硫化镉光电薄膜的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化镉(CdS)是优良的半导体光电材料,在太阳能电池、光电子器件、光催化材料和非线性光学器件上有着广阔的应用前景。特别是关于大尺度的CdS薄膜制备及应用,完成该方面的研究工作,将会促进光电技术及其应用的发展。
     本文比较详细的介绍了不同空间维度的CdS材料的研究现状、制备方法及应用前景等。
     理论部分:首先,介绍了化学水浴沉积法制备CdS薄膜的生长机理。其次,介绍了真空蒸发法制备CdS薄膜的实验设备、操作流程、成膜原理及表征CdS薄膜的检测手段。
     实验部分:首先,介绍了化学水浴沉积法制备CdS薄膜。在CBD法沉积CdS薄膜的实验中,发现CdS薄膜的生长受到多种因素的影响如:反应溶液的初始浓度、沉积时间、沉积温度、超声震荡和溶液搅拌速度等。这些因素中决定CdS薄膜厚度的主要是反应溶液的初始浓度及沉积温度。而且,后期的退火处理对CdS薄膜的结构、形貌、透射率也有很大影响。经过分组对比实验并且用XRD谱、SEM图、Raman谱、透射谱、荧光光谱等表征CdS薄膜而得出制备质量优异的CdS薄膜的最佳条件为:CdCl2的浓度范围选取为0.01~0.02mol/L,NH4Cl的浓度范围选取为0.02~0.04mol/L, SC(NH2)2的浓度范围选取为0.01-0.015mol/L, pH值范围选取为10-11,反应温度控制在85-90℃,沉积时间为20-30min,退火温度为400℃。且适当的超声震荡可使薄膜缺陷减少、厚度均匀和透射率提高等。在以上条件下,制备出大面积(20cm×20cm)的CdS薄膜,并测试了光导电特性。
     其次,介绍了真空蒸发法制备CdS薄膜。经一系列实验并且用透射谱、XRD谱、SEM图等表征手段研究蒸发电流、沉积时间、退火处理等制备参数对CdS薄膜的透射率、结构和表面形貌的影响。当其他条件不变时,在蒸发电流小于100A的情况下,CdS薄膜沉积速率随着蒸发电流的增加而变快,同时薄膜的结晶性变好;当其他条件不变时,沉积时间在16min以内与CdS薄膜厚度的增长几乎是线性的;后期的退火处理,会使CdS粒子具有一定的能量,可以在一定范围内运动,随着退火处理温度的增加,粒子获得的动能更多,可移动的范围更大,能形成更大的粒子团,而且更加均匀,结晶性越好,400℃退火后的CdS薄膜结构、导电性及光学特性最佳。最后得到CdS薄膜的最佳制备条件为:蒸发电流:100A,退火温度:400℃,沉积时间:15min。
     最后,用提拉法制备CdS/Cu2S双层膜。分别用化学水浴沉积法和真空蒸发法制备出的CdS薄膜浸渍到CuCl的溶液中,然后用提拉法制备出CdS/Cu2S双层膜。由真空蒸发法的CdS薄膜而制备的CdS/Cu2S双层膜的亮电阻及膜的均匀性等都优于由CBD法的CdS薄膜而制备的CdS/Cu2S双层膜。实验过程中发现,在未经退火处理的CdS薄膜上沉积Cu2S时,易脱落,退火处理高于500℃时,双层膜缺陷多。经测试CdS/Cu2S双层膜的光导电性优于CdS单层膜的。
Cadmium sulfide (CdS) is an excellent compound semiconductor photoelectric material, and showing potential application prospects in solar cells,optoelectronic devices,photocatalytic materials,nonlinear optical devices and so on.The large scale of CdS films research and application are especially important that study on it may boost the development of optoelectronic technology and its applications.
     In this dissertation thesis the different spatial dimensions preparation of CdS were introduced. The recent advances and applications were reviewed.
     Theoretical parts, first of all, it presented the desposition process and growth mechanism of CdS thin films prepared by the chemical bath deposition. Then introduced the laboratory equipment, operational processes, film deposition theory of CdS thin films prepared by vacuum evaporation,and detection means of characterize of CdS thin film.
     Experimental parts, first of all, presented CdS thin films prepared by the chemical bath deposition. The growth behaviors of CBD-CdS thin films may be influenced by the experimental conditions, such as, the initial reaction solution concentration, deposition time, deposition temperature, ultrasonic vibration and the solution stirring speed. In these conditions factors, the initial reaction solution concentration and deposition temperature were the main conditions factors to determine the thickness of CdS thin films. In addition, post-annealing treatment had greatly affected on the structure, surface morphology and transmittance of CdS thin films. After comparing experimental groups and the characterization of CdS thin films by XRD spectra, SEM graph, Raman spectroscopy, transimission spectroscopy, fluorescence spectroscopy that we have obtained the optimum conditions to deposit CdS thin films in the CBD process. The optimum ranges were:CdCl2 concentration in the range of 0.01 to 0.02mol/L, NH4Cl concentration in the range of 0.02 to 0.04mol/L, SC(NH2)2 concentration in the range of 0.01 to 0.015mol/L, pH value in the range of 10 to 11, temperature in range of 85 to 90℃, deposition time general during from 20 to 30 min, annealing temperature 400℃, and appropriate ultrasonic vibration could benefict reduction film defects reduce the film defects, make thickness uniform and improve transmission rate, ect. In the conditions above, we prepared the large area (20cm×20cm) of CdS thin films, and tested the optical and electrical properties.
     Secondly, it presented CdS thin films prepared by the vacuum evaporation. Analysis of preparation parameters include evaporation current, deposition time and annealing treatment influencing on the transmittance, structure and surface morphology of the CdS thin films by doing a series of experiment tests and using transmission spectroscopy, XRD spectra, Raman spectroscopy, SEM graph of characterization. When other conditions remained unchanged, the current less than 100A that deposition rate of the CdS thin films increased with the current becomed faster, while the crystallinity of films changed for the better. When other conditions remain unchanged, deposition time in less than 16min and the growth of CdS film thickness was almost linear. Post-annealing treatment would lead to CdS particles with a certain energy that could move within a certain range, as the annealing temperature increased, the particles gained more kinetic energy could be moved to larger and larger particles, and more uniform crystalline better. After annealing at 400℃, the structure, conductivity and optical properties of CdS thin films would be the best. So the optimum ranges were:evaporation current 100A, annealing temputer 400℃, deposition time 15min.
     Finally, we prepared CdS/Cu2S bilayers by pulling method. Using the chemical bath deposition and vacuum evaporation prepared CdS thin films respectively, then dipping into a solution of CuCl and pulling out to be CdS/Cu2S bilayers. The light resistance and uniformity of CdS/Cu2S bilayers prepared by vacuum evaporation CdS thin films were excellent. In the experiment found that the CdS thin films without annealing and then depositing Cu2S was easy to fall off, annealing above 500℃the bilayer membrane deficit. After tested the photoelectric of CdS/Cu2S bilayers better than CdS monolayer.
引文
[1]Yoffe AD.Semiconductor quantum dots and related systems:electronic, optical, luminescence and related properties of low dimensional systems [J]. Advances in Physics,2001,50(1),208.
    [2]孙学柏,张希清,等.CdS薄膜的化学沉积法制备及其特性研究[J].光谱学与光谱分析,2007,27(1),32-34.
    [3]Anisha Gokarna, N. R. Pavaskar,S. D. Sathaye, V. Ganesan, and S. V. Bhoraskar. Electroluminescence from heterojunctions of nanocrystalline CdS and ZnS with porous silicon [J].Journal of Applied Physics,2002,2118-2124.
    [4]Yuh-Lang Lee, Yi-Siou Lo. Highly Efficient Quantum-Dot-Sensitized Solar CellBased on Co-Sensitization of CdS/CdSe [J]. Advanced functional materials, 2009,19,604-60978.
    [5]Hao Liu, Qiming Liu, Xiujian Zhao. Crystal growth and optical properties of CdS-doped lead silicate glass [J].Materials Characterization.2007,58:96-100.
    [6]Acioli L HA, GomesASL, et al. Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses [J]. Apply Physics Letter,1988, 53(19):1788-1792.
    [7]盖红德,井敏,等.葡萄糖辅助热分解法制备CdS纳米粒子[J].现代化工,2010,30(6):49-51.
    [8]娄向东,贾晓华,王晓兵等.CdS纳米材料的制备及气敏性研究[J].传感器技术,2005,24(8):22-24.
    [9]宋锦,田秀君.纳米硫化镉的制备、表征及其光催化性能研究[J].功能材料,2007,38:2535-2539.
    [10]王春艳,霍宇飞,王金凤.CdS量子点的合成和指纹检测研究[J].河南化工工,2010,27(2):17-19.
    [11]寿一鸣,吴庆生.一种反重力逆向合成硫化镉纳米线的方法:中国,CN101704546 A[P].2010-05-12.
    [12]黄剑锋,胡宝云,等.一种球状硫化镉纳米晶制备方法:中国,CN 101700905 A[P].2010-05-05.
    [13]祝华云等.一种制备空心球状硫化镉纳米晶的方法:中国,CN 101319404 A [P].2008-12-10.
    [14]刘春霞,严文,等.用热蒸发法制备CdS纳米带[J].材料科学与工程学报,2005,23(1):102-104.
    [15]佟永纯,王清云,等.硫化镉与硫化锌纳米材料的界面法合成[J].化学通报,2010,6:657-660.
    [16]H. R. Moutinho, R. G. Dhere, et al. Investigation of potential and electric field profiles in cross sections of CdTe/CdS solar cells using scanning Kelvin probe microscopy [J]. Journal of Applied Physics,2010,108:074503(1-7).
    [17]樊慧娟,白雪峰.水热合成CdS/TiO2复合光催化剂及其催化分解硫化氢制氢[J].石油化工,2009,38(4):438-443.
    [18]M. Ashry,S.A. FayekRadiation effects on fabricated Cu2S/CdS heterojunction photovoltaic cells [J]. Renewable Energy 2001,23:441-450.
    [19]赵云鹤.复合硫化镉双层薄膜的气相与溶液制备的比较研究[D].长春:吉林大学,2010.
    [20]Pavaskar, N.R. Menezes, C.A. Sinha, A.P.B.Photoconductive CdS films by a chemical bath deposition process [J]. Electrochem,1977,124:743-748.
    [21]R.A.Berrigan, N.Maung, S.J.C.Irvine, et al.Thin films of CdS/CdTe grown by MOCVD for photovoltaics [J]. Crystal Growth.1998,195:718-724.
    [22]王给祥等.薄膜Cu2S/CdS太阳电池研究[J].太阳能学报,1988,9(2):179-183.
    [23]崔海宁,王荣,张洪杰,王丽颍,席时权.溶液生长半导体薄膜的方法:中国,CN 96123704.X[P].1998-07-08.
    [24]Hai-Ning Cui, Shi-Quan Xi. The fabrication of dipped CdS and sputtered ITO thin films for photovoltaic solar cells [J]. Thin Solid Films,1996,200:325-329.
    [25]Alka A. Ingale, Shramana Mishra, et al. Structural and particulate to bulk phase transformation of CdS film on annealing A Raman spectroscopy study [J]. Journal of Applied Physics,2009,106,084315(1-9).
    [26]吴艳丹.纳米硫化镉复合材料的研究进展[J].广东化工,2010,37(6):210-212.
    [27]Kotov.N.A, Dekany.I, et al. Layer-by-Layer Self-Assembly of Polyelectrolyte Semiconductor Nanoparticle Composite Films[J].J.Phys.Chem,1995,99:13065.
    [28]J.N.Ximello-Quiebras,G..Contreras-Puente,et al. Physical properties of chemical bath deposited CdS thin films [J].Solar Energy Materials & Solar Cells,2004, 82:263-268.
    [29]光敏电阻器:http://www.xinkexue.com/wiki-doc-docid-5640.html.
    [30]苏进展,李明涛等.CdS薄膜结构表征与光电化学性能研究[J].武汉理工大学学报,2006,28:568-573.
    [31]樊慧娟,白雪峰.水热合成CdS/TiO2复合光催化剂及其催化分解硫化氢制氢[J].石油化工,2009,38(4):438-443.
    [32]Hikmat S. Hilall, Rania M.A, et al. Effect of cooling rate of pre-annealed CdS thin film electrodes prepared by chemical bath deposition:Enhancement of photoelectrochemical characteristics [J]. Electrochimica Acta,2009,54: 3433-3440.
    [33]Anisha Gokarna,N. R. Pavaskar, et al.Electroluminescence from heterojunctions of nanocrystalline CdS and ZnS with porous silicon [J] Journal of Applied Physics,2002,2118-2124.
    [34]C.D.Lokhande. Chemical bath deposition method tin disulfide thin films [P]. Indian Patents,172676,1991.
    [35]Lincot D,Froment M,Cachet H. In Advances in Electrochemical Science Engineering[J]. New York,1998,165.
    [36]P.K. Nair, et al. Mathematical model simulating the growth of compound semiconductor thin flms via chemical bath deposition [J]. Journal of Crystal Growth,1999,206,68-74.
    [37]Savadogo O. Chemically and electrochemically deposited thin films for solar energy materials [J]. Sol.Energy Mater.Sol.Cells.1998,52:361.
    [38]Lincot D, Froment M, Cachet H.In Advances in Electrochemical Science and Engineering[M]. New York,1998,165.
    [39]夏兰.CdS/CdTe太阳能电池中CdS薄膜的制备及其特性研究[D].成都:四川大学,2007.
    [40]Y.J.Chang,C.L.Munsee, et al. Growth, characterization and application of CdS thin films deposited by chemical bathdeposition [J]. Surf.Interface Anal.2005, 37:398-405.
    [41]薛增泉,吴全德,等.薄膜物理[M].北京:电子工业出版社,1991.
    [42]周上祺,X射线衍射分析,重庆大学出版社[M].1991,47.
    [43]吴红琳.ZnO/Cu(Ag. Al)/ZnO多层的透射理论模拟及实验研究[D].长春:吉林大学,2010.
    [44]周密,等.拉曼光谱方法研究疏水作用对四甲基脲氢键形成的影响[J].光谱学与光谱分析,2010,30(1),98-101.
    [45]T.D. Dzhafarov,F. Ongul, S. Aydin Yuksel.Effect of indium diffusion on characteristics of CdS films and nCdS/pSi heterojunctions [J].Vacuum,2010, 84:310-314.
    [46]Meysam Karimi,Mohammad Rabiee,et al.Controlled synthesis, characterization and optical properties of CdS nanocrystalline thin films via chemical bath deposition route [J]. Current Applied Physics,2009,9:1263-1268.
    [47]K. Senthil, D. Mangalaraj,et al. Raman scattering and XRD analysis in argon ion implanted CdS thin films prepared by vacuum evaporation [J]. Nuclear Instruments and Methods in Physics Research,2001,173:475-482.
    [48]H. Moualkia,S. Hariech,M.S. Aida.Structural and optical properties of CdS thin films grown by chemical bath deposition [J]. Thin Solid Films,2009,518: 1259-1262.
    [49]黎兵,蔡伟,等.化学池沉积法制备CdS多晶薄膜及其性质[J].四川大学学报,2004,36(1):49-51.
    [50]K. Senthil, D. Mangalaraj, et al. Structural and optical properties of CdS thin films [J]. Applied Surface Science,2001,169-170:476-479.
    [51]单玉娇等.真空蒸发法制备CdS薄膜及其性能研究[J].东北大学学报,2009,30(3):392-395.
    [52]张剑.半导体纳米材料的水热合成-表征及光学性能研究[D].大连:大连海事大学,2008.
    [53]彭梦.硫化亚铜纳米材料的制备-表征及性质研究[D].武汉:华中师范大学,2008.
    [54]樊慧娟,白雪峰.水热合成CdS/TiO2复合光催化剂及其催化分解硫化氢制 氢[J].石油化工,2009,38(4):438-443.
    [55]汪乐余等.功能性CdS纳米荧光探针荧光增敏法测定人血清白蛋白[J].高等学校化学学报,2003,24:612-614.
    [56]R.A.Berrigan, N.Maung, S.J.C.Irvine, et al. Thin films of CdS/CdTe grown by MOCVD for photovoltaics [J]. Crystal Growth.1998,195:718-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700