灰渣资源化综合利用试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭资源作为中国能源消费结构的主体,分布集中,北多南少,且灰分偏高,这就导致大量灰渣的排放。我国原煤资源相对贫乏的南方地区,却具有较为丰富的低碳低热值的石煤资源。但无论采用哪种工艺,石煤提钒后都会产生巨量的残渣,大部分将堆放灰渣场,既占用土地,又污染环境。一方面,在水泥生产中,硅铝质材料通常用粘土,但粘土反应活化能较高,导致水泥生产能耗很高,而且开采破坏植被,毁坏田地,导致许多发达国家已禁止使用粘土烧水泥。另一方面,水泥生产可以消耗大量的灰渣,因此,灰渣用于水泥生产既可以节约资源,又能改善环境条件,这是符合可持续发展战略思想的。
     为避免传统石煤提钒工艺存在的钒回收率低、污染环境、规模小等问题,本文采用循环流化床钙法焙烧工艺,以钙基原料为添加剂的敦煌石煤料球为焙烧原料,在热输入功率为1MW循环流化床燃烧试验台上进行含钒石煤料球循环流化床焙烧提钒试验研究,对燃烧后灰渣特性和灰渣钒浸出特性进行分析。试验结果表明,循环流化床对石煤中的钒矿物具有良好的焙烧氧化作用:焙烧产物以飞灰为主,占70%左右且V2O5的含量为1.38%,比石煤原样提高了23.2%;在液固比2,硫酸浓度15%,浸出温度90℃条件下,灰渣的V205浸出率接近70%。可以预见,敦煌石煤料球在实际循环流化床锅炉中焙烧,氧化效果将会更好,能使灰渣的钒浸出率进一步提高。
     对提钒残渣和气化灰渣进行物化特性分析。分析表明,提钒残渣和气化灰渣的化学成分以及矿物组成都与水泥生产中的粘土质原料极为相近,而且含有大量的富氧矿物和微量元素,活性很好,用来作生料配料可以促进熟料的烧成;用来作水泥混合材,也有利于水泥的水化作用,对抗压抗折强度的提高大有裨益。此外,气化飞灰含碳量29.53%,发热量可以达到8967kJ/kg,可以作为劣质煤来提供热量,应用立窑水泥的配料,达到节约能耗的目的。
     参考新型干法回转窑水泥煅烧工艺,对中间盐法酸浸提钒残渣进行生料配方设计,按照递减试凑法配制了15个生料配方,然后分别在1250℃、1300℃、1350℃、1400℃和1450℃五个温度下进行煅烧。通过对熟料进行游离氧化钙、XRD、SEM扫描电镜的分析和静浆抗压强度试验分析,并与厂熟料进行对比,可以看到提钒残渣和含钒石煤灰渣作水泥生料,熟料烧成温度降低50℃,减少煅烧时间,降低水泥煅烧能耗,提高生料的易烧性,提高熟料质量,所以使用提钒残渣和含钒石煤灰渣配制水泥生料煅烧熟料完全可行,而且很有意义。
     参考立窑水泥煅烧工艺,对灰熔聚气化炉飞灰作水泥生料进行配方设计。设定熟料率值KH=0.93~0.95,SM=1.8~2.2,IM=1.1~1.5,根据飞灰与无烟煤的不同配比,以飞灰代粘土的不同替代率,按照解方程法配制了91个生料配方,这表明气化飞灰可在一定生料率值范围内配制立窑水泥熟料煅烧工艺生料,且可较大幅度减少外配无烟煤,达到节能效果。
     对中间盐法酸浸提钒残渣作混合材进行了试验研究。分别按10%、15%、25%、30%、35%、40%和45%的质量比,将提钒残渣和厂石煤渣分别进行单掺和对掺,对不同配料的水泥试验样品进行物理检验,结果表明:提钒残渣是活性很好的水泥混合材材料,不论单掺还是和水泥厂石煤渣对掺,水泥安定性、凝结时间等性能指标均符合复合硅酸盐水泥要求,其强度均满足32.5等级水泥强度要求,水泥性能指标全部满足GB175-2007之规定。而且提钒残渣28d抗压抗折强度均高出水泥厂石煤渣很多,使其有可能成为一种特殊的水泥混合材产品出售,这将大大提高其身价,从而大幅度提高石煤多联产综合利用的经济效益和环境效益。
     对二次焙烧残渣作混合材进行了试验研究。分别按10%、20%、30%和40%的质量比,将提钒残渣2和厂石煤渣分别进行单掺和对掺,对不同配料的水泥试验样品进行物理检验,发现其水泥强度均满足32.5R强度等级水泥要求,水泥性能指标全部满足GB175-2007之规定。R28的测定表明它是活性很好的水泥混合材材料。当残渣掺入量达到40%时,残渣中的石膏成分足以代替外加石膏,不仅使残渣得到完全利用,还将降低水泥的石膏成本。
     最后,对灰熔聚气化炉排渣经循环流化床锅炉燃烧后的底渣作混合材进行了试验研究。分别按10%、15%、25%、30%、35%、40%和45%的质量比,将底渣和厂石煤渣2分别进行单掺和对掺,对不同配料的水泥试验样品进行物理检验,发现其抗折、抗压强度都至少满足32.5R等级水泥强度要求,绝大多数都达到42.5R等级水泥强度要求。R28的测定表明底渣是活性很好的水泥混合材材料。
Coal, as the most important energy source in China, distributes in majority of north China with high ash content, which leads to large amounts of ash emission. However, Stone Coal, with low carbon content and low heat value, is comparatively abundant in south China. Vanadium, as an associated element of Stone Coal, is one kind of important strategic materials. Unfortunately, super-accumulation of leavings after extracting Vanadium will be overground stockpiled, which results in land occupation and environmental pullution. On the one hand, the current silicon aluminum material commonly uses clay in cement production. But due to its higher reaction activation energy, it needs excessive energy consumption during the process of calcinations, furthermore, clay mining destroys vegetation and farmland, therefore clay has been banned by many developed countries for cement production. On the other hand, cement production could consume large amounts of ash and leavings. Thus, ash used in cement production could not only saving rescources, but also improving environmental conditions, which is in accordance with the ideology of sustainable development strategy.
     To avoid the existing problems, such as low recovery rate of Vanadium, environmental pollution and small capacity in the conventional vanadium extraction processes, the calcium-modified roasting process in circulating fluidized bed was used. Mixed Dunhuang-Stone Coal with calcium-based additives as material ball, then put it in the circulating fluidized bed (thermal input power is 1MW) in order to study the Vanadium extraction characteristics of vanadium-containing stone coal calcination in CFB, ash characteristic and leaching characteristics of vanadium. The results showed that CFB had good effect on the roasting oxidation of Vanadium in stone coal because the main components of combustion products was fly ash with 70% Vanadium, which is 23.3% more than original Stone Coal and the V2O5 leaching rate of ash was close to 70% at a liquid-solid ratio of 2:1, sulfuric acid concentration of 15% and leaching temperature of 90℃. It is foresaw that the roasting oxidation and V2O5 leaching effect of Dunhuang Stone Coad could be better in the actual calcination of CFB.
     Physicochemical properties of Vanadium extraction leavings and gasified ash have been analyzed. It showed that the chemical constituents and mineral composition of these ash are very similar with the common argillaceous materials used in cement production, also contain lots of oxygen-rich minerals and trace elements which play a positive mineralization role in clinker calcination and cement hydration as well as the improvement of anti-pressure and anti-folded intensity. Besides, gasified fly ash contains 29.53% of carbon content and 8967kJ/kg of calorific value so that it can be uses as inferior coal for heat supply and ingredient for shaft kiln cement to save energy comsumption in cement industry.
     Based on the calcination process of Pre-calcining Kiln, we designed raw mix formula with Vanadium extraction leavings from the process of vanadium extraction by interim product with sulfuric acid leaching from ash of stone coal. We adopted Degression Making-up Method to optimize 15 formulations. Then we calcined it to be clinker under the calcination temperature of 1250℃、1300℃、1350℃、1400℃和1450℃. According to the analysis of fCaO, XRD, SEM and compression strength tests, comparing with the industry clinker, we can find that cement clinker is successfully calcined basically with the temperature of 50℃decreased. Therefore, we are sure that cement clinker with Vanadium extraction leavings as argillaceous material is successful and meaningful for the reason that it can reduce calcination time, save energy comsumption, increase burnability of raw meal and improve quality of clinker.
     Based on the erect kiln cement process, we designed raw mix formulations with fly ash.of ash-agglomerated gasifier. We set the three modulus KH=0.92-0.95, SM=1.8-2.2, IM=1.1-1.5. According to the different fly ash- anthracite ratio and fly ash replacement rate of clay, we adopted Equation-solving Method to optimize 91 formulations. It shows that gasified fly ash could be used as argillaceous material for erect kiln cement production and save energy for the remarkable reduction of Anthracite consumption.
     We have experimental study on the utilization of Vanadium extraction leavings from Acid Leaching Process as Cement Active Admixture. Vanadium extraction leavings used alone or mixed with stone coal ash in the weight ratio of 10%,15%, 25%,30%,35%,40% and 45%. According to the physical inspection of cement samples, we can find that Vanadium extraction leaving belongs to active admixture and whether it was used alone or mixed with stone coal ash, cement performances index met Ordinary Portland Cement Standard GB175-2007 and cement of 32.5 grade would be generated. Moreover, the 28d pressure intensity of Vanadium extraction leavings is far more than stone coal ash of cement factory, which makes Vanadium extraction leavings, used as cement active admixture, be sold at high price in order to greatly improve economic and environmental benefits of comprehensive utilization of Stone Coal.
     We have experimental study on the utilization of Vanadium extraction leavings from Second-calcination as Cement Active Admixture. The second Vanadium extraction leavings used alone or mixed with stone coal ash in the weight ratio of 10%, 20%,30% and 40%. According to the physical inspection of cement samples, we can find that whether the second Vanadium extraction leaving was used alone or mixed with stone coal ash, cement performances index met Ordinary Portland Cement Standard GB 175-2007 and cement of 32.5R grade would be generatedm, but the effect is still not as good as Vanadium extraction leavings from Acid Leaching Process. The results of R28 show that the second Vanadium extraction leaving belongs to active admixture. Gypsum, compositon of the second Vanadium extraction leavings, is enough to replace applied plaster.Therefore, the utilization of Vanadium extraction leavings from Second-calcination as Cement Active Admixture could not only use leavings entirely, but also reduce cost of gypsum in cement production.
     At last, we have experimental study on the utilization of bottom slag, which is the slag from CFB calcination of ash-agglomerated gasified slag, as Cement Active Admixture. The slag used alone or mixed with stone coal ash in the weight ratio of 10%,15%,25%,30%,35%,40% and 45%. According to the physical inspection of cement samples, we can find that whether the slag was used alone or mixed with the second stone coal ash, cement performances index met Ordinary Portland Cement Standard GB175-2007 and cement of 32.5R grade would be generatedm even up to 42.5R. Furthermore, the results of R28 also show that gasified bottom slag is more active than Vanadium extraction leavings from Acid Leaching Process. The results of R28 show that the second Vanadium extraction leaving belongs to active admixture.
引文
[1]2009年中国能源消费结构深度研究报告http://www.118power.com/research/detail/120670.html
    [2]闫玉秀.浅议我国能源问题[J].中共石家庄市委党校学报,2005,7(12)
    [3]北京华灵四方投资咨询公司.中国煤炭行业深度研究报告(2005)[R],2005
    [4]王文龙.电厂煤粉炉直接联产高硅硫铝酸盐水泥熟料的试验研究[D].杭州:浙江大学博士学位论文,2004
    [5]刘早春,于志勇,林治穆等.石煤的综合利用[J].化学世界,1994,(4):213
    [6]刘石潭,廖国保等.石煤灰渣开发利用大有可为—益阳石煤发电厂灰渣综合利用的调查[J].煤炭资源开发与利用:科技与信息,1992,(7)
    [7]唐根华,任文娣.石煤的综合应用[J].四川水泥,2000,(6):17-18
    [8]漆明鉴.从石煤中提钒现状及前景[J].湿法冶金,1999,(4)
    [9]宋存义.粉煤灰砌筑抹灰水泥的生产与应用[M].北京:中国建材工业出版社,1999
    [10]石磊,牛冬杰,金龙等.煤矸石的综合利用[J].煤化工,2005,(4):15-18
    [11]唐晓微,刘永新.煤矸石的综合利用[J].河北化工,2007,(4)
    [12]邱钰,缪林昌,刘松玉.煤矸石在道路建设中的应用研究现状及实例[J].公路交通科技,2002,19(2):1-5
    [13]孙望超.粉煤灰的土工特性与工程填筑[J].粉煤灰综合利用,1997,(2)
    [14]邵靖邦,王祖讷.利用粉煤灰生产化肥[J].煤炭加工与综合利用,1998,(3)
    [15]王安萍.世界灰渣利用概况[J].电力环境保护,1998,(2)
    [16]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1997
    [17]李从典.我国利用煤矸石生产砖瓦的现状和前景[J].新型建筑材料,2001,(10)
    [18]李建康.煤矸石加气混凝土的研究[J].山西建材,1996,(4)
    [19]霍宝荣.粉煤灰、自燃煤矸石空心砌块的试验研究[D].阜新:辽宁工程技术 大学,2005,11:1-4
    [20]林介东,莫乾凯,江潮全.电厂粉煤灰综合利用技术的现状及发展方向[J].中国能源,2002,(4):36-39.
    [21]曾小梅.我国煤矸石的综合利用现状[J].山东煤炭科技,2005,(2)
    [22]2002 coal combustion product(CCP) Production and use survey.American Coal Ash Association.www.acaa-usa.org..
    [23]沈威,黄文熙,闵盘荣.水泥工艺学[M].北京:中国建筑工业出版社,1986
    [24]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2000
    [25]郑开军.石煤渣在水泥生产中的应用[J].水泥技术,1999, (5):43-44
    [26]姚少武,周松梯,陈建国.用石煤渣代替部分页岩配料[J].四川水泥,1999,(5):52
    [27]郭仁育,傅圣勇.利用石煤渣、铜铅锌矿尾渣烧制特种水泥[J].能源工程,1991, (2)
    [28]石小芳,徐俊鹏,唐名德.钢渣作混合材在水泥生产中的应用[J].水泥,2005,(5):35-36
    [29]王高法.石煤沸腾炉渣作水泥混合材是水泥磨节电的新途径[J].水泥,1992,(7)
    [30]金军.利用石煤渣替代渣生产水泥技术[J].杭州科技,1992, (5):21-22
    [31]郑开军.用石煤渣作水泥混合材的实践[J].建材标准化与质量管理,1999,(2):37-38
    [32]赵洪义,李峰德,包西祥.水泥工业大量利用固体工业废渣的有效途径[J].中国建材,2000,(8):70-72
    [33]周洪平.工业废渣在水泥生产中的具体应用[J].江西建材,2000,(4):15-17
    [34]杨南如.水泥工业应用工业废渣的有效途径[J].水泥技术,2007,(6):19-23
    [35]Godard J B.Salt Roasting of Vanadium Ores[C].Extr Met-all Met Proc Symp,1981:127-45.
    [36]Brooks P T. Pottr G M. Recovering Vanadium Dolomitic Nerada,MBRI7932,1974:20.
    [37]煤碳部综合利用和科技情报石煤湖南分站.曼斯菲尔德碳质页岩的开采与加 工[J].石煤科技,1979,(3):5-10
    [38]邓庆云.石煤钠化焙烧、酸浸、离子交换提钒新工艺的试验研究[J].稀有金属与硬质合金,1993,(12):27-33
    [39]张晓惠.石煤氧化钠化焙烧设备评析[J].稀有金属与硬质合金,1999,(1):53-57
    [40]汪会生.石煤提钒钠化焙烧技术分析[J].矿冶工程,1994,14(2):49-52.
    [41]潘勇,于吉顺,吴红丹.石煤提钒的工艺评价[J].矿业快报,2007,4(4)
    [42]邹晓勇.含钒石煤无盐焙烧酸浸生产五氧化二钒工艺的研究[J].化学世界,2001,(3):117-119
    [43]李晓健.酸浸-萃取工艺在石煤提钒工业中的设计与应用[J].湖南有色金属,2000,(5):21-23
    [44]戴文灿,孙水裕.石煤湿法提钒新工艺研究[J].湖南有色金属,2009,25(3):22-25
    [45]戴文灿.石煤提钒综合利用新工艺的研究[J].有色金属,2000,(3):14-17
    [46]张萍.苛化泥为焙烧添加剂从石煤提取五氧化二钒[J].稀有金属,2000,(3):115-118
    [47]郑彭年.离子交换用于石煤提钒的探讨[J].工程设计与研究,1992,(6):35-38
    [48]郑祥明,田学达,张小云.湿法提取石煤中钒的新工艺研究[J].湘潭大学自然科学学报,2003,25(1):43-45
    [49]Seeton. F. A. Solvent Extraction Recovers VecoveryVanadium from Waste Stream[J].Chem Eng,1964,71 (44):112-114.
    [50]Corlo Giavarini.Recovery of Vanadium from Ash-leachingsolution by solvent Extraction[J].Fuel,1982,61(6):549-552.
    [51]王斌,田凤国,章明川等.灰粘熔排渣技术在内循环流化床垃圾焚烧中的应用[J].动力工程,2006,26(3):355-356
    [52]宾智勇.石煤提钒研究进展与五氧化二钒的市场状况[J].湖南有色金属,2006,22(1):16-17
    [53]徐耀兵,王勤辉,施正伦等.含钒灰渣酸浸液结晶铵明矾的工艺条件实验研 究[J].过程工程学报,2009,9(5):86-90
    [54]Bhatty J I, Marijnissen J, Reid K J. Portland cement production using mineral wastes [J]. Cement and Concrete Research,1985,15 (3):501-510
    [55]Everett D. Raw materials are the key to CKD reduction [J]. Rock Products Cement Edition,1995,(7):16-21
    [56]周同惠等.分析化学手册(第八分册)[M].北京:化学工业出版社,2000:266,299,301,304
    [57]王拈生,傅圣勇.水泥新原料烧成技术与新论[M].北京:中国科学技术出版社,1999
    [58]傅圣勇,来正新,秦至刚.中国水泥窑节能减排的探索-惰性SiO2→活性[SiO4]4-节能简析[J].节能环保,2008,(9)
    [59]傅圣勇,秦至刚,杨建江.用粘土原料的弊端(上)[J].四川水泥,2005,(1):5-9
    [60]Eshmaiel Ganjian, Peter Claisse, Mark Tyrer, et al. Preliminary investigations into the use of secondary waste minerals as a novel cementitious landfill liner [J]. Construction and Building Materials.2004(18):689-699.
    [61]Conroy, G.H. Solid waste fuel and additive handling for cement production [C]. Cement Industry Technical Conference. April 2006:25.
    [62]陆平.水泥材料科学导论[M].北京:中国建筑工业出版社,1980.
    [63]傅圣勇,俞峰,罗凤根,袁小琴等.辉绿岩母岩→风化岩→风化土应用结果——论水泥原料的成因与烧成效果[J].四川水泥,2003,(6):5-9
    [64]马保国,柯凯,李相国.V2O5掺杂对硅酸盐水泥熟料烧成及矿物结构的影响[J].硅酸盐学报,2007,35(5):588-592
    [65]余曼丽,范良浩,胡永平.钒渣掺杂对硅酸盐水泥熟料烧成及性能的影响[J].建筑施工.2,007,29(6):437-439
    [66]刘晓存,李艳君,汝莉莉等.TiO2对阿利特-硫铝酸盐水泥性能影响的研究[J].水泥工程,2007,(2):11-14
    [67]刘晓存,李艳君,汝莉莉等.TiO2对阿利特-硫铝酸盐水泥熟料煅烧及矿物形成影响的研究[J].水泥,2006,(1):21-24
    [68]刘学丰.铜尾矿在水泥生产中得到利用[J].砖瓦世界,1993,(13)
    [84]张聚林,梅蔷,左玉华.Cu尾矿、萤石作复合矿化剂生产水泥熟料的探讨[J].山东建材学院学报,2000,14(2):95-97
    [69]樊佳磊,李海宁.使用镍钛渣配料生产优质水泥熟料[J].水泥,2004,(5):24-26
    [70]赵素霞,李健生,江帆.用镍渣代替铁粉配料煅烧水泥熟料[J].河南建材,2003,(4):25,29
    [71]屈雅,岳云龙.用钡渣作矿化剂煅烧硅酸盐水泥熟料的研究[J].水泥.,2001,(10):15-16
    [72]王宁章,王善拔.MnO2对硅酸盐水泥熟料性能的影响[J].水泥,1999,(10):1-3
    [73]王宁章,冯庆革.锰对硅酸盐水泥熟料煅烧的影响[J].水泥,1998,(4):15-18
    [74]马保国,张莉,董荣珍.锌盐对水泥水化历程的影响[J].建筑材料学报,2004,7(4):442-446
    [75]张莉.化学外加剂对水泥水化历程的影响及作用机理研究[D].武汉:武汉理工大学硕士学位论文,2004
    [76]张秀,易廷辉.城市土壤重金属评价标准限值探讨[J].科学咨询(决策管理),2008,(7)
    [77]Renfrew, S., Perkins, D. Utilization Of Steel Slag In A California Cement Plant[C]. Cement Industry Technical Conference,2004,(1):111-119.
    [78]徐扬.煤矸石代粘土配料煅烧水泥熟料试验研究[D].杭州:浙江大学硕士学位论文,2008
    [79]施正伦,骆仲泱,林细光.尾矿作水泥矿化剂和铁质原料的试验研究[J].浙江大学学报:工学版,2001,42(3):406-410
    [80]林细光,施正伦.金属尾矿中的Fe2S在水泥烧成中的节能作用[J].能源工程,2005,6:50-53
    [81]张晓玲.论生料质量对熟料煅烧的影响[J].云南建材,1993,(1)
    [82]许婵娟,马保国,郝先成.煅烧煤矸石配料对生料易烧性和熟料矿物组成的 影响[J].水泥工程,2005,(6):78-81
    [83]Dhanjal, S.K, Young.L & Storer.P. Automatic control of cement quality using on-line XRD [C]. Cement Industry Technical Conference,2006:9-14
    [84]杨于兴,漆睿.X射线衍射分析[M].上海:上海交通大学出版社,1994
    [85]Amer Ali Al-Rawas, Abdel Wahid Hago & Ramzi Taha. Use of incinerator ash as a replacement for cement and sand in cement mortars [J]. Building and Environmen, 2005,(40):1261-1266.
    [86]陆佩文.无机材料科学基础[M].武汉:武汉工业大学出版社,1996
    [87]邵国有.硅酸盐岩相学[M].武汉:武汉工业大学出版社,1991
    [88]严兴李.利用工业废渣制备高C3S水泥熟料机理研究[D].北京:北京工业大学硕士学位论文,2004
    [89]韦平.应用XRD分析水泥窑灰矿渣型生态水泥水化过程的研究[J].水泥,2007,(7):18-22.
    [90]冯奇,王培铭.活化煤矸石对水泥水化的影响明.材料研究学报,2006,20(2):191-196.
    [91]王培铭,刘贤萍,胡曙光等.硅酸盐熟料-煤矸石/粉煤灰混合水泥水化模型研究[J].硅酸盐水泥,2007,(1):56-57
    [92]Karin Gabel and Anne-Marie Tillman. Simulating operational alternatives for future cement production [J]. Journal of Cleaner Production.2005, 13(13-14):1246-1257.
    [93]裴新意,赵鹏,王尉和等.粉煤灰的微观形态及其在水泥水化中的特性[J].粉煤灰综合利用,2008,(6):45-46
    [94]高培伟,许仲梓,李东旭等.沸石用做水泥混合材的理论研究[J].水泥工程,1994,(4)
    [95]秦文政,顾军.A、D级油井水泥的水化产物及其微观结构[J].石油与天然气化工,2008,37(4):326-327
    [96]刘贤萍,王培铭.硅酸盐水泥熟料-煤矸石混合水泥的界面结构[J].硅酸盐学报,2008,36(1)
    [97]ZHU Hongbo, WANG Peiming. Effects of slag, high-calcium fly ash and activating materials on earlyhydration degrees of cements[J]. Journal of the Chinese Ceramic Society.2008,36(4)
    [98]SHEN Weiguol,2,XIAO Liqi2,ZHAO Suling,etc. Investigation on Nano-Scale Microstructure of C-S-H with Atomic force Microscope[J]. Journal of the Chinese Ceramic Society.2008,36(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700