胶州湾细菌多样性及抗性细菌种类及其抗性基因的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们利用DAPI染色荧光显微镜技术和微生物培养的方法分析2004年9月和10月两个月份胶州湾海水样品中的总微生物和可培养细菌的数量和分布特征。DAPI染色荧光的计数结果显示总微生物数量为10~6-10~7 cells/ml,与世界上其它位于温带地区的半封闭性海湾微生物数量的研究结果相似。其中微生物密度最高(10~7/ml)的区域分布于胶州湾东北部娄山河和李村河河口及红岛渔业养殖区附近。这些区域的可培养细菌密度在整个胶州湾中也是最高,最高的站位(A5站,李村河口附近)达到5.16×10~5/ml。因此,污染类型和程度以及地理和水文学特征是决定胶州湾微生物数量和分布的重要因素。通过T-RFLP分子生物学方法和聚类分析方法研究胶州湾水体的微生物群落结构特征,可将胶州湾内外的细菌群落分为3组,胶州湾湾口及湾外的D1, D3, D5, D6, D7站位被划分为一组,其细菌群落更接近于受到湾外海水环境影响的细菌群落特征;位于胶州湾最内侧的站位,如A3, A5, B2,Y1被划为一组,代表胶州湾的“土著”细菌群落;C1, C3, C4站位则代表着介于二者之间的过渡性细菌群落。而同时进行的胶州湾光合细菌群落结构的T-RFLP分析未见其与地理分布和环境有明显相关关系。
    抗性细菌的分布和数量主要受到水产养殖业中抗生素的使用,以及生活和工业污水排放状况的影响,是自然水体环境的重要水质标准之一。对自然水体中的抗性细菌及其抗性基因的研究不仅对渔业养殖具有重要的意义而且还直接关系到人类的公共卫生健康。胶州湾土霉素和氯霉素抗性细菌密度最高的区域均位于A5站,李村河口附近,说明环境是影响和决定抗性细菌分布和数量的重要因素。通过对抗性细菌16S rDNA序列分析和系统进化树的构建,胶州湾内的大部分抗生素抗性细菌属于γ-蛋白菌亚纲(γ-Proteobacteria),其中氯霉素抗性细菌则表现出非常明显的假单胞菌属(Pseudomonas sp.)细菌优势。多重PCR方法分析胶州湾抗性细菌中土霉素抗性基因-tet基因和氯霉素抗性基因-cat基因的分布特征。在对84株土霉素抗性基因的分析中,所有六种tet基因型-tetA, tetB, tetC, tetD, tetE和tetG均被检测到,其中含量最高的是tetA(30.6%), tetB(24.5%),和tetG(36.7%)。在对60株氯霉素抗性基因的分析中,仅有12株氯霉素抗性细菌被检测到携带有cat基因,且只包括catⅠ和catⅢ型。但
DAPI staining epifluorescence microscopy and bacterial cultivating method wereused to analyze the total microbial abundance and culturable microbial abundance in theseawater of Jiaozhou Bay in September and October of 2004. The abundance of totalmicrobes is in the range of 10~6-10~7 cells/ml, similar to those of most of the worldsemi-enclosed bays in the temperate areas. The highest microbial densities (10~7/ml)occurin the northeastern part of the Jiaozhou Bay, around the mouth of rivers Loushan andLicun and the Hongdao aquacultural farming areas where the culturable microbialabundance reached 5.16×10~5/ml (A5 station, around the mouth of Licun river). Thus, thedegree and characteristics of pollutants, along with geographical and hydrological effects,may be important determinants affecting the abundance and distribution of bacteria in theJiaozhou Bay. Bacterial communities inside and outside of Jiaozhou Bay can be groupedinto 3 classes based on T-RFLP and cluster analyses. Stations at the water channel of thebay mouth and outside, such as D1, D3, D5, D6 and D7, can be grouped together to standfor the bacterial community more related to the environment outside of the Jiaozhou Bay.Stations of the innermost side of Jiaozhou Bay, such as A3, A5, B2 and Y1, can begrouped together to stand for the Jiaozhou Bay residential bacteria community. StationsC1, C3 and C4 can be grouped together and may stand for the transitional bacterialassembly between the residential community and the outside community. However, thereis no obvious relationship between cyanobacterial diversity and geographic settings inJiaozhou Bay.
    The distribution and abundance of antibiotics resistant bacteria, which is mainlyinfluenced by the usage of antibiotics in mariculture and the condition of sewagedischarge, is one of the important standards in natural aquatic environments. The study onresistant bacteria and their resistance genes in natural aquatic environments is not onlysignificant to mariculture but also influential to the public hygiene of human beings. Thehighest oxytetracycline and chloramphenicol resistant bacterial density occurs in stationA5, around the mouth of Licun River, suggesting that the environment is the mostimportant factor influencing and determining the abundance and distribution of antibioticresistance bacteria. Based on the 16S rDNA analysis it is discovered that most of the
    resistant bacteria in Jiaozhou Bay belong to the γ-Proteobacteria subdivision. Obviously,Pseudomonas sp. is the predominant species in all Chloramphenicol resistant isolates.Multiplex-PCR method is used to characterize the oxytetracycline resistance genes (tetgenes) and Chloramphenicol resistance genes (cat genes) in Jaiozhou Bay. In the analysisof 84 oxytetracycline resistant isolates, tetA, tetB, tetC, tetD, tetE and tetG are alldetected. The predominant tet genes in these oxytetracycline resistance isolates are tetA(30.6%), tetB (24.5%), and tetG (36.7%). In the characterization of cat genes in 60Chloramphenicol resistant bacteria, only 12 isolates had cat genes, and only cat I and catIII were detected. But there is not obvious relationship between the types of cat/tet genesand the species of the resistant bacteria. Since there are also many resistant bacteriawhich were not detected harboring any cat/tet genes, other or even novel resistancemechanisms might also exist. And the Multi-drug resistance mechanism might alsocontribute to the antibiotic resistance in Jiaozhou Bay.
引文
1. Amann R I, Ludwig W, Schleifer K H, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews. 59:143-169.
    2. Harder T, Lau S C K, Tam W Y, et al., 2004. A bacterial culture-independent method to investigate chemically mediated control of bacterial epibiosis in marine invertebrates by using TRFLP analysis and natural bacterial populations. FEMS Microbiology Ecology. 47:93-99.
    3. Wu M, Song L S, Ren J P, et al., 2004. Assessment of microbial dynamic in the Pearl River Estuary by 16S rRNA terminal restriction fragment analysis. Continental Shelf Research. 24:1925-1934.
    4. Derakshani M, Lukow T, Liesack W, 2001. Novel bacterial lineages at the (sub) division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Applied and Environmental Microbiology. 67: 623–631.
    5. Felske A, Akkermans A D L, 1998. Spatial homogeneity of abundant bacterial 16S rRNA molecules in Grassland soils. Microbial Ecology. 36:31-36.
    6. Ludemann H, Arth I, Liesack W, 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Applied and Environmental Microbiology. 66:754-762.
    7. Egert M, Marhan S, Wagner B, et al., 2004. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiology Ecology. 48:187–197.
    8. Marsh T L, Liu W T, Forney L J, Cheng H, 1998. Beginning a molecular analysis of the eukaryal community in activated sludge. Water Science & Technology. 37:455-460.
    9. Osborn A M, Moore E R B, Timmis K N, 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environment Microbiology. 2:39-50.
    10. Moeseneder M M, Winter C, Arrieta J M, et al., 2001.Terminal-restriction fragment length polymorphism (T-RFLP) screening of a marine archaeal clone library to determine the different phylotypes. Journal of Microbiological Methods. 44:159-172.
    11. Lukow T, Dunfield P F, Liesack W, 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiology Ecology. 32:241-247.
    12. Muyzer G, De Waal E C, Uitterlinden A G., 1993. Profiling of complex analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 59:695-700.
    13. Shen Z L, 2001. Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science. 52:211-224.
    14. Dan I Andersson, 2003. Persistence of antibiotic resistant bacteria. Current Opinion in Microbiology. 6:452–456.
    15. Miranda C D, Raul Zemelman, 2002. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture. 212: 31–47.
    16. Witte W, 2000. Ecological impact of antibiotic use in animals on different complex microflora environment. Int J Antimicrob Agents. 14:321–325.
    17. Teuber M, 2001. Veterinary use and antibiotic resistance. Curr Opin Microbiol. 4:493– 499.
    18. Messi P, Guerrieri E, Bondi M, 2004. Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin. Science of the Total Environment
    19. Austin B, Al-Zahrani AMJ, 1988. The effect of antimicrobial compounds on the gastrointestinal microflora of rainbow trout, Salmo gairdneri Richardson.J. Fish Biol. 33:1 –14.
    20. McPhearson R M, DePaola A, Zywno S R, Motes M L, Guarino A M, 1991. Antibiotic resistance in Gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture. 99:203 –211.
    21. DePaola A, Peeler J T, Rodrick G E, 1995. Effect of oxytetracycline medicated feed on antibiotic resistance of gram-negative bacteria in catfish ponds. Appl. Environ. Microbiol. 61:2335 –2340.
    22. Andreas Petersen, Anders Dalsgaard, 2003. Antimicrobial resistance of intestinal Aeromonas spp. and Enterococcus spp. in fish cultured in integrated broiler-fish farms in Thailand. Aquaculture. 219: 71–82
    23. Sorum H, L'Abee-Lund T M, 2002. Antibiotic resistance in food-related bacteria -a result of interfering with the global web of bacterial genetics. Int J Food Microbiol. 78:43-56.
    24. French G L, Woo M L, Hui Y W, et al., 1989. Antimicrobial susceptibilities of halophilic vibrios. J Antimicrob Chemother. 24:183-194.
    25. Wong H C, Liu S H, Ku L W, et al., 2000. Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness outbreaks during 1992 through 1995 in Taiwan. J Food Prot. 63:900-906.
    26. Ferber D, 1998. New hunt for the roots of resistance. Science. 280:27.
    27. O'Brien T F, 2002. Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis. 34:S78-84.
    28. Young H K, 1993. Antimicrobial resistance spread in aquatic environments.J Antimicrob Chemother. 31:627– 35.
    29. Miranda C D, Zemelman R, 2001. Antibiotic resistant bacteria in fish from the Concepción Bay, Chile. Marine Pollution Bulletin. 42:1096-1102.
    30. Thayumanavan T, Vivekanandhan G, Savithamani K, et al., 2003. Incidence of haemolysin-positive and drug-resistant Aeromonas hydrophila in freshly caught finfish and prawn collected from major commercial fishes of coastal South India. FEMS Immunol Med Microbiol. 36:41-45.
    31. Berkelman R L, Hughes J M, 1993. The conquest of infectious diseases: who are we kidding? Ann Intern Med. 119:426-427.
    32. Abraham E P, Chain E, 1940. An enzyme from bacteria able to destroy penicillin. Nature. 146:837.
    33. O'Brien T F, 1997. The global epidemic nature of antimicrobial resistance and the need to monitor and manage it locally. Clin Infect Dis. 24:S2-S8.
    34. Courvalin P, Trieu-Cuot P, 2001. Minimizing potential resistance: the molecular view. Clin Infect Dis. 33:S138-146.
    35. Davies J, 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science. 264:375.
    36. Barbosa T M, Levy S B, 2000. The impact of antibiotic use on resistance development and persistence. Drug Resist Updat. 3:303-311.
    37. Shlaes D M, Gerding D N, John J F et al., 1997. Society for Healthcare Epidemiology for America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: Guidelines for the prevention of antimicrobial resistance in hospitals. Infection Control and Hosp Epidemiol. 18:275-291.
    38. US Congress, Office of Technology Assessment. Impacts of antibiotic resistant bacteria, OTA-H-629. Washington, DC:U.S. Government Printing Office, 1995. p. 6-8.
    39. Neu H C, 1992. The crisis in antibiotic resistance. Science. 257:1064-1073.
    40. Wise R, Hart T, Cars O, et al., 1998. Antimicrobial resistance is a major threat to public health. Br Med J. 317:609–610.
    41. Murray B E, 1994. Can antibiotic resistance be controlled? N Engl J Med. 330:1129-1230.
    42. 徐士新, 2001.国外对抗菌药物耐药性的研究和相关规定. 中国兽药杂志. 35(5):51-55.
    43. Paulsen I T, 2003. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol. 6:446-451.
    44. Mazel D, Davies J, 1999. Antibiotic resistance in microbes. Cell Mol Life Sci. 56:742-754.
    45. Jiang S C, Paul J H, 1998. Gene transfer by transduction in the marine environment. Appl Environ Microbiol. 64:2780-2787.
    46. 黄瑞,吴淑艳,张学光, 2003. 伤寒杆菌耐药质粒 pRST98 毒力基因的研究. 中华微生物学和免疫学杂志. 23(5):393-396.
    47. Kim E, Aoki T, 1993. Drug resistance and broad geographical distribution of identical R plasmids of P. piscicida isolated from cultured yellowtail in Japan. Microbiol Immunol. 37:103-109.
    48. Sorensen M, 1979. Occurrence and distribution of antibiotic resistant E. coli strains in faeces from young pigs and calves in Denmark. Nord Vet Med. 31:25-34.
    49. Lewin C S, 1992. Mechanisms of resistance development in aquatic microorganisms. In: Michel C and Alderman D J Eds. Chemotherapy in Aquaculture: From Theory to Reality. Paris: Office International des Epizootics. p. 288–301.
    50. Bj?rkman J, Nagaev I, Berg O G, et al., 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science. 287:1479–1482.
    51. Levin B R, Perrot V, Walker N, 2000. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics. 154:985-997.
    52. Morell V, 1997. Antibiotic resistance: road of no return. Science. 278:575-576.
    53. 李爱华,王伟俊, 1997, 鱼类病原菌耐药质粒的研究概况. 鱼类病害研究. 19(3-4):1-10.
    54. Yoo M H, Huh M D, Kim E H, Lee H H, Jeong H D, 2003. Characterization of chloramphenicol acetyltransferase gene by multiplex polymerase chain reaction in multidrug-resistant strains isolated from aquatic environments. Aquaculture. 217:11-21.
    55. Rhodes G, Huys G, Swings J, et al., 2000. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn 1721 in dissemination of the tetracycline resistance determinant Tet A. Appl Environ Microbiol. 66:3883-3890.
    56. Schmidt A S, Bruun M S, Dalsgaard I, et al., 2001. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol. 67:5675-5682.
    57. Adams C A, Austin B, Meaden P G, et al., 1998. Molecular characterization of plasmid-mediated oxytetracycline resistance in Aeromonas salmonicida. Appl Environ Microbiol. 64:4194-4201.
    58. Andersen S R, Sandaa R A, 1994. Distribution of tetracycline resistance determinants among gram-negative bacteria isolated from polluted and unpolluted marine sediments. Appl Environ Microbiol. 60:908-912.
    59. DePaola A, Roberts M C, 1995. Class D and E tetracycline resistance determinants in gram-negative bacteria from catfish ponds. Mol Cell Probes. 9:311-313.
    60. Furushita M, Shiba T, Maeda T, et al., 2003. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl Environ Microbiol. 69:5336-5342.
    61. 郑国兴,周凯, 1999. 嗜水气单胞菌欧洲鳗皮肤溃疡分离株的耐药性. 中国水产科学. 6(3):69-72.
    62. Martinez-Martinez L, Pascual A, Jacoby G A, 1998. Quinolone resistance from a transferable plasmid. Lancet. 351:797–799.
    63. Jacoby G A, Chow N, Waites K. Prevalence of plasmid-mediated quinolone resistance. In: Program and Abstracts of the Forty-first Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, 2001. Washington, DC: American Society for Microbiology, USA. 2001. Abstract 2120, p.145.
    64. Halling-Sorensen B, Nielsen SN, Lanzky PF, et al., 1998. Occurrence, fate, and effects of pharmaceutical substances in the environment -a review. Chemosphere. 36:357-394.
    65. Kim S R, Nonaka L, Suzuki S, 2004. Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiology Letters. 237: 147–156
    66. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Courvalin P, 1997. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N. Engl. J. Med. 337 (10): 677–680.
    67. Tauch A, Puhler A, Kalinowski J, Thierbach G, 2000. Tet Z, a new tetracycline resistance determinant discovered in gram-positive bacteria, shows high homology to gram-negative regulated efflux systems. Plasmid. 44 (3): 285–291.
    68. Chopra I, Roberts M, 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65: 232– 260.
    69. Claudio D M, Corinna K, Catherine U, Stefan S, Marilyn C R, 2003. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob. Agents Chemother. 47: 883–888.
    70. Olsvik B, Olsen I, Tenover F C, 1995. Detection of tet(M) and tet(O) using the polymerase chain reaction in bacteria isolated from patients with periodontal disease. Oral Microbiol. Immunol. 10 (2): 87– 92.
    71. Zhao J, Aoki T, 1992. Nucleotide sequence analysis of the class G tetracycline resistance determinant from Vibrio anguillarum. Microbiol. Immunol. 36 (10): 1051– 1060
    72. Pang Y, Bosch T, Roberts M C, 1994. Single polymerase chain reaction for detection of tetracycline-resistant Tet K and Tet L. Mol. Cell. Probes. 8: 417– 422.
    73. Pang Y, Brown B A, Steingrube V A, Wallace R J, Roberts M C, 1994. Acquisition of gram-positive tetracycline resistance genes in Mycobacterium and Streptomyces species. Antimicrob. Agents Chemother. 38 (6): 1408– 1412.
    74. Jun L J, Jeong J B, Huh M D, Chung J K, Choi D L, Lee C H, Jeong H D, 2004. Detection of tetracycline-resistance determinants by multiplex polymerase chain reaction in Edwardsiella tarda isolated from fish farms in Korea. Aquaculture. 240: 89–100
    75. Samuelsen O B, Hjeltnes B, Glette J, 1998. Efficacy of orally administered florfenicol in the treatment of furunculosis in Atlantic salmon. J. Aquat. Anim. Health. 10: 55–61.
    76. Ho S P, Hsu T Y, Wang W S, 2000. Antibacterial effect of chloramphenicol, thiamphenicol and florfenicol against aquatic animal bacteria. J. Vet. Med. Sci. 62: 479–485.
    77. Kim E, Aoki T, 1993. The structure of the chloramphenicol resistance gene on a transferable R plasmid from the fish pathogen, Pasteurella piscicida. Microbiol. Immunol. 37: 705– 712.
    78. Arcangioli M A, Leroy-Setrin S, Maetel J L, Chaslus-Dancla E, 2000. Evolution of chloramphenicol resistance, with emergence of cross-resistance to florfenicol, in bovine Salmonella typhimurium strains implicates definitive phage type (DT) 104. J. Med. Microbiol. 49: 103– 110.
    79. Shaw W V, 1984. Bacterial resistance to chloramphenicol. Br. Med. Bull. 40: 36–41.
    80. Davies J, Smith D I, 1978. Plasmid-determined resistance to antimicrobial agents. Annu. Rev. Microbiol. 32: 469–518.
    81. Grkovic S, Brown M H, Skurray R A, 2002. Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66: 671–701.
    82. McMurry L, George A M, Levy S B, 1994. Active efflux of chloramphenicol in susceptible Escherichia coli strains and in multiple-antibiotic-resistant (Mar) mutants. Antimicrob. Agents Chemother. 38: 542–546.
    83. Nielsen I W, Bakke I, Vader A, Olsvik O, El-Gewely M R, 1996. Isolation of cmr, a novel Escherichia coli chloramphenicol resistance gene encoding a putative efflux pump. J. Bacteriol. 178: 3188–3193.
    84. Edgar R, Bibi E, 1997. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol. 179: 2274–2280.
    85. Nikaido H, 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 264: 382–388.
    86. Lewis K, 1994. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem. Sci. 19: 119–123.
    87. Van Bambeke F, Glupezynski Y, Ple′siat P, Peche`re J C, Tulkens P M, 2003. Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J. Antimicrob. Chemother. 51: 1055– 1065.
    88. Moreira M A S, Oliveira J A, Teixeira L M, Moraes C A, 2005. Detection of a chloramphenicol efflux system in Escherichia coli isolated from poultry carcass. Veterinary Microbiology. 109: 75–81
    89. Leslie A G W, 1990. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75A° resolution. J. Mol. Biol. 213: 167– 186.
    90. Schwarz S, Cardoso M, 1991. Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 from Staphylococcus aureus. Antimicrob. Agents Chemother. 35: 1551– 1556.
    91. Shaw W V, 1983. Chloramphenicol acetyltransferase: enzymology and molecular biology. Crit. Rev. Biochem. 14: 1 –46.
    92. Roberts M, Corney A, Shaw W V, 1982. Molecular characterization of three chloramphenicol acetyltransferases isolated from Hemophilus influenzae. J. Bacteriol. 151: 737– 741.
    93. Masuyoshi S, Okubo T, Inoue M, Mitsuhashi S, 1988. Purification and some properties of a chloramphenicol acetyltransferase mediated by plasmid from Vibrio anguillarum. J. Biochem. 104: 130– 135.
    94. Aoki T, 1988. Drug-resistant plasmids from fish pathogens. Microb. Sci. 5:219 –222.
    95. Porter K G, Feig Y S, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography. 25:943-946
    96. Dunbar J, Ticknor L O, Kuske C R, 2001. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Applied and Environmental Microbiology. 67:190–197
    97. Hiraishi A, Iwasaki M, Shinjo H, 2000. Terminal restriction pattern analysis of the 16S rRNA genes for the characterization of bacterial communities of activated sludge. Journal of Bioscience and Bioengineering. 90:148-156
    98. Kibe R, Sakamoto M, Hayashi H, et al., 2004. Maturation of the murine cecal microbiota as revealed by terminal restriction fragment length polymorphism and 16S rRNA gene clone libraries. FEMS Microbiology Letters. 235:139–146
    99. Sanders R W, Caron D A, Berninger U G, 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Marine Ecology Progress Series. 86:1–14.
    100. Gasol J M, Garces E, Vila M, 2005. Strong small-scale temporal bacterial changes associated with the migrations of bloom-forming dinoflagellates. Harmful Algae. 4:771–781
    101. Drake L A,Choi K H,Haskell A G E, et al., 1998. Vertical profiles of virus-like particles and bacteria in the water column and sediments of Chesapeake Bay, USA. Aquatic Microbial Ecology. 16:17-25
    102. Sakamia T, Aboa K, Takayanagia K, et al., 2003. Effects of water mass exchange on bacterial communities in an aquaculture area during summer. Estuarine, Coastal and Shelf Science. 56:111–118
    103. Wang W Q, Qian Z R, 2000. Study of heterotrophic bacteria, coliform bacteria and oil decomposing bacteria in the Jaiozhou Bay. Marine Sciences (in Chinese). 24(1):37-39
    104. Yin P, Lu Y X, 2000. Environmental evolution and sustainable utilization of Jiaozhou Bay. Coastal Engineering (in Chinese). 19(3):14-22
    105. Kelly K M, Andrei Y, 2001. Chistoserdov Phylogenetic analysis of the succession of bacterial communities in the Great South Bay (Long Island). FEMS Microbiology Ecology. 35: 85-95
    106. Uphoff H U, Felske A, Fehr W, Wagner-Dobler I, 2001. The microbial diversity in picoplankton enrichment cultures: a molecular screening of marine isolates. FEMS Microbiology Ecology. 35: 249-258
    107. Eilers H, Pernthaler J, Amann, R, 2000. Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl. Environ. Microbiol. 66: 4634-4640.
    108. Suzuki M T, Rappe M S, Haimberger Z W, Winfield H, Adair N, Strobel J, Giovannoni S J, 1997. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63: 983-989.
    109. Giovannoni S J, Britschgi T B, Moyer C L, Field K G, 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 345: 60-63.
    110. Fuhrman J A, McCallum K, Davis A A, 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Ocean. Appl. Environ. Microbiol. 59: 1294-1302.
    111. Giuliano L, De Domenico M, De Domenico D, Hofle M G, Yakimov M M, 1999. Identification of culturable bacteria within naturally occurring bacterioplankton communities of the Ligurian Sea by 16S rRNA sequencing and probing. Microb. Ecol. 37: 77-85.
    112. Gonzalez J M, Moran M A, 1997. Numerical dominance of a group of marine bacteria in the K-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol. 63: 4237-4242.
    113. Mavridou A, 1992. Study of the bacterial flora of a noncarbonated natural mineral water. J Appl Bacteriol. 73:355– 361.
    114. Manaia C M, Munes O C, Morais P V, da Costa M S, 1990. Heterotrophic plate counts and the isolation of bacteria from mineral waters on selective and enrichment media. J Appl Bacteriol. 871– 876.
    115. Mavridou A, Papapetropoulou M, Boufa P, Lambiri M, Papadakis J A, 1994. Microbiological quality of bottled water in Greece. Lett Appl Microbiol. 9:213 – 216.
    116. Hernandez Duquino H, Rosenberg F A, 1987. Antibioticresistant Pseudomonas in bottled drinking water. Can J Microbiol. 33: 286–289.
    117. Rosenberg F A, Hernandez Duquino H, 1989. Antibiotic resistance of Pseudomonas from German mineral waters. Toxic Assess. 4:281– 294.
    118. 徐海圣, 舒妙安, 2002. 中华鳖肺炎克雷伯氏菌病的病原研究. 浙江大学学报(理学版). 29 (6): 702-706
    119. 古东东, 段蕴铀, 张红鹰, 郝秀红, 潘涛,2003. 临床标本细菌分离及细菌耐药性监测. 中华医院感染学杂志. 13(1): 67-70
    120. Sylvain Brissea, Engeline van Duijkerenb, 2005. Identification and antimicrobial susceptibility of 100 Klebsiella animal clinical isolates. Veterinary Microbiology. 105: 307–312
    121. 刘蓉, 张捷, 董志云, 于维琴, 2004. 天津地区肺炎克雷伯菌下呼吸道感染临床及细菌耐药性分析. 中国感染与化疗杂志. 4 (5): 293-295
    122 孙秋林,叶冬青,李旭,2004. 大肠埃希菌和肺炎克雷伯氏菌的耐药性研究。中国感染与化疗杂志. 4(1): 33-35
    123 Tolmasky M E, Chamorro R M, Crosa J H, Marini P M, 1988. Transposon-mediated amikacin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. September;32(9): 1416–1420.
    124 崔岩,沈定霞, 周责民,2002. 产超广谱l3内酰胺酶产酸克雷伯菌的医院感染流行分析. 中国检验医学杂志. 25(5): 277-280
    125 陈琳, 谷芙, 刘红梅,2005. 1例肺部混合感染的报道.中华医院感染学杂志. 15(3): 341
    126 Timoney J F, Port J G, 1982. Heavy metal and antibiotic resistance in Bacillus and Vibrio from sediments of New York Bight. In: Mayer, G.F. (Ed.), Ecological Stress and the New York Bight: Science and Management. Estuarine Research Federation, Columbia, SC. 235– 248.
    127 Baya A M, Brayton P R, Brown V L, Grime D J, Russek-Choen E, Colwell R R, 1986. Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl. Environ. Microbiol. 51: 1285– 1292.
    128 Eleonor A Tendencia, Leobert D dela Pena, 2002. Level and percentage recovery of resistance to oxytetracycline and oxolinic acid of bacteria from shrimp ponds. Aquaculture. 213: 1 –13
    129 Roberts M C, 1996 Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19: 1-24.
    130 Miranda C D, Kehrenberg C, Ulep C, Schwarz S, Roberts M C, 2003. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob. Agents Chemother. 47 (3): 883– 888.
    131 Gilliane Guillaume, Dirk Verbrugge, Marie-Louise Chasseur-Libotte, William Moens, Jean-Marc Collard, 2000. PCR typing of tetracycline resistance determinants (Tet A^E) in Salmonella enterica serotype Hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiology Ecology. 32: 77-85
    132 Warsa U C, Nonoyama M, Ida T, Okamoto T, Okubo T, Shimauchi C, Kuga A, Inoue, M., 1996. Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by polymerase chain reaction. J. Antibiot. 49: 1127– 1132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700