电力系统旋转备用获取模型[J].电力系统自动化,2010,34(6):32-36
    [53]周欣,刘明波,谢敏.基于蒙特卡罗仿真和非线性规划技术的输电系统充裕度评估[J].电力系统保护与控制,2010,38(20):45-50,56
    [54]严正,罗玮,杨立兵.基于市场力指标的输电容量充裕度评估方法[J].中国电机工程学报,2009,29(16):75-81
    [55]陈永进,任震.多馈入直流输电系统充裕度评估的模型和方法[J].电网技术,2005,29(13):15-19
    [56]Dange H, Billinton R. Effects of wind power on bulk system adequacy evaluation using the well-being analysis framework [J]. IEEE Transactions on Power Systems, 2009,24(3):1232-1240
    [57]Billinton R, Yi G, Karki R. Composite system adequacy assessment incorporating large-scale wind energy conversion systems considering wind speed correlation [J]. IEEE Transactions on Power Systems,2009,24(3):1375-1382
    [58]Yi G, Billinton R, Karki R. Composite generation and transmission system adequacy assessment considering wind energy seasonal characteristics [A]. Power & Energy Society General Meeting[C], Calgary, Canada:2009
    [59]汪峰,白晓民.基于最优潮流方法的传输容量计算研究[J].中国电机工程学报,2002,22(11):35-40
    [60]王成山,王兴刚,张沛.考虑静态电压稳定约束并计及设备故障概率的TTC快 速计算[J].中国电机工程学报,2006,26(19):7-12
    [61]王成山,王兴刚.考虑静态电压稳定约束并计及负荷和发电机出力不确定性因素的概率最大输电能力快速计算[J].中国电机工程学报,2006,26(16):46-531
    [62]李卫星,李志民,郭志忠,等.考虑经济性收益最大的可用输电能力计算[J].电力系统自动化,2004,28(20):7-11
    [63]黄海涛,郑华,张粒子.基于改进粒子群算法的可用传输能力研究[J].中国电机工程学报,2006,26(10):45-49
    [64]冉瑞江.考虑大型风电场的可用输电能力评估[D].保定:华北电力大学,2009
    [65]邱永生,刘焕志,李扬.区域间可用输电能力计算的灵敏度分析法[J].继电器2005,26(2):21-25
    [66]North American Electric Reliability Council Available Transfer Capability Working Group. Transmission capability margins and their use in ate determination-white paper[R]. NEW JERSEY:NERC,1999
    [67]CORNIRE B, MARRTIN L, VITET S et al. Assessment of the congestion cost and the risk of curtailment associated with available transfer capability (ATC) [A]. Proceedings of 2000 IEEE PES Power Engineering Society Winter Meeting, [C]. Singapore,2000,1:891-896
    [68]AUDOMVONGSEREE K, YO KO YAMAA. Risk based TRM evaluation by probabilistic approach [C]. Proceedings of International Conference on Probabilistic Methods Applied to Power Systems [A]. NewYork, USA, IEEE,2004:254-225
    [69]吴杰康,吴强,陈国通,等.基于模糊随机机会约束规划的输电可靠性裕度计算[J].电力系统自动化,2003,27(14),36-41
    [70]黄伟,黄民翔,赵学顺.基于主从递阶决策模型的TRM评估[J].电力系统自动化,2006,30(4),17-21
    [71]GREENEs, DOBSON I, AIVARADO F L. Sensitivity of transfer capability margins with a fast formula[J]. IEEE Trans on power systems,2002,17 (1):34-40
    [72]ZHANG J, Dobson I, Alvarado F L. Quantifying transmission reliability margin [J]. International Journal of Electric Power & Energy System,2004,26 (9): 697-702
    [73]Gravener M H, Nwankpa C. Available transfer capability and first order sensitivity [J]. IEEE Trans on Power Systems,1999,14(2)512-518
    [74]CHUN L S, CHAN N L. Two-point estimate method for quantifying transfer capability uncertainty [J]. IEEE Trans on Power Systems,2005,20(2):573-579
    [75]刘皓明,倪以信,吴军基,等.计算电网可用输电能力的方法述评[J].继电 器,2003,31(10):45-50
    [76]Ramezani M. Haghifam M R, Singh C. Determination of capacity benefit margin in multiarea power systems using particle swarm optimization [J]. Power Systems, IEEE Transactions on[J],2009,24(2):631-641
    [77]Othman MM, Mohamed A, Hussain A. Evolutionary programming (EP) method in the capacity benefit margin (CBM) assessment of deregulated power system [A].2003 IEEE International Symposium on Micro-Nano Mechatronics and Human Science [C],2003:1112-1115
    [78]Ou Y Singh C. Calculation of risk and statistical indices associated with available transfer capability. Generation, Transmission and Distribution, IEE Proceedings [J].2003,150(2):239-244
    [79]Sun R F, Song Y H, Sun Y Z. Capacity benefit margin assessment based on multi-area generation reliability exponential analytic model [J]. Generation, Transmission & Distribution, IET,2008,2(4):610-620
    [80]孙荣富,程林,孙元章.基于区域发电可靠性的指数解析模型及其应用(一)理论基础[J].电力系统自动化,2007,31(22):1 1-15
    [81]孙荣富,程林,孙元章.基于区域发电可靠性的指数解析模型及其应用(二)容量效益裕度评估[J].电力系统自动化,2007,31(23):5-9
    [82]薛禹胜,罗运虎,李碧君.关于可中断负荷参与系统备用的评述[J].电力系统自动化,2007,31(10):1-6
    [83]葛炬,张粒子.可中断负荷参与的备用市场帕累托优化模型[J].电力系统自动化,2006,30(9):34-37
    [84]罗运虎,邢丽冬,王勤.需求侧2种可中断负荷备用市场报价策略的协调[J].山东大学学报(工学版),2008,38(3):77-80
    [85]孙听,童明光,赵庆波,林海英,刘敏.二级备用辅助服务市场中可中断负荷管理模型研究[J].中国电机工程学报,2004,24(3):30-33
    [86]李莉,谭忠富,王建军.可中断负荷参与备用市场下的可靠性风险电价计算模型[J].电网技术,2009,33(4):81-87
    [87]李海英,李渝曾,张少华.可中断负荷参与输电阻塞管理的模型与算法[J].电力系统自动化,2006,30(10):17-21
    [88]周春明,江辉,何禹清.可中断负荷参与阻塞管理的多目标模糊优化[J].电网技术,2008,32(9):27-32
    [89]张显,王锡凡,王建学,陈芳华.可中断电力合同中新型期权的定价[J].中国电机工程学报,2004,(12):18-23
    [90]王建学,王锡凡,张显.多时段可中断负荷合同的市场价值评估[J].电力自动化设备,2007,27(12):10-13
    [91]陈浩珲,程瑜,张粒子.引入保险机制的可中断合同设计[J].电力系统自动化,2007,31(16):19-23
    [92]张运洲,白建华,辛颂旭.我国风电开发及消纳相关重大问题研究[J].能源技术经济,2010,22(1):1-6
    [93]徐玮,杨玉林,李政光,等.甘肃酒泉大规模风电参与电力市场模式及其消纳方案[J].电网技术,2010,34(6):71-77
    [94]白建华,辛颂旭,贾德香,等.中国风电开发消纳及输送相关重大问题研究[J].电网与清洁能源,2010,26(1):14-17
    [95]Burke D J, Malley M J O. Factors influencing wind energy curtailment[J]. IEEE Transactions on Sustainable Energy,2011,2(2): 185-193
    [96]Evans J, Shawwash Z. Assessing the benefits of wind power curtailment in a hydro-dominated power system[A]. Integration of Wide-Scale Renewable Resources Into the Power Delivery System,2009 CIGRE/IEEE PES Joint Symposium[C]. PARIS:IEEE,2009:1-9
    [97]张伯明,吴文传,郑太一,等.消纳大规模风电的多时间尺度协调的有功调度系统设计[J].电力系统及其自动化,2011,35(1):1-6
    [98]韩自奋,陈启卷.考虑约束的风电调度模式[J].电力系统自动化,2010,34(2):89-92
    [99]杨宏,刘建新,苑津莎.风电系统中常规机组负调峰能力研究[J].中国电机工程学报,2010,30(16):26-30
    [100]肖创英,汪宁渤,丁坤,等.甘肃酒泉风电功率调节方式的研究[J].中国电机工程学报,2010,30(10):1-7
    [101]肖创英,汪宁渤,陟晶,等.甘肃酒泉风电出力特性分析[J].电力系统自动化,2010,34(17):64-67
    [102]张文福,马昌恒,孙晓刚,等.基于小波分析的空间相关性风场模拟[J].空气动力学学报,2008,26(4):425-429,485
    [103]乔纳森.芒.实物期权分析[M].北京:中国人民大学出版社,2006:114
    [104]Ibenholt K. Explaining learning curves for wind power [J]. Energy Policy,2002, 30(13):1181-1189
    [105]Schwartz, Eduardo S. The stochastic behavior of commodity prices:implications for valuation and hedging[J]. Journal of Finance,1997,52(3):923-973
    [106]刘红英.多层规划的理论与算法研究[D].西安:西安电子科技大学,2000
    [107]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47
    [108]张洪涛.保险经济性学[M].北京:中国人民大学出版社,2006
    [109]Audomvongseree K, Yokoyama A. Consideration of an appropriate TTC by probabilistic approach[J]. IEEE Transactions on Power Systems,2004,19(1), 45-50
    [110]HM马科维兹.资产组合选择和资本市场的均值-方差分析[M].上海:上海三联书店,上海人民出版社,1999
    [111]NERC Transmission Transfer Capability Task Force. Available transmission capability definitions and determination[R]. Princeton, NJ, USA:North American Electric Reliability Council,1996
    [112]陶文斌.电力市场环境下发电容量充裕性调控机制的研究[D].北京:华北电力大学,2007
    [113]Muller S D, Marchetto J, Airaghi S, et al. Optimization based on bacterial chemotaxis[J]. IEEE Transaction of Evolutionary Computation,2002,6(1): 16-29
    [114]李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63
    [115]张硕,李庚银,周明.含风电场的发输电系统可靠性评估[J].中国电机工程学报,2010,30(07):8-14
    [116]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003
    [117]Reliability Test System Task Force of the Application of Probability Methods Subcommittee. IEEE reliability test system [R]. IEEE Trans on Power Apparatus and Systems,1979,98(6):2047-2054
    [118]乔黎明.欧洲风电财税政策及其对风电发展的影响[J].风能,2010(6):30-33
    [119]张谦,王海潜,谢珍建.江苏电网消纳大规模风电的电源规划设计[J].电力系统自动化,2011,35(22):60-65
    [120]王小海,齐军,侯佑华,等.内蒙古电网大规模风电并网运行分析和发展思路[J].电力系统自动化,2011,35(22):90-96
    [121]曾鸣,吕春泉,邱柳青,等.风电并网时基于需求侧响应的输电规划模型[J].电网技术,2011,35(4):129-134
    [122]Danish Commission on Climate Change Policy. Green energy:the road to a energy system without fossil fuels [R]. Danish:Danish Commission on Climate Change Policy,2010
    [123]王卿然,谢国辉,张粒子.含风电系统的发用电调度一体化模型[J].电力系统及其自动化,2011,35(5):15-20
    [124]International Energy Agency. Harnessing variable renewable:a guide to the balancing challenge[R]. Paris, France:International Energy Agency,2011
    [125]International Energy Agency. Design and design and operation of power systems with large amounts of wind power[R]. Paris, France:International Energy Agency,2011
    [126]戴上,张焰,祝达康.含有微电网的配电网规划方法[J].电力系统自动化,2010,34(22):40-451998,11(3):48-53
    [127]张宪,苑津莎,杨薛明,等.基于粒子群算法的配电网网架规划[J].华北电力大学学报,2006,33(3):14-17
    [128]Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm [A]. IEEE International Conference on Systems, Man and Cybernetics [C]. Orlando FL,1997,5:4104-4108
    [129]Jacob F, Monod J. On the regulation of gene activity [A]. Cold Spring Harbor Symposia on Quantitative Biology [C],1961,2:193-211
    [130]汤红卫.基于GIS的农村电网规划方法的研究[D].北京:中国农业大学,2001
    [131]何禹清,彭建春,文明,等.含风电的配电网重构场景模型及算法[J].中国电机工程学报,2010,30(28):12-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700