短碳纤维增强镁基复合材料的制备及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属镁由于具有低密度和良好的阻尼减震性、导热性以及电磁屏蔽性等特点,在航空航天、交通运输和电子工业等领域有着广阔的应用前景,但由于纯镁的力学性能及耐腐蚀性能较差,因此在工业上一般不直接使用纯镁作为结构材料。金属镁的工业应用多采取以下两种途径来实现:一是添加合金元素形成镁合金;二是加入增强体制备成镁基复合材料;在镁合金中引入不同功能增强体可显著地改善镁基复合材料的力学性能、耐磨性能、阻尼性能及耐高温性能。
     碳纤维由于具有高的比强度、比模量、耐高温、耐疲劳、低膨胀和自润滑等优异的综合性能,使其成为一种非常理想的制备镁基复合材料的增强体材料。但是,碳纤维与金属镁之间的润湿性较差,为此往往需要对碳纤维进行表面处理,化学镀镍一方面由于其与金属镁之间良好的润湿性使得碳纤维增强镁基复合材料的力学性能大幅度提高;另一方面其在界面层中引入金属镍还可以显著地改善镁基复合材料的阻尼性能。
     本文采用粉末冶金和热挤压的工艺技术制备了短碳纤维增强镁基复合材料,对其制备技术、组织结构、力学性能及阻尼性能等进行了研究。采用化学镀镍的方法对碳纤维进行了表面处理,并对金属镍的沉积机理及其对镁复合材料力学性能及阻尼性能的影响进行了研究,最后采用有限元法对复合材料的热挤压过程进行了计算机模拟,研究了挤压过程中各参数对复合材料微观结构的影响。论文取取得了以下主要成果:
     1、在预备试验的基础上,设计了碳纤维化学镀镍处理的L16(4~5)正交试验,得到了最佳的施镀工艺条件:T=65℃,t=3min,pH=8.0,络合剂含量25g/L。采用此工艺条件,在碳纤维表面得到了结构均匀0.5um厚的金属镍涂层。
     2、通过化学镀镍沉积过程研究发现,整个化学镀过程可分为诱导期-加速期-减速期-稳定期四个阶段。[OH-]的反应级数为0.265,[C_6H_5O_7~-]的反应级数为-0.233,化学镀的活化能为62.82KJ/mol。随着热处理温度的升高,金属镍涂层向碳纤维内部扩散而使其发生了石墨化、镀层内部晶粒明显长大、结晶度提高近1倍,其物相组成由初始的沿(111)晶面择优取向的金属Ni和少量的P转变为无序取向的Ni和Ni3P。
     3、以纯镁为基体金属,采用粉末冶金挤压法成功制备了短碳纤维分布均匀且定向排列的镁基复合材料。压坯制备过程中不规则镁颗粒对短碳纤维有剪切作用,复合材料内部的纤维会变短,其平均长度约为30μm;TEM测试结果表明,复合材料界面层厚度约500nm,界面结合良好,界面生成的Mg_2Ni对碳纤维有一定的催化石墨化作用。
     4、综合理论计算和试验结果发现,涂层碳纤维增强镁基复合材料的增强机理主要是“载荷传递效应”;随着增强体体积分数的增加,在高于临界振幅的范围内复合材料的阻尼性能更加优良,常温下复合材料阻尼除位错阻尼机制外还有其他的阻尼机制存在。纯Mg、5.5vol%uncoated cf/Mg和5.5vol%Ni-coated cf/Mg三种材料在整个测试温度范围内都只存在一个阻尼峰,且随着频率的增加其阻尼峰值温度升高,显示了热激活弛豫过程的特征,三种材料的热激活能H的大小分别为:1.287eV、1.129eV和1.725eV;前两种材料起作用的主要是位错阻尼机制,而5.5vol%Ni-coated cf/Mg复合材料由于碳纤维表面金属镍涂层的引入改善了界面润湿性,使界面附近的位错密度降低,在低温及相同外加应力的作用下通过位错运动耗散的能量最少,随着温度的升高通过界面和晶界的滑移所耗散的能量增加导致其在200~260℃范围内具有最大的阻尼值。
     5、成功地制备了短碳纤维增强的AZ91D镁基复合材料,复合材料中短碳纤维的长度为30~40μm。TEM观察发现,复合材料界面结合良好,5.0vol%Ni-coated cf/AZ91D复合材料的力学性能与纯AZ91D及5.0vol%uncoated cf/AZ91D相比最优。5.0vol%Ni-coated cf/AZ91D复合材料随着频率的增大阻尼峰值温度移向高温,同样表现出热激活弛豫过程的特征,其热激活能H为3.448eV;在温度高于220℃的条件下,随着热挤压温度的升高和挤压比的减小5.0vol%Ni-coated cf/AZ91D复合材料的阻尼值减小,这与复合材料内部的晶粒大小有关。
     6、DEFORM-3D有限元软件对热挤压过程的模拟结果表明,复合材料中碳纤维长度减小的主要原因是压制过程中金属颗粒对纤维的剪切作用;在热挤压过程中复合材料内部的应力场、应变场和温度场都对称分布,且在定径带处出现明显的应力和应变集中;通过对此区域复合材料的金相组织观察发现,在挤压开始阶段复合材料内部基体金属颗粒由于受到挤压力的影响而被逐渐拉长,且发生了明显的动态再结晶,晶粒尺寸在此过程中出现明显的细化现象,当材料流出定径带后由于材料内部应力和应变的释放而使晶粒尺寸变大。
Magnesium metal has broad application prospects in aerospace, transportation and electronics industries because it has low density, good damping capacity, good thermal conductivity and electromagnetic shielding characteristics. However, it is not been directly used as structural materials due to its poor mechanical properties and corrosion resistance. The application of magnesium metal is usually take the following two ways: one is alloying and another is magnesium matrix composites. The introduction of different reinforcements into the magnesium alloys can significantly improve the mechanics performance, wear-resisting performance, damping performance and high temperature resistant performance of magnesium matrix composite.
     Carbon fiber is a very ideal reinforcement to make the magnesium based composite on account of its excellent performance such as high specific strength and modulus, thermostability, fatigue resistance, low inflation and self-lubricating etc. But it is well known that the wettability between it and magnesium is poor. So it is often required to carbon fiber’s surface treatment. Electroless nickel plating is one of surface treatment measures. On the one hand the good wettability between nickel and magnesium could improve the mechanical properties of carbon fiber reinforced magnesium based composite; On the other hand the introduced metal nickel in the interface can significantly improve the damping capacity of magnesium matrix composite.
     In this thesis the short carbon fibers reinforced magnesium matrix composites were fabricated by powder metallurgy and hot extrusion technology. Then its preparation technology, organization structure, mechanical properties and damping properties were studied. The deposition mechanism of nickel,and its influence on the mechanical properties and damping performance of the magnesium-based composite was studied. Finally the hot extrusion process of composite was simulated by finite element method. The influences of extrusion process parameters to the composite material’s microscopic structure were studied. The following main achievements were obtained in this paper:
     1、The L16 (4~5) orthogonal experiments were designed based on the preliminary experiments and it was got the best plating technology conditions: T = 65℃, t = 3min, pH = 8.0, complexity agent content 25g/L. Using this technology conditions, the uniform nickel coating about 0.5μm thickness was obtained.
     2、It was found the whole electroless plating process could be divided into four obvious stages: induction period - accelerating period - slow period - stabilization period. The orders of reaction of [OH -] and [C_6H_5O_7~-] were 0.265 and -0.233 respectively. The activation energy of electroless plating was 62.82 KJ/mol. Along with the heat treatment temperature elevation, the following results were appeared. The graphitization appeared because the interior diffusion of nickel coating from the surface carbon fibers. The grains were obvious grown up in the coating and its crystallization improved nearly doubled. Its phase composition changed from the initial preferred orientation along (111) faces of metal Ni and a small amount of P to the disorder. Ni3P and Ni.
     3、Using the magnesium as matrix, the magnesium-based composites which the short carbon fiber distribution was distributed uniformly and directionally aligned were fabricated by powder metallurgical and hot extrusion. The average length of short carbon fibers was about 30μm which was shorter than its initial because the shearing action of irregular magnesium granules to the short carbon fiber during the pressure billets process. TEM test results showed that the thickness of good interface layer was 500nm and the interfacial product of Mg_2Ni had a certain catalytic graphitization role.
     4、Comprehensive theoretical calculation and test results,it was found that the enhancement mechanism of magnesium matrix composite reinforced by coated short carbon fibers was mainly "load transfer effect"; At ambient temperature, the composites possess the more excellent damping performance above the critical amplitude with the increase of volume fraction and there existed other damping mechanisms in addition to dislocation damping mechanism in it. Whether it be Pure Mg, 5.5 vol % uncoated cf/Mg or 5.5 vol % Ni - coated cf/Mg, only one damping peak on the damping-temperature curves and the peak temperature shift to high temperature with the increased frequency which shows the characteristics of heat activating relaxation process. The thermal activation energies of above three different materials were 1.287eV, 1.129eV and 1.725eV, respectively. There existed mainly the dislocation damping mechanism in the first two kinds of materials. However, the dislocation density near the interface reduced due to the introduction of nickel coating which improved interfacial wettability in the 5.5vol%Ni-coated cf/Mg composite. The dissipated energy by dislocation motion was decreased at low temperature and the same applied stress. The maximum damping values appeared in 200 ~ 260℃due to the increased dissipated energy through the interface and grain boundary sliding with the rise of temperature.
     5、The AZ91D magnesium-based composites reinforced by short carbon fibers were successfully prepared and the length of carbon fibers was 30 ~ 40μm in them. The results of TEM observation shown that the bonding of the interface between metal substrate and carbon fibers is good. The mechanical properties of 5.0vol%Ni-coated cf/AZ91D composite was optimal compared with pure AZ91D and 5.0vol%uncoated cf/AZ91D composite. The damping peak temperature shifted to higher temperature with the increase the frequency and also displayed the characteristics of heat activating relaxation process. Its thermal activation energy was 3.448 vetches damping capacity of 5.0vol%Ni-coated cf/AZ91D composite decreased with the rising hot extrusion temperature and increased extrusion ratio at the temperatures higher than 220℃.This was responsible for the grain size internal the composite.
     6、The simulation results of hot extrusion process carried out by DEFORM -3D finite element software shown that the decrease of carbon fiber’s length was due to the magnesium particle’s shearing action during the pressing process. In hot extrusion process the stress field, strain field and temperature field were distributed symmetrically and the obvious stress and strain concentration was appeared in the sizing area. The metallographic structure near this regional in the composite shown that the metal particles were gradually been stretched and the obvious dynamic recrystallization was appeared .But the grain size become bigger due to the release of the internal stress and strain when the composite outflow the sizing region.
引文
[1]益小苏,杜善义,张立同.复合材料手册[M].复合材料导论.北京:化学工业出版社. 2009.
    [2]陈华辉,邓金海,李明.现代复合材料[M].北京:中国物质出版社. 1998.
    [3]黄永攀,李道火,王锐.铝基复合材料的性能、应用及制造工业[J].湖南冶金, 2004, 32(2):3-6.
    [4]罗守靖.复合材料液态挤压[M].北京:冶金工业出版社. 2002.
    [5]张广安,罗守靖,田文彤.短碳纤维增强铝基复合材料的挤压浸渗工艺[J].中国有色金属学报, 2002, 12(3):525-528.
    [6]王德庆,石子源,高宏.碳纤维增强铝基复合材料的制备及其拉伸性能[J].大连铁道学院学报, 2000, 21(4):47-50.
    [7]张广安,孟力凯,罗守靖.短碳纤维增强铝基复合材料的半固态加工[J].金属成形工艺, 2003, 21(2):30-32.
    [8] Huang Y. D., N. Hort, H. Dieringa, K. U. Kainer. Micro-strain induced by thermal cycling in short fiber reinforced AlSi12CuMgNi piston alloy and AE42 magnesium alloy [J]. Advanced Engineering Materials, 2004, 6(11):883-888.
    [9]赵玉涛,戴起勋,陈刚.金属基复合材料[M].北京:机械工业出版社. 2007.
    [10]唐谊平.短碳纤维表面处理新工艺及其在铝基、铜基复合材料中的应用[D].上海:材料科学与工程, 2007,博士.
    [11]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社. 1995.
    [12]贺福.碳纤维及其应用技术[M].北京:化学工业出版社. 2004.
    [13]沈曾民.新型碳材料[M].北京:化学工业出版社. 2003.
    [14] C Deborah D L. Carbon fiber composites [M]. Newton: Butterworth-Heinemann. 1994.
    [15] B Donnet J, Bansal R C. Carbon Fibers [M]. New York: Marcel Dekker, Inc. 1984.
    [16] J Delmonte. Technology of Carbon and Graphite fiber Composites [M]. New York: Van Nostrand Reinhold Company. 1981.
    [17] S Chand. Carbon fibers for composites [J]. J Mater Sci, 2000, 35(6):1303-1313.
    [18]王茂章,贺福.碳纤维的制造性质及应用[M].北京:科学出版社. 1984.
    [19] W Watt, Johnson W. High temperature resistant fibers from organic polymers [J]. Appl Polym Symp, 1969, 9:229-243.
    [20]吴雪平,杨永岗,凌立成.丙烯腈-丙烯酰胺溶液共聚合及其产物热性能研究[J].新型炭材料, 2003, 18(3):196-202.
    [1]益小苏,杜善义,张立同.复合材料手册[M].复合材料导论.北京:化学工业出版社. 2009.
    [2]陈华辉,邓金海,李明.现代复合材料[M].北京:中国物质出版社. 1998.
    [3]黄永攀,李道火,王锐.铝基复合材料的性能、应用及制造工业[J].湖南冶金, 2004, 32(2):3-6.
    [4]罗守靖.复合材料液态挤压[M].北京:冶金工业出版社. 2002.
    [5]张广安,罗守靖,田文彤.短碳纤维增强铝基复合材料的挤压浸渗工艺[J].中国有色金属学报, 2002, 12(3):525-528.
    [6]王德庆,石子源,高宏.碳纤维增强铝基复合材料的制备及其拉伸性能[J].大连铁道学院学报, 2000, 21(4):47-50.
    [7]张广安,孟力凯,罗守靖.短碳纤维增强铝基复合材料的半固态加工[J].金属成形工艺, 2003, 21(2):30-32.
    [8] Huang Y. D., N. Hort, H. Dieringa, K. U. Kainer. Micro-strain induced by thermal cycling in short fiber reinforced AlSi12CuMgNi piston alloy and AE42 magnesium alloy [J]. Advanced Engineering Materials, 2004, 6(11):883-888.
    [9]赵玉涛,戴起勋,陈刚.金属基复合材料[M].北京:机械工业出版社. 2007.
    [10]唐谊平.短碳纤维表面处理新工艺及其在铝基、铜基复合材料中的应用[D].上海:材料科学与工程, 2007,博士.
    [11]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社. 1995.
    [12]贺福.碳纤维及其应用技术[M].北京:化学工业出版社. 2004.
    [13]沈曾民.新型碳材料[M].北京:化学工业出版社. 2003.
    [14] C Deborah D L. Carbon fiber composites [M]. Newton: Butterworth-Heinemann. 1994.
    [15] B Donnet J, Bansal R C. Carbon Fibers [M]. New York: Marcel Dekker, Inc. 1984.
    [16] J Delmonte. Technology of Carbon and Graphite fiber Composites [M]. New York: Van Nostrand Reinhold Company. 1981.
    [17] S Chand. Carbon fibers for composites [J]. J Mater Sci, 2000, 35(6):1303-1313.
    [18]王茂章,贺福.碳纤维的制造性质及应用[M].北京:科学出版社. 1984.
    [19] W Watt, Johnson W. High temperature resistant fibers from organic polymers [J]. Appl Polym Symp, 1969, 9:229-243.
    [20]吴雪平,杨永岗,凌立成.丙烯腈-丙烯酰胺溶液共聚合及其产物热性能研究[J].新型炭材料, 2003, 18(3):196-202.1995, 4(5-6):794-797.
    [40] Emig G., N. Popovska, G. Schoch, T. Stumm. The coating of continuous carbon fiber bundles with sic by chemical vapor deposition: A mathematical model for the CVD-process [J]. Carbon, 1998, 36(4):407-415.
    [41] Baklanova N. I., T. M. Zima, A. I. Boronin, S. V. Kosheev, A. T. Titov, N. V. Isaeva, D. V. Graschenkov, S. S. Solntsev. Protective ceramic multilayer coatings for carbon fibers [J]. Surface and Coatings Technology, 2006, 201(6):2313-2319.
    [42] Takeshi Hahishin, Murashita Junko, Joyama Atsunori. Oxidation-resistant coating of carbon fibers with TiO2 by sol-gel method [J]. J Ceram Soc Jpn, 1998, 106(1229):1—5.
    [43]郝艳霞,朱俊武,杨绪杰.溶胶一凝胶法Al2O3涂层碳纤维的制各与表征[J].南京理工大学学报, 2004, 28(6):653-662.
    [44]汪信,陆路德,杨绪杰.纳米涂层在碳纤维/环氧基复合材料中的应用[J].南京理工大学学报, 27(5):636~641.
    [45]李坤,装志亮,宫骏,石南林,孙超.碳纤维表面SiO2涂层的制备及其在镁基复合材料中的应用[J].金属学报, 2007, 43(12):1282-1286.
    [46] Tang Yiping, Yida Deng, Kai Zhang, Lei Liu, Yating Wu, Wenbin Hu. Improvement of interface between Al and short carbon fibers by [alpha]-Al2O3 coatings deposited by sol-gel technology [J]. Ceramics International, 2008, 34(7):1787-1790.
    [47]庹新林,王伯羲.碳纤维表面镀铜的研究[J].北京理工大学学报, 1999, 19(5):642-645.
    [48]师春生,张加万,李国俊,孙越恒.中长碳纤维连续镀铜的设备与工艺[J].材料保护, 2000, 33(10):7-9.
    [49]霍彩红,何为,范中晓.碳纤维表面金属化工艺研究[J].表面技术, 2003, 32(6):40-42.
    [50] Abdel Gawad Omayma, M. H. Abou Tabl, Z. Abdel Hamid, S. F. Mostafa. Electroplating of chromium and Cr-carbide coating for carbon fiber [J]. Surface and Coatings Technology, 2006, 201(3-4):1357-1362.
    [51]薛涛,赵俊民.化学镀膜技术[M].北京:国防工业出版社. 1982.
    [52]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社. 2000.
    [53]李宁.化学镀实用技术[M].北京:化学工业出版社. 2004.
    [54]跃孙,万喜伟,姜久兴,赫晓东.碳纤维表面化学镀镍前处理工艺研究[J].中国表面工程, 2007, 20(5):41-45.
    [55] R Shipley C, Method of electroless deposition on a substrate and catalyst solution therefore. 1959: US
    [56] Shipley, Michael G, Sherborn., Catalyst solution for electreless deposition of metal on1995, 4(5-6):794-797.
    [40] Emig G., N. Popovska, G. Schoch, T. Stumm. The coating of continuous carbon fiber bundles with sic by chemical vapor deposition: A mathematical model for the CVD-process [J]. Carbon, 1998, 36(4):407-415.
    [41] Baklanova N. I., T. M. Zima, A. I. Boronin, S. V. Kosheev, A. T. Titov, N. V. Isaeva, D. V. Graschenkov, S. S. Solntsev. Protective ceramic multilayer coatings for carbon fibers [J]. Surface and Coatings Technology, 2006, 201(6):2313-2319.
    [42] Takeshi Hahishin, Murashita Junko, Joyama Atsunori. Oxidation-resistant coating of carbon fibers with TiO2 by sol-gel method [J]. J Ceram Soc Jpn, 1998, 106(1229):1—5.
    [43]郝艳霞,朱俊武,杨绪杰.溶胶一凝胶法Al2O3涂层碳纤维的制各与表征[J].南京理工大学学报, 2004, 28(6):653-662.
    [44]汪信,陆路德,杨绪杰.纳米涂层在碳纤维/环氧基复合材料中的应用[J].南京理工大学学报, 27(5):636~641.
    [45]李坤,装志亮,宫骏,石南林,孙超.碳纤维表面SiO2涂层的制备及其在镁基复合材料中的应用[J].金属学报, 2007, 43(12):1282-1286.
    [46] Tang Yiping, Yida Deng, Kai Zhang, Lei Liu, Yating Wu, Wenbin Hu. Improvement of interface between Al and short carbon fibers by [alpha]-Al2O3 coatings deposited by sol-gel technology [J]. Ceramics International, 2008, 34(7):1787-1790.
    [47]庹新林,王伯羲.碳纤维表面镀铜的研究[J].北京理工大学学报, 1999, 19(5):642-645.
    [48]师春生,张加万,李国俊,孙越恒.中长碳纤维连续镀铜的设备与工艺[J].材料保护, 2000, 33(10):7-9.
    [49]霍彩红,何为,范中晓.碳纤维表面金属化工艺研究[J].表面技术, 2003, 32(6):40-42.
    [50] Abdel Gawad Omayma, M. H. Abou Tabl, Z. Abdel Hamid, S. F. Mostafa. Electroplating of chromium and Cr-carbide coating for carbon fiber [J]. Surface and Coatings Technology, 2006, 201(3-4):1357-1362.
    [51]薛涛,赵俊民.化学镀膜技术[M].北京:国防工业出版社. 1982.
    [52]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社. 2000.
    [53]李宁.化学镀实用技术[M].北京:化学工业出版社. 2004.
    [54]跃孙,万喜伟,姜久兴,赫晓东.碳纤维表面化学镀镍前处理工艺研究[J].中国表面工程, 2007, 20(5):41-45.
    [55] R Shipley C, Method of electroless deposition on a substrate and catalyst solution therefore. 1959: US
    [56] Shipley, Michael G, Sherborn., Catalyst solution for electreless deposition of metal onand mechanical properties of carbon fibers [J]. J Mater Sei, 1991, 26(5):4977-4982.
    [72] Uozumi H., K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, M. Yoshida. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008, 495(1-2):282-287.
    [73]王玲,赵浩峰.金属基复合材料及其浸渗制备的理论与实践[M].北京:冶金工业出版社. 2005.
    [74] G Metcalfea, Klein M J. Composite materials [M]. New York and London: Academic Press. 1974.
    [75] Ochiai Shojlro, Yotaro Murakami. Tensile strength of composites with brittle reaction zones at interfaces [J]. J Mater Sei, 1979, 14(3):831-835.
    [76]王浩伟,商宝禄,郑来苏.涂层碳纤维增强镁基复合材料[J].复合材料学报, 1992, 9(2):73-77.
    [77] D.Wurm. Einflu? einer Faserbeschichtung auf die Eigenschaften von kohlenstofflangfaserverst?rkten Magnesiumlegierungen [D]. 1998, PhD.
    [78] Feldhoff Armin, Eckhard Pippel, Jo Rg Woltersdorf. Structure and composition of ternary carbides in carbonbre reinforced Mg Al alloys [J]. PHILOSOPHICAL MAGAZINE A, 1999, 79(6):1263-1277.
    [79] Reischer F., E. Pippel, J. Woltersdorf, S. St?ckel, G. Marx. Carbon fibre-reinforced magnesium: Improvement of bending strength by nanodesign of boron nitride interlayers [J]. Materials Chemistry and Physics, 2007, 104(1):83-87.
    [80] A.Dorner-Reisel, Y.Nishida, V.Klemm, K.Nestler, G.Marx, E.Müller. Investigation of interfacial interaction between uncoatedand coated carbon fibres and the magnesium alloy AZ91 [J]. Anal Bioanal Chem, 2002, 374(13):635–638.
    [81] A.Dorner-Reisel, Y.Nishida, V.Klemm, K.Nestler, G.Marx, E.Müller.I. nvestigation of interfacial interaction between uncoatedand coated carbon fibres and the magnesium alloy AZ91 [J]. Anal Bioanal Chem, 2002, 374(3):635–638.
    [82]赵慧锋,夏存娟,马乃恒,王浩伟,李险峰.涂层碳纤维增强镁基复合材料[J].材料热处理, 2007, 36(12):37-39.
    [83]李坤,裴志亮,宫骏,石南林,孙超.碳纤维表面涂层的制备及其在镁基复合材料中的应用[J].金属学报, 2007, 43(12):1282-1286.
    [84]丁文江.镁合金科学与技术[M].北京:科学出版社. 2007.
    [85] Karen P., A. Kjekshus, Q. Huang, V. L. Karen. The crystal structure of magnesium dicarbide [J]. Journal of Alloys and Compounds, 1999, 282(1-2):72-75.
    [86] Gesing Thorsten- M., Rainer P?ttgen, Wolfgang Jeitschko, Ulrich Wortmann. Crystal structure and physical properties of the carbides UAl3C3 and YbAl3C3 [J]. Journal of Alloys and Compounds, 1992, 186(2):321-331.
    [87] Jeffrey G. A., V. Wu. The structure of the aluminum carbonitrides. II [J]. Acta Cryst. , 1966, 20:538-547
    [88] Bosselet F., B. F. Mentzen, J. C. Viala, M. A. Etoh, J. Bouix. Synthesis, and structure of T2-Al2MgC2 [J]. European Journal of Solid State and Inorganic Chemistry, 1998, 35(1):91-99.
    [89] Viala J. C., G. Claveyrolas, F. Bosselet, J. Bouix. The chemical behaviour of carbon fibres in magnesium base Mg-Al alloys [J]. Journal of Materials Science 2000, 35(7):1813-1825.
    [90] Bouix J., M. P. Berthet, F. Bosselet, R. Favre, M. Peronnet, O. Rapaud, J. C. Viala, C. Vincent, H. Vincent. Physico-chemistry of interfaces in inorganic-matrix composites [J]. Composites Science and Technology, 2001, 61(3):355-362.
    [91] K?rner, Sch?ff, Ottmüller, Singer. Carbon Long Fiber Reinforced Magnesium Alloys [J]. ADVANCED ENGINEERING MATERIALS, 2000, 2(6):327-337.
    [92] Faucon A., T. Lorriot, E. Martin, S. Auvray, Y. Lepetitcorps, K. Dyos, R. A. Shatwell. Fracture behaviour of model silicon carbide filaments [J]. Composites Science and Technology, 2001, 61(3):347-354.
    [93] Svoboda M., M. Pahutová, K. Kucharová, V. Sklenicka, K. U. Kainer. Microstructure and creep behaviour of magnesium hybrid composites [J]. Materials Science and Engineering: A, 2007, 462(1-2):220-224.
    [94]戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社. 1991.
    [95]赵稼祥.加强发展军用功能材料[J].材料工程, 1995, 3:311-315.
    [96]李沛勇,戴圣龙,柴世昌.新型高阻尼金属材料的研究进展[J].材料工程, 2000, 1:38-44.
    [97]李沛勇,戴圣龙,刘大博.材料阻尼及阻尼合金的研究现状[J].材料工程, 1999, 8:44-48.
    [98]刘棣华.粘弹阻尼减振降噪应用技术[M].北京:宇航出版社. 1990.
    [99] I Ritchie, Pan Z-L, Sprungmann Kw, Schmidt Hk, Dutton R. High damping alloys-the metallurgists cure for unwanted vibrations [J]. Can. Metall. Quart., 1987, 26:239-250.
    [100] Gu J. H., X. N. Zhang, M. Y. Gu. Mechanical properties and damping capacity of (SiCp+Al2O3 center dot SiO2f)/Mg hybrid metal matrix composite [J]. Journal of Alloys and Compounds, 2004, 385(1-2):104-108.
    [101] Hu X. S., Y. K. Zhang, M. Y. Zheng, K. Wu. A study of damping capacities in pure Mg andMg-Ni alloys [J]. Scripta Materialia, 2005, 52(11):1141-1145.
    [102]张虹,斯永敏,刘国庆,钱晓太,宋永沙.不同增强体镁基复合材料的阻尼性能[J].国防科技大学学报, 1996, 18(3):9-13.
    [103]刘楚明,朱秀荣,周海涛.镁合金相图集[M].长沙:中南大学出版社. 2006.
    [104] K.Sugimoto, K.Niiya, T.Okamoto, K.Kishitake. A Study of Damping Capacity in Magnesium Alloys [J]. Trans.JIM, 1977, 18(3):277~288.
    [105] Hu X.S., Y.K. Zhang, M.Y. Zheng, K. Wu. A study of damping capacities in pure Mg and Mg–Ni alloys [J]. Scripta Materialia, 2005, 52:1141-1145.
    [106]刘忠德.亚共晶Mg-Ni合金[D].上海:材料科学与工程, 1988,硕士:27-49.
    [107]孔志刚,刘泓波,张虎. Zr含量对Mg2Zr合金组织和性能的影响[J].北京航空航天大学学报, 2004, 30(10):972 - 976.
    [108] Diqing Wan, Wang Jinchang, Wang Gai Fang. Effectof Mn on damping capacities ,mechanical properties and corrosion behavior of high damping Mg23wt %Ni based alloy [J]. Materials Science and Engineering A, 2008, 494(1-2):139 - 142.
    [109]林琳,王改芳,陈先毅.稀有元素Y对Mg20. 6 %Zr合金力学性能与阻尼性能的影响[J].铸造技术, 2008, 29(6):769 -772.
    [110] M Liu C, J I R F, Zhou H T. Effect of Ca/ Y on the tensile properties and damping capacities of as2cast Mg20. 6 %Zr alloy [J]. Magnesium Technology 2006, 32(4):495 - 499.
    [111]黄正华,郭雪峰,张忠明. Ce对AZ91D镁合金力学性能与阻尼性能的影响[J].稀有金属材料与工程, 2005, 34(3):375 -379.
    [112]张小农吴人洁,张狄. [J ] ., 1996 , (6) : .高阻尼金属基复合材料的发展途径[J].材料导报, 1996, 14(6):68 - 72.
    [113]张小农,张荻,吴人洁,王灿,朱震刚.纤维增强镁基复合材料的阻尼性能[J].宇航材料工艺, 1997, 18(6):21~22.
    [114]张虹,斯永敏,刘国庆,钱晓太,宋永沙.不同增强体镁基复合材料的阻尼性能[J].国防科技大学学报, 1996, 18(3):9-14.
    [115] Schaller R. Metal matrix composites, a smart choice for high damping materials [J]. Journal of Alloys and Compounds, 2003, 355(1-2):131-135.
    [116] C.Mayencourt, R.Schaller. Development of a higher damping composite:Mg2Si/Mg [J]. Phys.sta.sol.(a)Applied Research, 1997, 163(2):357~368.
    [117] Gu J. H., X. N. Zhang, M. Y. Gu. Effect of fiber coating on the longitudinal damping capacity of fiber-reinforced metal matrix composites [J]. Materials Letters, 2005, 59(2-3):180-184.
    [118] Gu Jinhai, Xiaonong Zhang, Mingyuan Gu. Effect of surface coating of particulate on theoverall damping of particulate-reinforced metal matrix composites [J]. Computational Materials Science, 2006, 36(3):338-344.
    [119]顾金海,张小农,顾明远.纤维增强AZ91镁基复合材料的阻尼性能[J].航空材料学报, 2004, 24(6):29 - 33.
    [120] Gu J. H., X. N. Zhang, Y. F. Qiu, M. Y. Gu. Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates [J]. Composites Science and Technology, 2005, 65(11-12):1736-1742.
    [121] Zhang X. N. Effect of reinforcements on damping capacity of pure magnesium [J]. Journal of Materials Science Letters, 2003, 22(7):503-505.
    [122] Xiaonong Zhang, Zhang Di, Wu Renjie, Zhu Zhengang, Wang Can. Mechanical properties and damping capacity of(SiCw+B4Cp)/AZ60A Mg Alloy matrix composite [J]. Scripta Materialia, 1997, 37(11):1631~1635.
    [123]顾金海,张小农,何利舰,顾明元.混杂增强镁基复合材料的力学和阻尼性能[J].稀有金属材料与工程2005, 34(9):1423-1426.
    [124] Xiuqing Zhang, Wang Haowei, Liao Lihua, Ma Naiheng. In situ synthesis method and damping characterization of magnesium matrix composites [J]. Composites Science and Technology, 2007, 67(3-4):720-727.
    [125] Wu Y. W., K. Wu, K. K. Deng, K. B. Nie, X. J. Wang, X. S. Hu, M. Y. Zheng. Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles [J]. Materials Science and Engineering: A, 2010, 527(26):6816-6821.
    [126] Palaniappa M., G. Veera Babu, K. Balasubramanian. Electroless nickel-phosphorus plating on graphite powder [J]. Materials Science and Engineering: A, 2007, 471(1-2):165-168.
    [127]魏智强,夏天东.纳米镍粉体的晶格膨胀[J].物理学报, 2007, 56(2):1004-1008.
    [128] Tzeng Shinn-Shyong, Yu-Hun Lin. The role of electroless Ni-P coating in the catalytic graphitization of PAN-based carbon fibers [J]. Carbon, 2008, 46(3):555-558.
    [129] Tzeng Shinn-Shyong. Catalytic graphitization of electroless Ni–P coated PAN-based carbon fibers [J]. Carbon, 2006, 44:1986–1993.
    [130] Kim S. H., H. J. Sohn, Y. C. Joo, Y. W. Kim, T. H. Yim, H. Y. Lee, T. Kang. Effect of saccharin addition on the microstructure of electrodeposited Fe-36 wt.% Ni alloy [J]. Surface and Coatings Technology, 2005, 199(1):43-48.
    [131] Smereka P., X. Q. Li, G. Russo, D. J. Srolovitz. Simulation of faceted film growth in three dimensions: microstructure, morphology and texture [J]. Acta Materialia, 2005, 53(4):1191-1204.
    [132] Pei Z. L., K. Li, J. Gong, N. L. Shi, E. Elangovan, C. Sun. Micro-structural and tensilestrength analyses on the magnesium matrix composites reinforced with coated carbon fiber [J]. Journal of Materials Science, 2009, 44(15):4124-4131.
    [133]黄培云.粉末冶金原理(第二版) [M].北京:冶金工业出版社. 2004.
    [134] Stanford-Beale C. A., T. W. Clyne. Extrusion and high-temperature deformation of fibre-reinforced aluminium [J]. Composites Science and Technology, 1989, 35(2):121-157.
    [135] Tzeng Shinn-Shyong, Yu-Hun Lin. The role of electroless Ni–P coating in the catalytic graphitization of PAN-based carbon fibers [J]. C A R B ON, 2008, 4 6:5 4 4–5 6 1
    [136] Chen C. M., Y. M. Dai, J. G. Huang, J. M. Jehng. Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method [J]. Carbon, 2006, 44(9):1808-1820.
    [137] Ochiai S Osamura K. Influences of interfacial bonding strength and scatter of fibre strength on tensile behaviour of unidirectional metal matrix composites [J]. J.Mater.Sci, 1999, 23(2):886~893.
    [138] Hajjari E., M. Divandari, A. R. Mirhabibi. The effect of applied pressure on fracture surface and tensile properties of nickel coated continuous carbon fiber reinforced aluminum composites fabricated by squeeze casting [J]. Materials & Design, 2010, 31(5):2381-2386.
    [139] Wl Mankins, Lamb S. Properties and selection: nonferrous alloys and special purpose materials ASM hand book. 9th ed [M]. Vol. 2. Ohio: Materials Park. 1995.
    [140] Trojanova Z., V. Gartnerova, P. Lukac, Z. Drozd. Mechanical properties of Mg alloys composites reinforced with short Saffil (R) fibres [J]. Journal of Alloys and Compounds, 2004, 378(1-2):19-26.
    [141] Aikin R. M., L. Christodoulou. The Role of Equiaxed Particles on the Yield Stress of Composites [J]. Scripta Metallurgica Et Materialia, 1991, 25(1):9-14.
    [142] Zhang J., R. J. Perez, E. J. Lavernia. Dislocation-Induced Damping in Metal Matrix Composites [J]. Journal of Materials Science, 1993, 28(3):835-846.
    [143] Zhang Z., D. L. Chen. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scripta Materialia, 2006, 54(7):1321-1326.
    [144] Thakur S. K., B. K. Dhindaw, N. Hort, K. U. Kainer. Some studies on the thermal-expansion behavior of C-fiber, SiCp, and in-situ Mg2Si-reinforced AZ31 Mg alloy-based hybrid composites [J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004, 35A(3A):1167-1176.
    [145] Chen Zhong, Xiaoda Xu, Chee C. Wong, Subodh Mhaisalkar. Effect of plating parameters on the intrinsic stress in electroless nickel plating [J]. Surface and Coatings Technology,2003, 167(2-3):170-176.
    [146] Arsenault R. J., N. Shi. Dislocation Generation Due to Differences between the Coefficients of Thermal-Expansion [J]. Materials Science and Engineering, 1986, 81(1-2):175-187.
    [147] N. Hansen. The effect of grain size and strain on the tensile flow stress of aluminium at room temperature [J]. Acta Metall 1977, 25(1):863–869.
    [148]胡耀波,邓娟,王敬丰,潘复生,陈玉安.高阻尼镁基复合材料研究现状[J].材料工程, 2010, 1:89-93.
    [149]田莳.材料物理性能[M].北京:北京航空航天大学出版社. 2001.
    [150]王从曾.材料性能学[M].北京:北京工业大学出版社. 2001: 9-13.
    [151]葛庭燧.非线性滞弹性内耗的实验和理论研究[J].金属学报, 1997, 33(1):9-21
    [152]葛庭燧.固体内耗理论基础:晶界弛豫与晶界结构[M].北京:科学出版社. 2000: 1-35.
    [153]张小农.金属基复合材料的阻尼行为研究[D].上海: 1997,博士:1-79.
    [154]胡小石.热处理和变形对镁合金低频阻尼性能的影响及机理研究[D].哈尔滨: 2007,博士:1-149.
    [155]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社. 2002.
    [156]张永锟.碳化硅晶须增强镁基复合材料阻尼性能研究[D].哈尔滨: 2006,硕士:1-77.
    [157] Trojanova Z., P. Lukac, W. Riehemann, B. L. Mordike. Study of relaxation of residual internal stress in Mg composites by internal friction [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002, 324(1-2):122-126.
    [158] Goken J., W. Riehemann. Thermoelastic damping of the low density metals AZ91 and DISPAL [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002, 324(1-2):134-140.
    [159] Trojanova Z., F. Chmelik, P. Lukac, A. Rudajevova. Changes in the microstructure of QE22 composites estimated by non-destructive methods [J]. Journal of Alloys and Compounds, 2002, 339(1-2):327-334.
    [160] Av Granato, Lu¨Cke L. Application of dislocation theory to internal friction phenomena at high frequencies. [J]. J Appl Phys, 1956, 27:789-805.
    [161] Av Granato, Lu¨Cke L. Theory of mechanical damping due to dislocations [J]. J Appl Phys 1956, 27:583–593.
    [162] Trojanova Z., H. Ferkel, P. Lukac, W. Riehemann. Two new high-damping magnesium composites [J]. Physica Status Solidi a-Applied Research, 2002, 193(2):205-210.
    [163] W.D.Kingery. Fundamental study of Phosphate Bonding in Refractor [J]. J.Amer.Ceram.Soc, 1950, 33(8):239~250.
    [164] Wu Y. W., K. Wu, K. K. Deng, K. B. Nie, X. J. Wang, X. S. Hu, M. Y. Zheng. Dampingcapacities and tensile properties of magnesium matrix composites reinforced by graphite particles [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010, 527(26):6816-6821.
    [165] Gu J. H., X. N. Zhang, M. Y. Gu, M. Gu, X. K. Wang. Internal friction peak and damping mechanism in high damping 6061Al/SiCp/Gr hybrid metal matrix composite [J]. Journal of Alloys and Compounds, 2004, 372(1-2):304-308.
    [166] J Zhang, Perez Rj, Lavernia Ej. Effect of SiC and graphite particulates on the damping behavior of metal matrix composites [J]. Acta Metall Mater, 1994, 42:395-409.
    [167] Cao Wei, Congfa Zhang, Tongxiang Fan, Di Zhang. In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites [J]. Materials Science and Engineering: A, 2008, 496(1-2):242-246.
    [168] G?ken J., W. Riehemann. Dependence of internal friction of fibre-reinforced and unreinforced AZ91 on heat treatment [J]. Materials Science and Engineering A, 2002, 324(1-2):127-133.
    [169] Xiuqing Zhang, Wang Haowei, Liao Lihua, Teng Xinying, Ma Naiheng. The mechanical properties of magnesium matrix composites reinforced with (TiB2 + TiC) ceramic particulates [J]. Materials Letters, 2005, 59(17):2105-2109.
    [170] Zhang Xiao-Li, Ting-Ju Li, Hai-Tao Teng, Shui-Sheng Xie, Jun-Ze Jin. Semisolid processing AZ91 magnesium alloy by electromagnetic stirring after near-liquidus isothermal heat treatment [J]. Materials Science and Engineering: A, 2008, 475(1-2):194-201.
    [171] Rosen B.W. Mechanics of composite strengthening fiber composite materials [M]. Washington: Amer.soc. of metals.metal parkohio. 1965.
    [172]李传民,王向丽,闫华军. DEFORM 5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社. 2007: 2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700