抗生素暴露对小麦生长及其根际微生物群落结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以小麦作为研究对象,选择应用最广泛的兽药抗生素-四环素和土霉素,研究了兽药抗生素暴露情况下小麦根际微生物群落结构的变化和小麦苗期生长所受到的影响,并对抗生素污染状况下小麦抗性内生细菌的种类及种属分布进行了初步探索,为抗生素的合理使用提供了科学依据。
     研究所取得的主要结论有以下三方面:
     (一)表征无抗生素暴露条件下小麦根际微生物群落的结构特征及优势细菌鉴定:小麦根际土壤中微生物总数达到5×108cfu g-1,约为非根际土壤的二倍。细菌比例最高,放线菌次之,真菌最低;从中分离出10株数量优势细菌,经16S rRNA鉴定后与芽孢杆菌属(Bacillus)有最大相似性;优势菌的生长在低浓度四环素和土霉素存在时就出现抑制,对土霉素的敏感性高于四环素。
     (二)小麦抗性内生细菌的数量及在植株中的分布研究:
     1)小麦内生菌数目在1×104-1.95×106 cfu g-1之间,抗性内生菌数目介于6.9×103和5.67×105,从中分离出22株土霉素抗性内生菌,包括15株G+和7株G-,经16s rRNA基因序列分析,它们与Bacillus,Alphaproteobacteria和Gammaproteobacteria三大类微生物聚在一起,其中Bacillus类细菌最多,占59.1%。
     2)对这22株抗性内生菌进行土霉素敏感性试验,其最低抑菌浓度(MIC)值介于16-256ug ml-1之间;在小麦不同部位分离的抗性内生菌中,芽孢杆菌属内生菌明显占优势,其中地衣芽孢杆菌(Bacillus licheniformis)在小麦根际土壤、根、茎等器官中均分离得到,另外在植株的同一器官均分离到不同种属的抗土霉素抗性内生菌。在小麦种子中没有分离到任何土霉素抗性的内生菌。
     (三)水培试验系统下四环素类抗生素污染对小麦苗期生长发育的影响:
     1)在有效抗生素剂量暴露下(0、0.8、4、20、60、100mg l-1),小麦种子发芽率、根伸长和芽伸长对四环素和土霉素的生态毒性敏感顺序依次为:根伸长>发芽率>芽伸长,土霉素处理产生的生态毒性明显高于四环素;小麦的根伸长抑制率(或芽伸长抑制率)与抗生素浓度间均存在明显的剂量效应,20 mg l-1以上浓度抑制作用尤为显著;水培液中微生物群落在两种抗生素的选择压力下,优势类群由细菌向真菌方向转变。
     2)水培液细菌类群的PCR-DGGE图谱可分为两种模式:0.8和4 mg l-1水培液中微生物群落图谱与对照组相似,而高浓度(20 mg l-1、60 mg l-1、100 mg l-1)处理下DGGE图谱结果比较一致。通过对高强度条带的切胶、测序、比对,发现它们与Acinetobacter,Sphingobacterium multivorum,Chloroflexi和Bacillus等种属具有比较近的亲缘关系。
Under the pressure of veterinary antibiotics, including tetracycline(OTC) and oxytetracycline(TC), The microbial community dynamic change in wheat rhiosphere and wheat growth status were investigated, Primary research also focused on the entophyte varieties and distribution in wheat, which guided the proper use of antibiotics, then to reduce the production of drug resistance stains and low their eco-toxicity. The results showed in the following:
     (1) The microbial community structures in wheat rhizosphere and dominant bacteria identify without antibiotic pollution: The population of total microorganisms in rhizosphere soil was 5.251×108 cfu g-1, which was almost 2 times of it in non-rhizosphere soil; bacteria, actinomyces and fungi were cultivated and the proportion was 99.04%, 0.90% and 0.06%, respectively; 10 dominant bacteria were isolated from wheat rhizosphere. All of them were grouped into genus Bacillus according to phylogenetic analysis based on their full length 16S rRNA gene sequences. Sensitivity of the 10 isolates was observed under low concentrations of oxytetracycline and tetracycline, and higher sensitivity appeared in oxytetracycline.
     (2) Isolation and distribution of oxytetracycline-resistance entophytic bacteria in plant of wheat:
     1) The CFU number and species distribution of wheat entophytic bacteria in rizosphere, root, stem, leaves and seeds were researched. The results indicated that the total amount of entophytic bacteria in wheat was between 1×104cfu g-1 and 1.95×106cfu g-1, in which the antibiotic resistance entophytic bacteria were from 6.9×103 to 5.67×105. 22 strains of oxytetracycline resistant entophytic bacteria were isolated, including 15G+ and 7G.-. The 22 isolates were clustered into Bacillus, Alphaproteobacteria and Gammaproteobacteria based on their full length 16S rRNA gene sequences, in which strains of Bacillus occupied 59.1%.
     2) The minimum inhibition concentration (MIC) values of the 22 entophytic bacteria to oxytetracycline were between 16 ug ml-1 and 256 ug ml-1. Comparing the entophytic bacteria in different organs of wheat; strains belonging to Genus Bacillus were obviously predominant. Especially Bacillus licheniformis, it was isolated from wheat rizosphere, root and stem. Different species of bacteria could be isolated from the same organ in wheat. However, no oxytetracycline resistant bacterium could be detected from wheat seeds.
     (3) Influence of tetracycline antibiotics on the growth of wheat and microbe dynamic change under the condition of water solution culture:
     1) Oxytetracycline showed higher eco-toxicity than tetracycline with the designed concentrations(0, 0.8, 4, 20, 60, 100 mg l-1)according to root elongation and shoot elongation variance analysis results; Sequence orders was root elongation>shoot elongation>germinating rate. The critical value of wheat growth inhibition could be defined on 20 mg l-1 tetracycline primarily. The relation between the wheat root elongation control rate (or shoot elongation control rate) and antibiotics dosages all existed, significant inhibition appeared in the concentrations higher than 20 mg l-1. OTC and TC exerted a selective pressure on soil microbial community in form of a shift from soil bacteria to soil fungi.
     2) The nested PCR-DGGE was also used to evaluate community structure difference happened in DNA levels among water samples subjected to antibiotic treatment, The DGGE profile could be divided into two patterns, the 0, 0.8 and 4 mg l-1 fell into the first one, which had similar DGGE profile with the negative control, while the other three concentrations (20, 60, 100 mg l-1)made up the second group and kept consistent bacterial community. Eight DGGE bands were excised, re-amplified, sequenced and aligned with Blast. The phylogenetic analysis results indicated that they had high affinity with Acinetobacter, Sphingobacterium multivorum, Chloroflexi and Bacillusand respectively.
引文
[1]木拉提·克扎衣别克,高晓黎,贾晓光等.四环素类药物对骨质疏松症的作用[J].辽宁药物与临床,2003,6:98-100.
    [2]周德庆.微生物学(第二版)[M].高等教育出版社,2002,北京.
    [3] Boxall A B, Fogg L A, Blackwell P A et al.Veterinary medicines in the environment [J]. Reviews in Environmental Contamination and Toxicology, 2004, 180:81- 91.
    [4] UCS. Hogging it: Estimates of antimicrobial abuse in livestock [OL]. Food and Environment Union of Concerned Scientists,2001-01:http://www.ucsusa.org/food and environment/antibio- tic resistance/index.
    [5] Sassman S A,Lee L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange [J].Environ Sci Technol,2005,39: 7452- 7459
    [6] NAHMS(National Animal Health Monitoring System),Antibiotic usage in remarketswine.Fact sheet, Veterinary Services 1996.(Swine’95study).http:// www.aphis.usda.gov/vs/ceah/nahms/ swine/swine95/sw95antb.pdf,p2.
    [7] Sarmah,A.K. Environmental fate of veterinary antibiotics (growth promoters) an overview. In: SETAC Asia/Pacific–ASE 2003:Christchurch,New Zealand,28 September 1 October 2003: programme and abstracts [Christchurch],New Zealand Water & Wastes Association on behalf of the SETAC/ASE 2003 Conference Organizing Committee,p84.
    [8] Halling-Seensen, Nielsen S.N, Lanzky P.F et al. Occurrence fate and effects of pharmaceutical substances in the environment [J]. Chemosphere,1998, 36,357-393.
    [9] Tolls J. Sorption of veterinary pharmaceuticals in soils[J].Environ Sci Technol. 2001, 35: 3397-3406.
    [10] Halling-Seensen, Sengelev G, Tjenelund J. Toxicity of teracyclines and tetracycline degradeation products to environmentally relevant bacteria,including selected tetracycline resistant bacteria [J]. Arch Environ Contam Toxicol.2002, 44: 7-16.
    [11] Wollenberger L,Halling-Seensen B,Kusk K O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna [J].Chemosphere, 2000, 40:723-730.
    [12] Hirsch R,Ternes T,Haberer K.Occurrence of antibiotic in the aquatic environment [J]. Sci.Total Environ.1999, 22(5):109-118.
    [13]吴维辉,余德谦,蒋宗勇等.饲用抗生素对肉仔鸡促生长作用的研究[J].广东畜牧兽医科技,1997,22(3):7-8.
    [14] Kumar K,Gupta S C,Baidoo S K et al.Antibiotic uptake by plants from soil fertilized with animal manure [J].Journal of Environmental Quality,2005a,34(6):2082-2085.
    [15]李兆君,姚志鹏,张杰等.兽药抗生素在土壤环境中的行为及其生态毒理效应研究进展[J].生态毒理学报,2008,3(1):15-20.
    [16]冯新,韩文瑜,雷练成.细菌对四环素类抗生素的耐药机制研究进展[J].中国兽药杂志,2004,38(2):38-42.
    [17] Ajit K, Sarmah, Michael T et al. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs) in the environment [J]. chemosphere, 2006, 65:725–759.
    [18]安清聪,张曦,陈克嶙.动物组织中四环素类抗生素残留的ELISA检测研究—土霉素抗体的制备[J].畜牧与兽医,2004,36(9):8-10.
    [19] Montforts, M.H.M.M., Environmental risk assessment for veterinary medicinal products. Part 1: Other than GMO-containing and immunological products. RIVM report 601300001,N120. National Institute of Public Health and the Environment, Bithoven, The Netherlands. 1999.
    [20] AHI.Animal Health Institute. Available from: http://www.ahi.org/,1997.
    [21] Meyer M.T, Bumgarner J.E., Varns J.L et al. Use of radio immunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry [J]. Sci. Total Environ. 2000, 24(8), 181-187.
    [22] Heberer, T., Stan, H.J. Determination of clofibric acid and n-(phenylsulfonyl)–sarcosine in sewage, river, and drinking water [J]. Int. J.Environ. Anal. Chem, 1998, 67, 113-124.
    [23]陈志宇,苏继影,栾冬梅.畜禽粪便堆肥技术研究进展[J].当代畜牧,2004,10:41-43.
    [24] Spaepen K R I, Van Leemput L J J, Wislocki P G et al. A uniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil [J].Environ Toxicol Chem, 1997, 16:1977-1982
    [25] Hoper H,Kues J,Nau H et al. Eintrag und Verbleib von Tierarzneimittelwirkstoffen in Boden[J]. Bodenschutz, 2002, 4: 14l-148.
    [26] Hamscher G, Sczesny S, Hoper H et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with eleetrospray ionization tandem mass spectrometry [J]. Anal Chem, 2002, 74(7):1509-1518
    [27] Sengelov G, Agerso Y, Halling-Sorensen B et al. Bacterial antibiotic resistance levels in a result of treatment with pig manure slurry[J]. Environmental International, 2003, 28(7):587-595
    [28] Campagnolo E R, Johnson K R, Karpati A et al. Antimicrobial residues in animal wasteand water resources proximal to large scale swine and poultry feeding operations[J].Sci Total Environ, 2002,299:89-95.
    [29]张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J].生态与农村环境学报.2008,24(3):69-73.
    [30]张树清,张夫道,刘秀梅,王玉军,邹绍文,何绪生.2005.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报,11(6):822-829.
    [31] Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna [J].Chemosphere, 2000, 40: 751-757.
    [32] Winckler C, Grafe A Stoffeintrag durch Tierarzneimittel und pharmakologisch wirksame Futerzusatzstoffe unter besonderer berucksichtigung von Tetrazyklinen [M].UBA-Texte 44/00, Berlin. 2000, 145-147.
    [33] Golet E M, Strehler A, Alder A C et al. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge - treated soil using accelerated solvent extraction followed by solid- phase extraction [J]. Anal Chem, 2002,74: 5455- 5462
    [34] Morales-Mufioz S, Luque-García J L, Luque de Castro M D.Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples [J]. Chromatogr A, 2004, 1059 (1-2):25-31
    [35] Haller M Y, Müller S R, McArdell C S et al.Quantification of veterinary antibiotics (sulfonamides and trimethoprim)in animal manure by liquid chromatography-mass spectrometry [J].Chromatogr A, 2002,952:111-120.
    [36] De Liguoro M, Cibin V, Capolongo F et al. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil [J].Chemosphere, 2003, 52:203-212.
    [37] Aga D S, O’Connor S, Enslev S O et al.Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme–linked immunosorbent assay and liquid chromatography- mass spectrometry[J]. Agric Food Chem, 2006,53:7165-7171.
    [38] Kolpin D W, Furlong E T, Meyer E M et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999 -2000: A national reconnaissance [J]. Environ Sci Technol, 2002, 36(6):1202-1211
    [39] Yang W, Carlson K. Evolution of antibiotic occurrence in a river through pristine, urban, and agricultural landscapes [J].Water Research, 2003,37:4645-4656.
    [40] Aboul-Kassim TAT, Simoneit BRT.The handbook of environmental chemistry pollutant solid phase interactions: Mechanism, chemistry and modeling [J].Berlin Heidelberg: Springer Verlag, 2001(5),141-159.
    [41] Ying GG, Kookana RS, Ru YJ.Occurrence and fate of hormone steroids in the environment, Environment International, 2002, 28(6): 545-551
    [42] Rab?lle M, Spliid NH.Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 2000, 40(7):715-722
    [43] Figueroa R A, Leonard A, MacKay A A. Modeling tetracycline antibiotic sorption to clays [J].Environ Sci Technol, 2004,38( 2) :476-483
    [44] Jacobsen P, Berglind L. Persistence of Oxytetracycline in sediments from fish farms [J]. Aquaculture, 1988, 70(4): 365-370
    [45]俞道进,曾振灵,陈杖榴.四环素类抗生素残留对水生态环境影响的研究进展.中国兽医学报,2004,5:100-102.
    [46] Rosie C,M aura H,Brendan O, et al. Concentration and persistence of oxytetracycline in sediments under a marine salmon farm [J]. Aquaculture, 1994, 123: 31-42.
    [47] Samuelsen O B.Degradation of oxytetracycline in seawater at two different light intensities, and the persistence of oxytetracycline on the sediment from a fish farm[J]. A quaculture, 1989, 83:7-16.
    [48] Koplin D W. Pharmaceuticals, hormones and other organic wastewater contaminates in U S. streams, 1999-2000: A national reconnaissance[J].Environmental Science and Technology, 2002, 36(6):1202-1211.
    [49] Capone D G, Weston D P, Miller V et al.Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture [J]. Aquaculture, 1996,145:55-75
    [50] Patten D K, Wolf D C, Kunkle W E et al. Effects of antibiotics in beef cattle feces on notrogen and carbon mineralization in soil and on plant growth and composition [J]. Environ Qual, 1980,9:167-172
    [51] Migliore L, Brambilla G, Cozaolino S et al. Effect on plants of sulphadimenthoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays) [J]. Agric Ecosyst Environ, 1995, 52:103-110
    [52] Kong W D, Zhu Y G, Fu B J et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community [J].Environmental Pollution, 2006, 143:129-137
    [53] Batchelder AR. Chlortetracycline and oxytetracycline effects on plant growth and development in liquid cultures.Journal of Environment Quality, 1981, 10(4):515-518.
    [54] Batchelder AR. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems.Journal of Environment Quality, 1982, 11(4): 675-678
    [55] Halling-Serensen B. Algal toxicity of antibacterial agents used in intensive farming [J]. Chemosphere, 2000, 40:731-739.
    [56] Holten L H. Algal toxicity of antibacterial agents’app lied on Danish fish farming [J]. Arch Environ Contam Toxico l, 1999, 36:1-6.
    [57] Bradel B G, Preil W, Jeske H. Remission of the free -branching pattern of Euphorbia pulcherrima by tetracycline treatment [J]. J Phytopathol, 2000, 148: 587- 590.
    [58] Thiele-Bruhn S, Peters D, Halling-S?rensen B et al. Photodegradation and ageing of antibiotic pharmaceutical on soil [J].Lyon:Presentation of project results on Envirpharma European conference, 2003, 14-16.
    [59] Warman PR. The effect of Amprolium and Aureomycin antibiotic on the nitrification of poultry manure-amended soil.Journal of the soil Science Society of America,1980, 44(6):1333-1334
    [60] Pursell L, Samuelsen OB, Smith P. Reduction in the in-vitro activity of flumequine against Aeromonas salmonicida in the presence of the concentration of Mg2+ and Ca2+ ions in found in sea water. Aquaculture, 1995, 135(4):245-255.
    [61] Backhaus T, Grimme LH. The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri.Chemosphere, 1999, 38 (14): 3291-3301.
    [62] Boleas S, Alonso C, Pro J et al. Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system(MS·3)and influence of manure co-addition [J]. J Hazard Mater, 2005, 122: 233-241.
    [63] Thiele-Bruhn S, Iris-Constanze B. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere, 2005, 59: 457- 465
    [64] Thiele S, Beck I C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere, 2005a.59(4): 457- 465.
    [65] Alcaide E, Blasco M D, Esteve C. Occurrence of drug-resistant bacteria in two European eel farms [J]. Appl Environ Microbiol, 2005,71( 6) : 3348- 3350.
    [66] Azeez G. Ampicillin threat leads to wider transgene concern [J]. Nature, 2005.435(2): 561.
    [67] Aminov R I, Chee-Sanford J C, Garrigues N et al. Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram- negative bacteria [J]. Appl Environ Microbiol, 2002, 68:1786-1793.
    [68] Riesenfeld C S, Goodman R M, Handelsman J.Uncultured soil bacteria are a reservoir of new antibiotic resistance genes [J]. Environ Microbiol, 2004, 6(9):981-989.
    [69] Jensen L B, Baloda S, Boye M et al. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil [J]. Environ Int, 2001,26: 581-587.
    [70] Molbak, Baggensen D L, Aarestruo F M et al.An outbreak of multidrug-resistant, quinolone–resistant Salmonella enterica serotype typhimurium DT104[J].New Engl J Med, 1999,(19):1420-1425.
    [71] Boivin M E, Breure A M, Posthuma L et al. Determination of field effects of contaminants- significance of pollution induced community tolerance [J]. Human and Ecological Risk Assessment, 2002,8:1035-1055
    [72] Davis M R H, Zhao F J, McGrath S P. Pollution–induced community tolerance of soil microbes in response to a zinc gradient [J]. Environ Toxicol Chem, 2004,23(11):2665-2672
    [73]周启星,罗义,王美娥.抗生素的环境残留、生态毒性及抗性基因污染.生态毒理学报,2007,3:113-118.
    [74] McMurry LM, Levy SB. Tetracycline resistance in gram-positive bacteria[A].VA Fischetti, RP Novick, JJ Ferretti,et al. Gram-positive pathogens[M]. Washington D. C: American Society for Microbiology, 2000,660-677.
    [75] Tauch A, Puhler A, Kalinowski J, et al. TetZ, a new tetracycline resistance determinant discovered in gram-positive bacteria, shows high homology to gram-negative regulated efflux systems [J]. Plasmid, 2000, 44:285-291.
    [76] Jones CS, Osborne DJ, Stanley J. Enterobacterial tetracycline resistance in relation to plasmid incompatibility[J]. Mol Cell Probes,1992, 6:313-317.
    [77] Sanchez-Pescador R, JT Brown , M Roberts et al . Homology of the TetM with translational elongation factors: implications for potential modes of tetM conferred tetracycline resistance [J].Nucleic Acids Res, 1988, 16:12-18.
    [78] Taylor DE, Chau A. Tetracycline resistance mediated by ribosomal protection [J] . Antimicrob Agents Chemother, 1996, 40:1-5.
    [79] Trieber CA, Burkhardt N, Nierhaus KH et al. Ribosomal protection fromtetracycline mediated by Tet (O): Tet(O) interaction with ribosome is GTP-dependent [J]. Biol Chem, 1998, 379(7):847-855.
    [80] Sloan J, McMurry LM, Lyras D et al. The Clostridium perf ringens TetP determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P),which is related to the ribosomal protection family of tetracycline-resistance determinants[J]. Mol Microbiol, 1994, 11:403-441.
    [81]董慧明,张颖,张德民等.DNA指纹图谱技术在土壤微生物多样性研究中的应用.微生物学杂志.2007,27(1):45-49.
    [82]李伟,熊谨,陈晓阳.木质素代谢的生理意义及其遗传控制研究进展[J].西北植物学报,2003,23(4):675-681.
    [83] Shinpei Yoshitake, Masaki Uchida, Takayuki Nakat subo et al.Characterization of soil microflora on a successional glacier foreland in the high Arctic on Ellesmere Island, Nunavut,Canada using phospholipids fatty acid analysis[J].Polar.Biosci, 2006,19:73-84.
    [84] Philip W Ramseya, Mat t hias C Rilliga, Kevin P Ferisb, et al. Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches [J]. Pedobiologia, 2006, 50:275-280.
    [85] Jennifer L Kirka, Lee A Beaudettea, Miranda Hart b et al. Methods of studying soil microbial diversity [J]. Journal of Microbiological Methods, 2004, 58:169-188.
    [86] Muyzer G. DGGE/TGGE a method for indenting genes from natural ecosystems [J].Curr Opin. Micmbio1, 1999, 2:317-322.
    [87] Torsvik V, Goksoyr J, Daae F L. High diversity in DNA of bacteria [J]. App1 Environ. Microbio1, 1990, 56:782-787.
    [88] Pace N R. A molecular view of microbial diversity and the biosphere[J].Science,1997, 276:734-740.
    [89] Lee D H, Zo Y G, Kim S J. Nonradioactive Methods to Study Genetic Profiles of Natural Bacterial Communities by PCR single strand Conformation Polymorphism [J]. App1. Environ. Microbio1, 1996, 62:112-120.
    [90] Holly M Simon,Courtney E Jahn, Luke T Bergerud et al.Cultivation of Mesophilic Soil Crenarchaeotes in Enrichment Cultures from Plant Roots [J]. App1. Environ.Microbio1, 2005, 72(8):4751-4760.
    [91] Sabine Kleinsteuber, Volker Riis, Ingo Fetzer et al. Population Dynamics within a Microbial Consortium during Growth on Diesel Fuel in Saline Environments [J].App1.Environ. Microbio1, 2006, 72(5):3531-542.
    [92]许文涛.微生物菌落多样性分析方法的研究进展.食品科学,2009,7:134-137.
    [93] Williams J G K, Kubelik A R K, Livek K et al. DNA polymorphisms amplified by arbitrary primers and useful gene marker[J]. Nucleic Acids.Res, 1990, 18(10):6531-6535.
    [94]张峦,沈国清,陆贻通等.镉和菲复合污染对土壤微生物DNA序列多样性的影响[J].科技通报,2005,21(6):763-769.
    [95] Qvreas L, Torsvik V. Microbial diversity and community structure in two different agricultural soil communities [J].Microb. Ecol, 1998, 36:303-315.
    [96]张于光,王慧敏,李迪强等.三江源地区不同植被土壤固氮微生物的群落结构研究[J].微生物学报,2005 ,45(3):420-425.
    [97] Marsh T L. Terminal restriction fragment length polymorphism (T-RFLP):An emerging method for characterizing diversity among homologous populations of amplification products [J].Curr.Opin.Microbial, 1999, 2:323-327.
    [98] Pett Ridge J, Firestone M K.Redox fluctuation structures microbial communities in a wet tropical soil [J].App1.Environ. Microbio1, 2005, 71(11):6998-7007.
    [99] Catherine A Osborne,Gavin N Rees ,Yaniv Bernstein et al .New Threshold and Confidence Estimates for Terminal Restriction Fragment Length Polymorphism Analysis of Complex Bacterial Communities[J].App1. Environ. Microbio1, 2006, 72(2):1270-1278.
    [100] Muyzer G, Waal EC, Uitterlinden AG.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA[J]. Appl Environ Microbiol, 1993, 59:695-7001.
    [101]周琳,张晓君,李国勋等.DGGE/TGGE技术在土壤微生物分子生态学研究中的应用[J].生物技术通报,2006,5:67-71.
    [102] Duineveld BM, Kowalchuk GA, Keijzer A, et al. Appl Environ Microbiol, 2001, 67(1):172-178.
    [103] Sugano A, Tsuchimoto H, Cho TC.Archaea, 2005, 1(6):391-397.
    [104]任馨,吴伟祥等.环境科学, 2004,24(5):871-877.
    [105] Sekiguchi H, Watanabe M, Nakahara T et al. Appl Environ Microbiol, 2002, 68 (10): 5142-150.
    [106] Mouser PJ, Rizzo DM, Roling WF et al.Environ Sci Technol,2005,39(19):7551-559.
    [107] Galand PE, Fritze H, Yrjala K. Environ Microbiol, 2003, 5(11): 1133-143.
    [108] Demba Diallo M, Willems A, Vloemans N, et al. Environ Microbiol, 2004, 6(4): 400-415
    [109] Jack Kozadroj, Jan Dirk Van Elsas.Application of polymerase chain reaction denat uring gradient gel elect rophoresis for comparison of direct and indirect ext raction methods of soil DNA used for microbial community fingerprinting [J].Biol Fertil. Soils, 2000, 31:372-378.
    [110] Oliver Dilly, Jaap Bloem, An Vos. Bacterial Diversity in Agricultural Soils during litter Decomposition[J]. App1. Environ. Microbio1, 2004,70(1):468-474.
    [111] Nubel U, Engelen B, Felske A, et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel elect rophoresis [J]. J.Bacteriol,1996,178:5636-643.
    [112] Vallaeys T, Topp E ,Muyzer G et al. Evaluation of denaturing gradient gel elect rophoresis in the detection of 16S rDNA sequence variation in rhizobia and met hanot rophs [J].FEMS Microbiol. Ecol, 1997, 24:279-285.
    [113] Kearney L.Multiplex-FISH (M-FISH): technique, developments and applications [J]. Cytogenet Genome. Res, 2006,114 (324):189-198.
    [114] Taizo Hanai, Hiroyuki Hamada, Masahiro Okamoto. Application of bioinformatics for DNA microarray data to bioscience, bioengineering and medical fields [J]. Journal of Bioscience and Bioengineering, 2006, 101(5):377-384.
    [115] Michael W, Friedrich.Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes [J]. Current Opinion in Biotechnology, 2006, 17:59-66.
    [116] Don Cowan, Quinton Meyer, William Stafford, et al. Metagenomic gene discovery:past, present and future [J].TRENDS in Biotechnology, 2005, 23(6):321-329.
    [117]. Plant Products as Antimicrobial Agents. Clin Microbiol Rev [J].1999, 12(4):564-582.
    [118] Stone J K, Bacon C E, White J F Jr. An overview of endophytic microbes: endopytismdefined.Microbial Endophytes, 2000; 3-29.
    [119] Petrini O, Sieber TN, Toti L et al.Ecology, metabolite production and substrate utilization in endophytic fungi. Nat Toxins.1992;1(3):185-96.
    [120] Zou W X, Tan R X. Biological and chemical diversity of endophytes and their potential application[J].Advances in Plant Sciences. 1999;2:183-190.
    [121], Maynard Z, Gilbert G S, et al.Are tropical fungal endophytes hyperdiverse [J].Ecol lett 2000, 3:267-274.
    [122]邹文欣,谭仁祥.植物内生菌研究新进展[J].植物学报,2001,43(9):881-892
    [123] Hellmig V,Grothe T,Mayer-Bartschmid A, et al. Altersetin, a new antibiotic from cultures of endophytic Alternaria spp.Taxonomy, fermentation, isolation, structure elucidation and biological activities [J]. J Antibiot (Tokyo).2002,55(10):881-892.
    [124] Strobel G, Stierle A, Stierle D. Taxomyces and reana A proposed new taxon for a bulbilliferous by phomycete associated with pacific yew(taxus brebifolia)[J] Mycotaxon.l993,40(7):71-81
    [125] Bhattacharyya RN, Pati BP.Growth behaviour and indole acetic acid(IAA) production by a Rhizobium isolated from root nodules of Alysicarpus vaginalis DC[J].Acta Microbiol Immunol Hung,2007;47(1):41-51.
    [126] Ju Y, Sacalis J N, Still C C. Bioactive flavonoids from endophyte-infected blue grass [J].Agric Food Chem,1998;3785-3788.
    [127] Lee J C, Lobkovsky E, Pliam N Bet al. Subglutionl A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans [J].org chem,1995; 60:7076-7077. [l28]金善宝.中国小麦学.北京:中国农业出版社[M},1996
    [129]王树安.作物栽培学各论北方本[M].北京:中国农业出版社,1995
    [130]李里特.发展小麦经济,推动面食现代化食品工业科技[J] 2005,2: 7-12.
    [131]李里特.中国小麦产业发展的机遇在于传统主食现代化[J].粮食加工,2006(4):5-8.
    [132]韩一军.中国小麦产业发展分析[J].AO农业展望,2006(3):3-7.
    [133]于格,刘爱民.我国小麦供求平衡研究.中国粮食经济[J],2003(11):9-11.
    [134]王学强,河南小麦生产潜力及发展战略研究.西北农林科技大学,2007
    [135] Richardson BJ, Lam PKS, Martin M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs)in Asia, with particular reference to Southern China [J].Marine Pollution Bulletin. 2005, 50:913-920.
    [136] Vaclavik E, Halling-Sorensen B, Ingerslev F. Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil [J]. Chemosphere. 2004, 56(7): 667-76.
    [137]张劲强,董元华,安琼等.兽药抗生素在土壤环境中的行为[J].土壤,2001,37(4): 353-361.
    [138] Bruhn ST, Beck IC. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass[J]. Chemosphere. 2005, 59: 457-465.
    [139] Eleonor A, Tendencia, Leobert D et al. Antibiotic resistance of bacteria from shrimp ponds. [J]. Aquaculture.2001, 195:193–204.
    [140] Barr DP, Aust SD. Pollutant degradation by white rot fungi[J]. Rev Environ Contam Toxicol.1994, 138:49-72.
    [141] Wetzstein HG, Stadler M, Tichy HV et al. Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. [J]. Appl Environ Microbiol. 1999, 65(4):1556-63.
    [142] Mohamed MA, Ranjard L, Catroux C et al.Effect of natamycin on the enumeration, genetic structure and composition of bacterial community isolated from soils and soybean rhizosphere [J]. Microbiol Methods. 2005, 60(1):31-40.
    [143] Wong MH, Cheung K C, Yediler A et al.The dyke-pond systems in South China: Past, present and future [J].Wetlands Ecosystems in Asia. 2004, 47-66.
    [144]张学利,杨树军.不同林龄樟子松根际与非根际土壤的对比[J].福建林学院学报,2005, (1):63-67.
    [145]李阜棣.农业微生物实验技术[M].北京:中国农业出版社,1996.69-71.
    [146]陶水龙,林启美,赵小容.土壤微生物研究方法[J].土壤肥料,1998,(5):15-16.
    [147]孙磊.非培养方法在植物内生和根际细菌研究中的应用[J].自然科学进展,2006, 16(2):140-145.
    [148] Yang C H. Rhizosphere microbioal community structure in relation to root location and plant iron nutritional status [J]. Appl Environ Microbiol, 2000, 66(1): 345-351.
    [149] T?ubel M, K?mpfer P, Buczolits S et al. Bacillus barbaricus sp.nov, isolated from an experimental wall painting [J]. Int J Syst Evol Microbiol. 2003, 53(3):725-30.
    [150] Fajardo-Cavazos P, Nicholson W. Bacillus endospores isolated from granite: close molecular relationships to globally distributed Bacillus spp. from endolithic and extreme environments, Appl Environ Microbiol. 2006, 72(4):2856-63.
    [151] Patsy Scheldeman, Annelies Pil, Lieve Herman et al.Incidence and Diversity of Potentially Highly Heat-Resistant Spores Isolated at Dairy Farms [J]. Appl Environ Microbiol. 2005 March; 71(3): 1480–1494.
    [152] Ajithkumar VP, Ajithkumar B, Iriye R et al. Bacillus funiculus sp. nov, novel filamentous isolates from activated sludge, Int J Syst Evol Microbiol. 2002, 52(4):1141-1144.
    [153]张高峡,卢振祖.作物根际联合固氮芽孢杆菌的分离鉴定及生态分布[J].氨基酸和生物资源,1998,20(1):12-15.
    [154]杨海莲,孙晓璐,宋未等.水稻内生联合固氮细菌的筛选、鉴定及其分布特性[J].植物学报,1999,41(9):927-931.
    [155]刘秀华,梁峰.小麦根际促生菌的筛选与促生作用研究[J].安徽农业科学,2006,34(20):5300-5301.
    [156] Sundarad W.V, Rao B, Sinba M.K.Phosphate Discolving Microorganism in the Rhizosphere and Soil [J].India J.Agric.Sci, 1963,33(4):272-278.
    [157]尹瑞玲.我国旱地土壤的溶磷微生物[J].土壤,1988,20(5):243-246.
    [158] Xuliang Zhuang, Jian Chen, Hojae Shim et al. New advances in plant growth-promoting rhizobacteria for biorem ediation [J].Environment International, 2007,33(3):406-413.
    [159] PRIKRY L Z. Rot exudates of plant [J]. Plant Soil,1980(57):69-83.
    [160]王东明.蜡样芽胞杆菌6371的多效性及发酵条件的研究,南京师范大学学位论文.
    [161]孔维栋,朱永官.抗生素类兽药对植物和土壤微生物的生态毒理学效应研究进展[J].生态毒理学报,2007,2(1):1-9.
    [162] Carroll GC. The biology of endophytism in plants with particular reference to woody perennials [J]. Microbiology of Phyllosphere,1986,205-222.
    [163] Mundt JO, Hinkle NF. Bacteria within ovules and seeds. Appl Environ Microbiol, 1976,32: 694-698.
    [164] Philipson MN,Blair ID. Bacteria in clover root tissue. Can J Microbiol , 1957,3:125-129.
    [165] Rangeshwaran R, Wasnikar AR, Prasad RD et al.Isolation of endophytic bacteria for biological control of wilt pathogens [J]. J Biol Cont rol, 2002,16:125-134.
    [166] Song ZH,Ding LX,Ma BJ et al. Studies on population and dynamic analysis of peanut endophytes [J]. J Plant Prot, 1999,26(4):309-314.
    [167] Long HH, Furuya N, Kurose D et al.Isolation of endophytic bacteria from Solanum sp. and their antibacterial activity against plant pathogenic bacteria [J].J Faculty Agric,2003, 48:21-28.
    [168] Coombs J T, Franco CMM.Isolation and identification of actinobacteria from surface sterilized wheat roots [J]. Appl Environ Microbiol, 2003,69(9):5603-5608.
    [169] Coombs J T, Franco CMM. Visualization of an endophytic streptomycetes species in wheat seed. Appl Environ Microbio, 2003, (7):4260-4262.
    [170] Germuda JJ.Differences in the microbial communities associated with the roots of different cultivars of canola and wheat .Can J Microbiol,1998,44:844-851.
    [171] Lupwayi NZ, Clayton GW, Hanson KG et al. Populations and functional diversity of bacteria associated with barley, wheat and canola roots [J]. Can J Soil Sci, 2004, 84: 245-254.
    [172]曹理想,田新莉,周世宁.香蕉内生真菌、内生放线菌的类群分析[J].中山大学学报, 2003,42(2):70-73.
    [173]宋子红,丁立孝,马伯军等.花生内生菌的种群及动态分析[J].植物保护学报,1999, 26(4):309-314.
    [174] Schulz B, Wanke U, Draeger S. Endophytes from herbaceousand shrubs:effectiveness of surface sterilization methods [J]. J Mycological Research, 1993, 97(12):1447-1450.
    [175]沈萍等.微生物学实验(第三版)[M].北京:高等教育出版社,1999:49.
    [176] Seok-Ryel Kim, Lisa Nonaka, Satoru Suzuki.Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites [J]. FEMS Microbiology Letters, 2004,237:147-156.
    [177]杜林,黄小丹,赵文红等.MIC法测定四种抗氧化剂的抑菌作用[J].中国调味品,2006,8(8):41-44.
    [178]乔宏萍,黄丽丽,康振生.小麦内生细菌及其对根茎部主要病原真菌的抑制作用[J].应用生态学报,2006,17(4).
    [179]刘忠梅,王霞等.有益内生细菌B946在小麦体内的定殖规律[J].中国生物防治,2005,21(2):113-116.
    [180]周康群,刘晖,崔英德等.一株新的厌氧除磷功能菌株的鉴定与活性[J].化工学报,2008,59(6):1522-1530.
    [181]李显志.铜绿假单胞菌主动外排泵介导的多重抗生素耐药性[J].中国抗生素杂志,2003,28(10):577-596.
    [182]陈小兵,盛下放,何琳燕等.具菲降解特性植物内生细菌的分离筛选及其生物学特性[J].环境科学学报,2008,28(7):1308-1313.
    [183]王逸群,郑金贵,陈文列等.水稻内生固氮细菌的分离及鹑鸡肠球菌在水稻根中的分布[J].热带亚热带植物学报,2005,13(4):296-302.
    [184]郑钧镛,王光宝.药品微生物学及检测技术[M].北京:人民卫生出版社,1989
    [185] Barry T,Hargrave,Lisa I et al.A micro-dilution method for detecting oxytetracycline– resistant bacteria in marine sediments from salmon and mussel aquaculture sites and an urbanized harbour in Atlantic Canada. Marine Pollution Bulletin, 56(2008):1439–1445
    [186]崔馨,乔显亮,韩成伟等.生菜对土霉素的吸收及其植物毒性[J].农业环境科学学报,2008,27(3):1038-1042.
    [187] LiguoroMD, Cibin V, Capolongo F, et al. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil [J]. Chemosphere, 2003, 52:203-212.
    [188]曲甍甍,孙立伟,陈鋆等.兽药添加剂阿散酸和土霉素的毒理学研究[J].农业环境科学学报,2004,23(2):240-242.
    [189] Bjrklund H, Bondestam J, Bylund G. Residues of oxytetracycline in wild fish and sediments fromfish farms [J]. Aquaculture, 1990, 86:359-367.
    [190] Coyne R, HineyM, O′Connor B, et al. Concentration and persistence of oxytetracycline in sediments under a marine salmon farm [J]. Aquaculture, 1994, 123:31-42.
    [191] Kay P, Blackwell P A, Boxall A B A. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land [J]. Chemosphere, 2005, 60:497-507.
    [192] Halling-Sorensen B, Lykkeberg A, Ingerslev F, et al. Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS[J]. Chemosphere, 2003, 50:1331-1342.
    [193] Brambilla G, Patrizii M, Filippis S P D et al.Oxytetracycline as environmental contaminant in arable lands [J]. Analytica Chimica Acta, 2007, 586: 326-329.
    [194] Martínez-Carballo E, González- Barreiro C, Scharf S et al.Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria [J]. Environmental Pollution, 2007, 148: 570-579.
    [195] Wang Mei, Zhou Qixing. Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum)[J]. Ecotoxicology and Environmental Safety, 2006, 64(2):190-197.
    [196] Zhou Q X, Zhang Q R, Liang J D. Toxic effects of acetochlor and methamidophos on earthworm Eisenia foetida in phaeozem, northeast China [J]. Journal of Environmental Sciences, 2006, 18(4):741-745.
    [197]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004.
    [198]周启星,王美娥.土壤生态毒理学研究进展与展望[J].生态毒理学报, 2006,1(1): 1-11.
    [199] Liu W, Yang Y S, Zhou Q X et al. Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers [J]. Chemosphere, 2007, 67(6):1155-1163.
    [200]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [201] Kjaer C, Pedersen N, Elmegaard N. Effects of soil copper on black bindweed ( Fallopia convov ul us) in the laboratory and in the field [J]. Arch. Environ. Contamn. Toxicol., 1998,35:14-19.
    [202]万寅婧,占新华,周立祥.土壤中芘、菲、萘、苯对小麦的生态毒性影响[J].中国环境科学,2005,25(5):563-566.
    [203]王泽港,葛才林,万定珍等.1,2,4-三氯苯和萘对水稻幼苗生长的影响[J].农业环境科学学报,2006,25(6):1402-1407.
    [204] Thiele-Bruhn S, Beck I C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere,2005,59: 457–465.
    [205] Xiong Ming-biao, He Jian-ping, Song Guang-yu. Effect of Root Exudations on Ecological Distribution of Rhizospheric Microorganisms.Chinese Journal of Soil Science,2002, 33(2):145-148.
    [206] Melda S?n?rta?, Halis Akal?n, Suna Gediko?lu.Investigation of colistin sensitivity via three different methods in Acinetobacter baumannii isolates with multiple antibiotic resistance. International Journal of Infectious Diseases, In Press, Corrected Proof, Available online 20 February 2009.
    [207] Cao Di yong, ZHOU Qi-xin, LING Bao-dong. Minimal Inhibitory Concentration and Antimicrobial Resistance Analysis for 78 Strains of Acinetobacter Baumanii [J]. Journal of North Sichuan Medical College.2008(5)
    [208]张建萍,董乃源,余浩滨等.应用16S rDNA-RFLP方法分析宁夏地区稻田土壤细菌的多样性[J].生物多样性,2008,6
    [209]李会荣,孙嘉康,陈丽珊等.南极菲尔德斯半岛表层土壤样品中细菌多样性的系统发育分析[J].极地研究,2005,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700