聚合物复合材料三螺杆动态挤出过程及其结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物复合材料已广泛应用于航空航天、汽车、电子电气、建筑、医疗器械、家电、包装等领域,近年市场需求量不断增加。然而当前制备聚合物复合材料的技术及设备主要是单螺杆混炼挤出机、双螺杆混炼挤出机,这些传统设备存在混合分散效果差,能耗高,挤出制品质量低等问题。我们提出并发明了中间螺杆可振动的一字排列三螺杆混炼挤出方法及技术,为聚合物复合材料的制备与加工提供了新的手段,对聚合物复合材料的应用与发展具有十分重要的科学与现实意义。
     通过三螺杆动力传动分配、电磁激振力与挤压系统机械结构的协同作用,实现了通过中间螺杆轴向振动使主螺杆和两侧副螺杆间的轴向啮合间隙发生周期性变化,将振动力场引入聚合物复合材料塑化混炼全过程,并成功研制了一字排列三螺杆动态混炼挤出机;建立了中间螺杆轴向振动动力学模型和分析中间螺杆轴在阻尼系统中的幅频特性,并利用Tanner修正的Maxwell非线性本构方程对三螺杆螺槽C型室内物料的流动进行了三维数值模拟,证明了中间螺杆的轴向振动对聚合物复合材料的混炼挤出过程特性产生了深刻的影响,发现了振动力场导致螺槽C型室内物料产生混沌混合现象,同时提出和定义了一个无因次组合数(准数VI1)作为振动力场强化物料分布混合的指标。
     通过建立中间螺杆可振动三螺杆挤压系统的物理模型及数学模型,采用网格重叠技术,数值模拟和分析了三螺杆螺槽内熔体速度、压力、粘度、剪切速率等与螺杆转速、中间螺杆振频或振幅等参数的关系,发现随转速、振频、振幅的增加,流场的剪切速率、速度、流量、螺棱两侧压差等都有一定程度的增加,而流场的粘度均值、压力均值都有一定程度的下降,并且流道内的压力、剪切速率等呈周期性变化,由此推断三螺杆动态挤出机的剪切混合作用随转速、振动强度的增加而增强,证明了中间螺杆振动强化了聚合物复合材料的混合混炼过程,从而能提高聚合物复合材料制品性能。
     利用我们自行研制的一字排列三螺杆动态混炼挤出机分别加工与制备了三元乙丙橡胶/聚丙烯、硅灰石/聚丙烯、超细碳酸钙/聚丙烯这三种比较典型的聚合物复合材料。通过改变中间螺杆的振动参数(振频和振幅)、三螺杆转速和复合体系组成比率等参数,重点研究了复合材料制品的拉伸强度、冲击强度、断裂伸长率、相态结构与振动参数之间的关系,发现了与稳态(没有引入振动力场)相比较动态(引入振动力场)加工条件下复合材料制品力学性能得到不同程度提高,其微观结构得到了很大改善等规律,证明了中间螺杆可振动的一字排列三螺杆混炼挤出方法及技术能够改善与提高聚合物复合材料制品的结构性能,也说明了一字排列三螺杆动态混炼挤出机非常适合加工与制备聚合物复合材料。
Polymer composites have been widely used in different fields such as aerospace,automotive, electronics, electrical, construction, medical equipment, home appliances, andpackaging, and the market demand for it is increasing in recent years. However, thepreparation equipments of polymer composites are mainly single-screw or twin screwcompounding extruders, these traditional devices have a number of disadvantages: poordispersion, high energy consumption and low product quality. We propose and invent thatline-shape arranged three-screw extrusion mixing methods and techniques with a vibratilemiddle screw, which provides a new means for the preparation and processing of polymercomposites, and it has very important scientific and practical significance on the applicationand development of polymer composites.
     Through the synergies between the distribution of tri-screw power transmission,electromagnetic exciting force and the extrusion system mechanical structure, the axialmeshing gap between the main screw and both sides of the vice screw changed periodicallythrough axial vibration of the middle the screw, and the vibration force field was brought intothe whole mixing and plasticizing process of polymer composites, and the line-shape arrangedthree-screw dynamic mixing extrusion was successfully developed. In this paper, axialvibration dynamic model of the middle screw was established and its amplitude-frequencycharacteristics in the damping system were analyzed. Trough Tanner’s amendment Maxwellnonlinear constitutive equation, a three-dimensional numerical simulation of flow ofthree-screw C-type groove indoor materials was accomplished, which proved that axialvibration of the middle screw takes profound effect on melt mixing and process of extruding,and found that the vibration force field led the C-type groove indoor materials to producechaotic mixing phenomenon, proposed and defined a dimensionless combinatorial number(quasi-number VI1) as an index to indicate the extent of strengthening mixing and dispersionof materials by the vibration force field.
     In this paper, we established physical and mathematical model of three-screw extruderwith a vibratile middle screw. By using overlapping grid technique, we simulated andanalyzed the relationship between melt velocity, pressure, viscidity and shearing velocity andscrew speed, the middle screw vibration frequency or amplitude. The results showed that theflux, velocity, shearing velocity increased with the increasing of the screw speed, vibrationamplitude and vibration frequency. However, the average viscidity, pressure decreased atsome degree. And the pressure inside the flow channel and the shear rate varies periodically. Obviously, mixing function was improved when increasing the screw speed, vibrationamplitude and vibration frequency. This proved that the vibration of the middle screw couldstrengthen the mixing process and enhance the product performance of polymer composites.
     Using self-developed line-shape arranged tri-screw dynamic mixing extruder, weprepared EPDM/PP, wollastonite/polypropylene and ultra-fine calciumcarbonate/polypropylene three typical polymer composites. The experiments which changethe vibration parameters (vibration frequency and amplitude), screw speed and filling ratiofocused on the inherent law between the tensile strength, impact strength, fracture elongation,phase structure with vibration parameters. Results showed that comparing with steady state(without the vibration force field), the mechanics properties of composites produced byvibration extrusion were improved at different degree and the material had excellentmicrostructure. Meanwhile, the results verified the introduction of vibration to the middlescrew could improve the structural behavior and quality of composites and the machine isideal for the processing and preparation of polymer composites.
引文
[1]吴大鸣,李晓林,刘颖.单螺杆精密挤出成型技术进展[J].中国塑料.2003,17(2):1-8.
    [2] L.P.B.M Janssen.双螺杆挤出[M].耿孝正译.北京:轻工业出版社,1987:1-5
    [3] Chris Rauwendaal. Polymer Extrusion[M].Munich/FPG:Card Hanser Verlag,1992:10-14
    [4] J.L.,White.Twin Screw Extrusion[M].Munich:hanser,1990:16-19
    [5] W.H.Darnell and E.A.J.Mol,SPE J.,1956,(3):12-20
    [6] Z.Tadmor, I. Klein.Engineering Principles of Plasticating Extrusion[M], Newyork,1970:28-33
    [7] A.L.Ni. Pressure boundary conditions for the vorticity-velocity formulation ofNavier-Stocks equations [J]. Engineering Analysis with BoundaryElements,1998,22:33-40
    [8]朱林杰,耿孝正.啮合同向双螺杆挤出过程聚合物粒料熔融机理研究(一)-熔融机理研究现状及基本概念[J].中国塑料.1999,13(6):90-98
    [9]朱林杰,耿孝正.啮合同向双螺杆挤出过程聚合物粒料熔融机理研究-聚合物颗粒熔融过程的子区化物理模型[J].中国塑料.2000,14(6):82-89
    [10]刘光知,张宏革.同向双螺杆技术在塑料工业中的发展与应用[J].现代塑料加工应用,2002,(4):41-44
    [11]刘廷华主编.聚合物成型机械[M].北京:中国轻工业出版社,2008:2-6
    [12]Chris Rauwendaal.Polymer Extrusion[M].Munich/FRG:Card Hanser Verlag,1992:12-16
    [13]C.C.Carrot.J.Guillef,J.F.May and J.P.Puanx.Modeling of The Convering of Solid Polymerin Feeding Zone of Intremeshing Co-roting Twin Serew Extruders[J].P.E.S,Mid-Jun1993,33(11):11-15
    [14]H.Potent,J.Ansahl and B.klarholz.Design of Tightly Intermeshing Co-rotating TwinScrew Extruders[J]. Intren.Polymer Processing IX(1994)1. Munich: Hanserpublishers,1994:25-28
    [15]Burghauser,F.,Erb,K.,German Patent:690,990,1938-2-5
    [16]Farbenindustrie,I.G,Italina Paten:373,183,1938-4-9
    [17]Colonbo,R.,Italian Paten:370,578,1939-2-6
    [18]Meskat,w.,Erdmenger,R.,German Patent:868,668,1944-7-7
    [19]林秀真.三螺杆式押出机的改进结构[P].中国专利:CN2300497Y,1998-12–16
    [20]菅野,腾泽.食品加工用押出机[P].日本专利:昭和62-55066,1987-03–10
    [21]姜南,闫宝瑞,邢应生.聚合物加工用三螺杆挤出机[P].中国专利:ZL01207223.0,2001-10–19
    [22]姜南,朱常委.浅析三螺杆挤出机的混合作用[J].中国塑料,2001,15(8):87–90
    [23]瞿金平.塑化挤出新概念[J].华南理工大学学报(自然科学版),1992,20(4):1-8
    [24]瞿金平.聚合物电磁动态塑化挤出方法及设备[P].1990,中国专利90101034.0;1993,美国专利5217302;1995,欧洲专利044306B1
    [25]瞿金平.电磁式聚合物动态注射成型方法及设备[P].1999,中国专利ZL96108387.5,美国专利005951928A;2000,澳大利亚专利711248,欧洲专利0818298,俄罗斯专利2145543
    [26]瞿金平,胡汉杰.聚合物成型原理及成型技术[M].北京:化学工业出版社,2001:116-144
    [27]彭响方,瞿金平,周南桥,塑料电磁动态塑化挤出机的节能分析[J].中国塑料,1998.12(2):98-102
    [28]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005:119-219
    [29]Ibar, J.P., A New Process to Mold Polymeric Materials[J]. Polymer and PlasticTechnology and Engineering,1981.17(1):11-44
    [30]Jingping, Q. and X. Baiping, Performance of Filled Polymer Systems under NovelDynamic Extrusion Processing Conditions[J]. Plastics, Rubber and Composites,2002.31(10):432-435
    [31]Jingping, Q., Study on the Pulsating Extrusion Charateristics of Polymer Melt throughRound-sectioned Die[J]. Polymer-Plastics Tec. Eng.,2002.41:115-132
    [32]Zhang, J., et al., Mechanical properties and structure of high-density polyethylenesamples prepared by injection molding with low-frequency vibration[J]. Journal ofApplied Polymer Science,2005.96(3):818-823
    [33]Zheng, Q., et al., Effect of vibration on crystal morphology and structure of isotacticpolypropylene in nonisothermal crystallization[J]. Journal of Applied Polymer Science,2004.94(5):2187-2195
    [34]Zheng Yan, K.Z.S., Jie Zhang, The effect of vibration injection molding on mechanicalproperties of polyolefin parts[J]. Journal of Applied Polymer Science,2003.91(3):1514–1518
    [35]Liu, G. and H. Li, Extrusion of ultrahigh molecular weight polyethylene under ultrasonicvibration field[J]. Journal of Applied Polymer Science,2003.89(10):2628–2632
    [36]Zheng Yan, K.Z.S., Jie Zhang, Li Min Chen, Chixing Zhou, Effect of vibration onrheology of polymer melt[J]. Journal of Applied Polymer Science,2002.85(8):1587–1592
    [37]Wang, K., C. Zhou, and W. Yu, Effects of vibration blending on the subsequentcrystallization behavior of polycarbonate/polypropylene blends[J]. Journal of AppliedPolymer Science,2002.85(1):92-103
    [38]瞿金平.何和智.聚合物及其复合材料多螺杆塑化混炼挤出方法及设备[P].中国专利:ZL200510032625.7,2007-6-20
    [39]何和智,陈蓉,陈泽.无需预干燥的PET三螺杆挤出实验研究[J].材料工程,2009,2:250-259
    [40]刘伟锋.何和智.付金修等.三螺杆挤出中螺杆组合对聚丙烯/硅灰石性能的影响[J],塑料工业,2008,36(3):47-54
    [41]何和智,付金修,刘伟锋.动态三螺杆加工超细碳酸钙填充聚丙烯研究[J],现在塑料加工应用,2008,20(2):1-3
    [42]何和智,付金修,陈哲等.三螺杆动态塑化混炼加工PP/硅灰石力学性能及界面的研究[J],中国塑料,2008,22(11):47-51
    [43]赵艳志,瞿金平,何和智.动态三螺杆挤出机制备热塑性硫化胶的研究[J],现在塑料加工应用,2007,19(1):46-48
    [44]何和智,陈君辉,谢圣鸣.振动力场作用下三螺杆挤出机计量段中聚合物挤出的模拟[J],中国塑料,2006,20(4):104-107
    [45]何和智,闫卫斌,王瑗等.基于聚合物动态三螺杆挤出机的改性塑料制备新技术[J],工程塑料应用,2006,34(12):63-67
    [46]季斌,瞿金平,何光建等.三螺杆动态混炼挤出机制备TPV的力学性能研究[J],中国塑料,2005,19(10):48-52
    [47]彭炯.聚合物双螺杆挤出的流变行为及数值模拟[D].北京理工大学.博士学位论文,2001:20-27
    [48]H.Hermann and U.Burkart.Comparative Function Analysis of Closely IntermeshingCo-rotating and Counter-Rotating Twin-Screws[J].German Plastics,1978,(1):12-16
    [49]K.Eise,S.Jakopin, H.Hermann. Analysis of Twin Screw Extruder Mechanisms[J].Advances in Plastics Technology,1981,(4):18-39
    [50]M.L.Booy. Isothermal Flow of Viscous Liquids in Co-rotating Twin Screw Extruder[J].Polymer Engineering and Science,1980,20(18):1220-1228
    [51]Werner H. An Analysis of the Conveying Characteristics of 'Avin-Screw, Co-rotatingExtruders[J]. SPE'37' ANTEC,1979,79(1):181.-187
    [52]Bigio D, Zerafati S. SPE ANTEC Technical Papers,1988,34:85
    [53]Denson C D, Huang B K Influence of the Axial Pressure Gradient on Flow Rate forNewtonian Liquids in:Self Wiping, Co-Rotating Twin Screw Extruder[J]. PolymerEngineering and Science,1980,20(14):965-971
    [54]Secor R M. A Mass Transfer Model for a Twin-Screw Extruder[J]. Polymer Engineeringand Science,1986,26(9):647652
    [55]Wyman C E. Theoretical Model for Intermeshing 'vin Screw Extruders: Axial VelocityProfile for Shallow Channels[J]. Polymer Engineering and Science,1975,15(8):606—611
    [56]Koivo H N, Tolvanen Y Dynamic Model for a Twin Screw Extruder[J]. IFAC10'Triennial World Congress,1987,297-302
    [57]White J L, Szydlowski W Composite Models of Modular Intermeshing Corotating andTangential Counter-Rotating Twin Screw Extruders[J]. Advances in Polymer Technology,1987,7(4):419-426
    [58]王克坚,耿孝正.同向旋转共扼型双螺杆挤出机熔体输送特性的理论与实验研究[J].中国塑料,1988,双3):20-29
    [59]Janssen L P B M, Pelgrom J J and Smith J M. Pressure Build-Up and Output of a TwinScrew Extruder[J]. Kunststoffe-German Plastics,1976,66(11):7-8
    [60]Speur J A, Mavridis H and Vlachopoulos J et al. Flow Patterns in the Calender Gap of aCounter-rotating Twin Screw Extruder[J]. Advances in Polymer Technology,1987,7(1):39-48
    [61]Gotsis D, Kalyon D M. Simulation of Mixing in Co-rotating Twin Screw Extruders[J].SPE ANTEC Technical Papers,1989,35:44-46
    [62]Kalyon D M, Gotsis D and Yilmazer U et al. Development of Experimental Techniquesand Simulation Methods to Analyze Mixing in Co-rotating Itvin Screw Extrusion[J].Advances in Polymer Technology,1988,8(4):337-353
    [63]王蓉、耿孝正.同向旋转双螺杆挤出机捏合盘元件的熔体输送特性及棍合机理研究[J].中国塑料,1990,4(1):65-75
    [64]柳和生.双螺杆挤出机中非牛顿粘性流体流场数值计算方法的分析与选择(一)[J].中国塑料,1991,5(3)-.78-8
    [65]柳和生.双螺杆挤出机中非牛顿粘性流体流场数值计算方法的分析与选择(二)[J].中国塑料,1991,5(4):55-60
    [66]柳和生.啮合型同向旋转双螺杆挤塑机熔体输送机理研究[J].中国塑料,1994,(3):51-59
    [67]Yang H H, Manas-Zloczower I. Flow Field Analysis of the Kneading Disc Region in aCo-Rotating Twin Screw Extruder[J]. Polymer Engineering and Science,1992,32(19):1411-1417
    [68]Sastrohartono T, Jaluria Y and Karwe M V Numerical Simulation of Fluid Flow and HeatTransfer in Turin-Screw Extruders for Non-Newtonian Materials[J]. Polymer Engineeringand Science,1995,35(15):1213-1221
    [69]Goffart D, Van Der Wal D J and Klomp E M et al. Three-dimensional Flow Modeling of aSelf-Wiping Corotating Twin-Screw Extruder. Part I: The Transporting Section[J].Polymer Engineering and Science,1996,36(7):901-911
    [70]Cheng Hongfei, Manas-Zloczower1. Distributive Mixing in Conveying Elements of aZSK-53Ca-Rotating Twin Screw Extruder[J]. Polymer Engineering and Science,1998,38(6):926—935
    [71]Yao Chih-Hsiang, Manas-Zloczower1. Influence of Design on Dispersive MixingPerformance in an Axial Discharge Continuous Mixer-LCMAX40[J]. PolymerEngineering and Science,1998,38(1):936-946
    [72]K.Funatsu, S. Kihara.3-D Numerical analysis on the mixing performance for assemblieswith filled zone of right-handed and left-handed double-flighted screws and kneadingblocks in twin-screw extruders[J]. Polymer Engineering and Science,2002,42(4):707-723
    [73]T.Kajiwara, K.Funatsu.Numerical study of twin-screw extruders by three-dimensionalflow analysis-development of analysis technique and evaluation of mixing performanacefor full fight screws [J]. Polymer Engineering and Science,1996,36(16):2142-2152
    [74]R.K.Connelly, J.L.Kokini.3-D Numerical simulation of differential viscoelastic fluids ina single-screw continuous mixer: application of viscoelastic FEM methods [J].Advances in Polymer Technology,2006,22(1):22-41
    [75]M.A.Barrera, Three-dimensional modelling of flow curves in co-rotating twin-screwextruder elements[J], Journal of Materials Processing Technology,2008,197:221-224
    [76]M.Camesasca,I.Manas-Zloczower.Entropic characterization of mixing in micro-channels[J]. Journal of Micromechanics and Microengineering,2005,15:2038-2044
    [77]M.Camesasca, M.Kaufman. Quantifying fluid mixing with the shannon entropy[J].Journal of Micromechanics and Microengineering,2006,15:595-607
    [78]胡冬冬,陈晋南.啮合同向三螺杆挤出机中三维等温流动的数值模拟[J].化工学报,2004.2(55):280-283
    [79]马秀清,耿孝正,李鹏.非啮合双螺杆挤出过程中螺纹元件流道三维流场分析一等温牛顿模型[J].中国塑料,2000,14(10):78-85
    [80]马秀清,耿孝正,非啮合双螺杆挤出过程轴向循环流道三维流场分析一轴向循环流场分析((I)[J].中国塑料,2003,15(2):78-83
    [81]李鹏,耿孝正.同向啮合双螺杆挤出机捏合块流道三维流场分析[J].中国塑料,2000,1邓):75-82
    [82]尹清珍,宗殿瑞,杜玲玲。同向旋转双螺杆挤出机压力产生和螺杆设计[J].中国塑料,2000,14(3):83-88
    [83]Bravo V I, Hrymak A N and Wright J D. Numerical Simulation of Pressure and VelocityProfiles in Kneading Elements of a Co-rotating Twin Screw Extruder[J]. PolymerEngineering and Science,2000,40(2):525-541
    [84]Ishikawa Takeshi, Kihara Shin-Ichi and Funatsu Kazumori.3-D Simulations ofNonisothermal Flow in Co-Rotating Twin Screw Extruders[J]. Polymer Engineering andScience,2000,40(2):357-364
    [85]尹燕玲,耿孝正啮.合同向双螺杆挤出过程六棱柱元件三维流场分析[J].中国塑料.2002,16(4):78-83
    [86]梁畅,马秀清,耿孝正.啮合同向双螺杆挤出机中S型元件不同螺杆构型下的流场模拟[J].中国塑料.2003,17(5):78-82
    [87]朱向哲,谢禹钧.食品加工用三螺杆挤压机三维流场数值模拟[J].食品与机械,2005.5(21):45-48
    [88]杜遥雪.电磁动态塑化挤出机性能的模拟计算与分析[J].机床与液压2003(6):29-63
    [89]徐百平,瞿金平.振动力场作用下单螺杆挤出机混合过程模拟[J].现代塑料加工应用,2004.10(16):27-31
    [90]徐百平,瞿金平.振动作用下单螺杆挤出机内聚合物熔体的流动[J].华南理工大学学报(自然科学版),2004.3(32):23-28
    [91]冯彦洪,瞿金平,何和智.振动力场作用下聚合物熔体单螺杆挤出过程数值模拟[J].塑料工业,2002.30(6):27-30
    [92]谢圣鸣.振动力场作用下三螺杆挤出机熔体输送过程数值模拟[D].华南理工大学硕士学位论文,2005
    [93]陈君辉.振动力场作用下同向三螺杆挤出机计量段流场的数值模拟与实验研究[D].华南理工大学硕士学位论文,2006
    [94]王瑗.动态三螺杆加工微纳碳酸钙填充聚丙烯制品的力学性能研究[D].华南理工大学硕士学位论文,2007
    [95]秦雪奎,三螺杆挤出螺杆组合对硅灰石/聚丙烯(PP)复合材料力学性能的影响[D].华南理工大学硕士学位论文,2007
    [96]付金修.三螺杆动态塑化混炼加工聚丙烯/硅灰石力学性能的实验研究[D].华南理工大学硕士学位论文,2008
    [97]陈哲.无需预干燥的PET三螺杆挤出研究[D].华南理工大学硕士学位论文,2009
    [98]石宝山.振动力场作用下的单螺杆挤出机固体输送理论研究[D].华南理工大学博士学位论文,2006:75-96
    [99]M.Renardy. High Wessenberg Number Boundary Layers for the upper convectedMaxwell Fluid. J. Non-Newtonian Fluid Mech.1997,68:125-132
    [100]F.T.Pinho and P.J.Oliverira. Axial Annular Flow of Nonlinear Viscoelastic Fluid—ananalytical solution. J. Non-Newtonian Fluid Mech.2000,93:325-337
    [101]江体乾.工业流变学[M].北京:化学工业出版社,1995,2:14-154
    [102]韩式方.非牛顿流体本构方程和计算解析理论[M].北京:科学出版社,2000:15-40
    [103]M.Doi and S.F.Edwards. The Theory of Polymer Dynamics[J]. Clanrendon PressOxford,1986:1-323
    [104]徐百平,瞿金平,何和智.高分子蠕动模型研究进展[J].高分子材料科学与工程.2002,18(1):1-5
    [105] M.Renardy. Location of the Continuous Spetrum in Complex Flow of the UCM Fluid. J.Non-Newtonian Fluid Mech.2000,94:75-85
    [106] N.Phan-Thien and R.I.Tanner. A New constitutive Equation Derived from Network Theory.J. Non-Newtonian Fluid Mech.1977,2:353-365
    [107]古大冶.高分子流体动力学[M].成都:四川教育出版社,1988:5-42
    [108] Z. Tadmor, I. Duvdevani, I. Klei. Polym. Eng. Sci.,1967,7(3):198-206
    [109]Z. Tadmor. Principles of Polymer Processing[M]. Wiley-Interscience, New York,1979
    [110] E. Broyer and Z. Tadmor. Polym. Eng. Sci.,1972,12:12-24
    [111] Z. Tadmor and E. Broyer, Polym. Eng. Sci.,1972,12:378-395
    [112] Polyflow软件说明书[M]. FLUENT公司,Inc.2002
    [113]何曼君等.高分子物理[M].上海.复旦大学出版社,1990:77~81
    [114] H. Potente, K. Kretschmer. A physical-mathematical model for the dispersion process incontinuous mixers[J]. Polymer Engineering and Science,2002,42(1):19-32
    [115] H. Potente, K. Kretschmer. Simulation and evaluation of compounding processes[J].macromolecular material and engineering.2002,287(11):758–772
    [116] H. Potente, M. Bastlan. Design of a compounding extruder by means of the SIGMAsimulation software[J]. Advances in Polymer Technology,1999,18(2):147-170
    [117]胡冬冬,陈晋南.双螺杆挤出中粒子运动轨迹的模拟及其统计学分析[J].计算机与应用化学,2003,20(5):247-250
    [118]吴其晔等.高分子材料流变学导论[M].北京:化学工业出版社,1994:51-54
    [119] M.D.Ellul,Rubber.Chem.Technol.1998:71:74
    [120] Kalay G, Bevis M J. Processing and Physical Property Relationships in Injection-MoldedIsotactic Polypropylene Mechanical Properties [J].Journal of Polymer Science,1997,35(2):24-26
    [121]李东明,漆宗能.碳酸钙增强聚丙烯复合材料的断裂韧性[J].高分子材料科学与工程.1991,3(2):18-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700