镀膜碳纤维、碳化硅纤维与晶须增强钨铜复合材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨铜复合材料具有高强度、高硬度、导电性和导热性好、热膨胀系数小、抗腐蚀和抗氧化性好、焊接性和机械加工性好等一系列优异的物理性能和使用性能,被广泛用作大功率微电子设备中的电接触材料和热沉材料。
     本研究通过引入纤维与晶须增强、工艺参数的优化等方面,探索关键的制备技术并生产出性能优于传统钨铜材料的、符合更高要求的钨铜复合材料。实验采用溶解度高的偏钨酸铵和硝酸铜为前驱体,经喷雾热解-共还原法制备出超细W-20Cu复合粉末。将C纤维(CO、SiC晶须(SiCw)、SiC纤维(SiCf)通过真空气相沉积法镀上一层钛或氮化钛。所制得的W-20Cu粉末经行星式球磨机球磨后分别与适量经镀膜处理的Cf、SiCf、SiCw混合并超声分散,在不同的工艺制度下通过热压烧结、放电等离子(SPS)烧结制得W-20Cu复合材料。实验结果得出:
     1)由喷雾热解-共还原法制备超细W-20Cu复合粉末,经热压烧结的掺杂0.6wt.%镀钛SiCw的W-20Cu复合材料的各项性能分别达到了:抗弯强度1197MPa,致密度99.1%,热导率221 W·m-1.K-1。
     2)由喷雾热解-共还原法制备超细W-20Cu复合粉末,经SPS烧结的掺杂0.8wt.%镀氮化钛SiCf的W-20Cu复合材料的各项性能分别达到了:抗弯强度1200 MPa,致密度98.5%,热导率235 W·m-1.K-1。
     3)由喷雾热解-共还原法制备超细W-20Cu复合粉末,经SPS烧结的掺杂1.0wt.%镀钛Cf的W-20Cu复合材料的各项性能分别达到了:抗弯强度1061MPa,致密度98.5%,热导率244 W·m-1·K-1。
     4)相比W-20Cu合金,掺杂0.6wt.%镀钛SiCw的W-20Cu复合材料的抗弯强度、导热性分别提高了49.6%和22.2%;掺杂0.8wt.%镀氮化钛SiCf的W-20Cu复合材料的抗弯强度、导热性分别提高了50.0%和30.6%;掺杂1.0wt.%镀钛Cf的W-20Cu复合材料的抗弯强度、导热性分别提高了32.6%和24.4%。
     本研究为SiCw、SiCf和Cf的表面处理工艺及其在钨铜复合材料中的应用做了有益的尝试和探索,为高性能钨铜复合材料的产业化和工业应用提供了一定的实验基础和依据。
W-Cu composites exhibit excellent physical and mechanical properties such as high strength and hardness, high thermal and electrical conductivity, low heat expansion coefficient, corrosion and oxidation resistance, good machining property and weld performance. W-Cu materials have been widely used for heavy-duty electronic contacts and heat sink materials for high-power microelectronic devices because of the high electrical conductivity of Cu and high ablation resistance of W.
     The essential point of this research is to research the mechanism of fiber/ whisker reinforcement and manufacture excellent W-20Cu composites by optimizing its processing or controlling parameter. In this study, aqueous solution composed of ammonium metatungstate and copper nitrate were used as the starting material, by spray drying of aqueous salt solutions and a milling process followed by reduction of the oxide powder. Ti-coated carbon fiber (Cf), Ti-coated SiC whisker (SiCw), TiN-coated SiC fiber (SiCf) by vacuum slow vapor deposition and W-20Cu composite powder prepared by spray drying & calcining-continuous reduction technology were mixed by ball-milling in ethanol solution, respectively. Hot-press sintering and spark plasma sintering (SPS) was used to prepare the W-20Cu composites, respectively. The results are showed as follows:
     1) W-20Cu composites reinforced by 0.6wt.% Ti-coated SiCw prepared by hot-press sintering with transverse rupture strength (TRS) of 1197MPa, thermal conductivity (TC) of 220 W·m-1·K-1 and relative density of 99.1% were obtained.
     2) W-20Cu composites reinforced by 0.8wt.% TiN-coated SiCf prepared by SPS with TRS of 1200MPa, TC of 235 W·m-1·K-1 and relative density of 98.5% were obtained.
     3) W-20Cu composites reinforced by 1.0wt.% Ti-coated Cf prepared by SPS with TC of 224 W·m-1·K-1, relative density 98.5% and TRS 1061 MPa were obtained.
     4) The TRS and TC of the 0.6 wt.% Ti-coated SiCw/W-20Cu composites, compared with the monolithic W-20Cu alloy, were enhanced 49.6% and 22.2%, respectively. The TRS and TC of the 0.8 wt.% TiN-coated SiCf/W-20Cu composites, compared with the monolithic W-20Cu alloy, were enhanced 50% and 30.6%, respectively. The TRS and TC of the 1.0 wt.% Ti-coated Cf/W-20Cu composites, compared with the monolithic W-20Cu alloy, were enhanced 32.6% and 24.4%, respectively.
     These results provide instructive attempts of the surface treatment of SiCw, Cf and SiCf and the application in W-Cu composites. The main conclusions of this research provide many experimental foundations and bases for the industrialization and widely uses of high quality tungsten-copper composites.
引文
[1]何平,王志法,姜国圣.钨铜合金的致密化技术[J].冶矿工程,2007,27(5):81-84.
    [2]范景莲,严德剑,黄伯云等.国内外钨铜复合材料的研究现状[J].粉末冶金工业,2003,13(2):9-13.
    [3]吴泓,王志法,姜国圣.钨粉化学镀铜对W/15Cu电子封装材料性能的影响[J].稀有金属材料与工程,2007,36(3):550-554.
    [4]刘盈霞.电极用高性能钨铜复合材料的制备[D].长沙:中南大学,2007.
    [5]陈伟,邝用庚,周武平.中国高温用钨铜复合材料的研究现状[J].稀有金属材料与工程,2004,33(1):11-13.
    [6]李志翔,杨晓青.钨铜合金的最新研究进展[J].工程材料,2005,32(8):53-59.
    [7]姜国盛,王志法,刘正春等.高钨钨铜复合材料的研究现状[J].粉末冶金材料科学与工程,1999,4(1):30-34.
    [8]李云平,曲选辉,段柏华W-Cu(Mo-Cu)复合材料的最新研究状况[J].硬质合金,2001,18(4):232-235.
    [9]L.H. David用于散热片和电接触器的钨铜材料[J].中国钨业,1997,12(5-6):21-24.
    [10]冯威,栾道成,王正云.影响钨铜复合材料烧结致密度的两个因素[J].中国钨业,2007,22(5):23-26.
    [11]蔡一湘,刘伯武,谭立新.高能活化液相烧结钨铜合金[J].稀有金属材料与工程,2002,31(2):52-54.
    [12]冯威,栾道成,王正云.成形压力与粉末粒径对钨铜复合材料烧结性能的影响[J].粉末冶金材料科学与工程,2007,12(6):354-357.
    [13]颜士钦,许少凡,凤仪等.碳纤维/金属基复合材料的制造及其在电接触材料中的应用[J].材料科学与工程,1998,16(1):72-74.
    [14]王效莲.铜基复合材料的成形工艺及性能研究[D].镇江,江苏科技大学,2007.
    [17]A. Brendel, J. Woltersdorf, E. Pippel, et al. Titanium as coupling agent in SiC fibre reinforced copper matrix composites[J]. Mater Chem Phys,2005,91(1):116-223.
    [18]X.H. Yang, S.h. Liang, X.h. Wang, et al. Effect of WC and CeO2 on microstructure and properties of W-Cu electrical contact material [J]. Int J Refract Met Hard Mater, 2010(28):305-311.
    [19]聂存珠,赵乃勤.金属基电子封装复合材料的研究进展[J].金属热处理,2003,28(6):1-5.
    [20]陈德欣.钨铜电子封装材料的工程化研究[D].长沙:中南大学,2005.
    [21]高娃,张存信.钨铜合金的最新研究进展及应用[J].新材料产业,2006,2:57-60.
    [22]陈伟,邝用庚,周武平.中国高温用钨铜复合材料的研究现状[J].稀有金属材料与工程,2004,33(1):11-13.
    [23]吕大铭.我国钨铜、钨银材料的应用与发展[J].中国钨业,1999,14(5-6):182-185.
    [24]周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005,10(1):21-25.
    [25]吕大铭.钨铜复合材料研究的新进展[J].中国钨业.2000.15(16):27-31.
    [26]D.L. Houck用于散热片和电接触器的钨铜复合材料[J].中国钨业.1997.12(11):21-25.
    [27]S.N. Alam. Synthesis and characterization of W-Cu nanocomposites developed by mechanical alloying[J]. Mater Sci Eng A,2006,433(1-2):161-168.
    [28]雒晗,栾道成,王正云等.高能球磨工艺对钨铜复合材料组织的影响[J].粉末冶金工业,2007,17(2):30-33.
    [29]J.C. Kim. Metal injection molding of nanostractructured W-Cu composite powder [J]. Int J Powder Metall,1999,34(4):47-48.
    [30]J.C. Kim, I.H. Moon. Sintering of nanostructured W-Cu alloys prepared by mechanical alloying[J]. Nanostruct Mater,1998,10(2):283-290.
    [31]I.H. Moon. Full densification of loosely packed W-Cu composite powder[J]. Powder Metall, 1998,41(1):51-52.
    [32]F.A. da Costa, A.G.P. da Silva, F.A. Filho. Synthesis of a nanocrystalline composite W-25 wt.%Ag powder by high energy milling[J]. Powder Technol,2003,134(1):123-132.
    [33]李云平,曲选辉,郑洲顺等.氧化-球磨-还原法制备超细弥散分布钨铜复合粉末[J].粉末冶金材料科学与工程,2003,8(3):242-246.
    [34]刘珍,梁伟,许并社等.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,8(3):103-108.
    [35]S. Raghunathan, D.L Bourell. Synthesis and Evaluation of advanced nanocrystalline tungsten-based materials[J]. P/M Sci Technol Briefs,1999, 1(1):9-14.
    [36]刘珍,梁伟,许并社等.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,8(3):103-108.
    [37]G.K. Dae, H.L. Baek, T.O. Sung, et al. Mechanochemical process for W-15wt.%Cu nanocomposite powders with WO3-CuO powder mixture and its sintering characteristics [J]. Mater Sci Eng A,2005,395(1-2):333-337.
    [38]G.G. Lee. Synthesis of high density ultrafine W/Cu composite alloy by mechamical process [J]. Powder Metall,2000,43(1):79-81.
    [39]E.S. Yoon, J.S. Lee, S.T. Oh, et al. Microstructure and sintering behavior of W-Cu nanocomposite powder produced by thermo-chemical process [J]. Int J Refract Met Hard Mater,2002,4(20):201-206.
    [40]X.L. Xi, X.Y. Xu, Z.R. Nie, et al. Preparation of W-Cu nano-composite powder using a freeze-drying technique [J]. Int J Refract Met Hard Mater,2010,28(2):301-304.
    [41]L.E. MeCandlish, B.H. Kear, B.k. Kim. Processing and properties of nanostructured WC-Co [J]. Nanostruct Mater,1992,1(2):119-124.
    [42]B.H. Kear, L.E. McCandlish. Chemical processing and properties of nanostructured WC-Co materials [J]. Nanostruct Mater,1993,3(1-6):19-30.
    [43]范景莲,汪登龙,黄伯云等.难熔钨基合金的研究开发及其产业化方向[J].有色冶炼,2002,12(4):12-15.
    [44]吴莉莉,吕伟,吴佑实等.均相沉淀法制备氧化镍纳米线[J].中国有色金属学报,2005,15(1):61-65.
    [45]J.G Cheng, C.P. Le, Y. Jiang, et al. Preparation and characterization of W-Cu nanopowders by a homogeneous precipitation process[J]. J Alloys Compd,2006,421(1-2):146-150.
    [46]M.H. Maneshian, A. Simchi. Solid state and liquid phase sintering of mechanically activated W-20 wt.% Cu powder mixture [J]. J Alloys Compd,2008,463(1-2):153-159.
    [47]S.S. Ryu, YD. Kim, I.H. Moon. Dilatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying [J]. J Alloys Compd,2002, 335(1-2):233-240.
    [48]I.H. Moon, J.S. Lee. Sintering of W-Cu contact materials with Ni and Co dopants [J]. Powder Metall Int,1977,9(11):23-24.
    [49]郭颖利,易健宏,罗述东等.W-Cu触头材料的微波烧结[J].中南大学学报(自然科学版),2009,40(3):670-676.
    [50]J.L. Johnson, R.M. German. Phase equilibrium effects on the enhanced liquid phase sintering of tungsten-copper [J]. Metall Trans A,1993,24A(11):2369-2377.
    [51]陶应启,王祖平,方宁象等.钨铜复合材料的制造工艺[J].粉末冶金技术,2002,11(20):49-51.
    [52]杨俊逸.放电等离子烧结(SPS)技术与新材料研究[J].材料导报,2006,20(6):94-97.
    [53]U. Anselmi Tamburini, S. Gennari, J.E. Garay, et al. Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process:Ⅱ. Modeling of Current and Temperature Distributions [J]. Mater Sci Eng A,2005,394(1-2):139-143.
    [54]N. Tamari, I. Kondoh, T. Tanaka, et al. Mechanical Properties and Cutting Performance of Titanium Carbide Whisker/Alumina Composites [J]. Powder Metall,1999,46(8):816-819.
    [55]S.W. Wang, L.D. Chen. Effect of Plasma Activated Sintering (PAS) Parameters on Densification of Copper Powder [J]. Mater Res Bull,2000,35(4):619-628.
    [56]K.A. Khor, L.G. Yu, O. Andersen, et al. Effect of Spark Plasma Sintering(SPS) on the Microstructure and Mechanical Properties of Randomly Packed Hollow Sphere(RHS) cell wall [J]. Mater Sci Eng A,2003,356(1-2):130-135.
    [57]W. Chen, U. Anselmi Tamburini, J.E. Garay,et al. Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process I. Effect of Dc Pulsing on Reactivity [J]. Mater Sci Eng A,2005,394(1-2):132-136.
    [58]D.V. Dudina, M.A. Korchagin, O.I. Lomovsky, et al. Modern Technique and Technologies [J]. Mater Sci,2003,15(3):167-172.
    [59]S.W. Wang. Microstructure Inhomogeneity in Al2O3 Sintered Bodies formed during the Plasma-activated Sintering Process [J]. Mater Sci Lett,1999,18(14):1119-1121.
    [60]S. Paris, E. Gaffet. Spark Plasma Synthesis from Mechanically Activated Powders:a Versatile route for producing Dense Nanostructured Iron Aluminides [J]. Scripta Mater,2004, 50(5):691-693.
    [61]Y.W. Gu, K.A. Khor, P. Cheang. Bone-like Apatite Layer formation on Hydroxyapatite prepared by Spark Plasma Sintering (SPS) [J]. Biomater,2004,25(18):4127-4129.
    [62]马垚,周张健,姚伟志等.放电等离子烧结(SPs)制备金属材料研究进展[J].材料导报.2008,22(7):60-64.
    [63]易健宏,唐新文,罗述东等.微波烧结技术的进展及展望[J].粉末冶金工业,2004,14(1):351-354.
    [64]罗述东,易健宏,彭元东等.微波技术在金属材料制备中的应用研究[C].2007年全国粉末冶金学术及应用技术会议,北京,2007:493-499.
    [65]周健,程吉平,袁润章等.微波烧结WC-Co细晶硬质合金的工艺与性能[J].中国有色金属学报,1999,9(3):1-6.
    [66]赵稼祥.碳纤维复合材料在民用航空上的应用[J].高科技纤维与应用,2003,28(3):1-5
    [67]沃丁柱.复合材料大全,第一版次[M].北京:化学工业出版社,2000:16-19
    [68]张雷,曲文卿,庄鸿寿.碳纤维复合材料与金属连接及接头力学性能测试[J].材料工程, 2007,Z(1):141-145.
    [69]凤仪,许少凡,颜世钦等.纤维强化金属基复合材料及应用[J].机械工程材料,2002,19(1):9-11.
    [70]李佑稷,曹峰,田宏现等.耐高温碳化硅纤维的制备与性能[J].物理化学学报,2003,19(11):1039-1043.
    [71]王照亮,唐大伟,郑兴华等.3ω法测量单根碳纤维导热系数和热容[J].工程热物理学报.2007,28(3):490-493.
    [72]陶应启,王祖平,方宁象等.钨铜复合材料的制造工艺[J].粉末冶金技术,2002,20(1):49-51.
    [73]赵稼祥.碳化硅纤维及其复合材料的进展[J].飞航导弹,2001,1:60-63.
    [74]谢素菁,曹小明,张劲松.三维网络SiC增强铜基复合材料的干摩擦磨损性能[J].摩擦学学报,2003,23(2):86-90.
    [75]李政.碳纤维/镀铜石墨-铜复合材料组织与性能研究[D].合肥,合肥工业大学,2004.
    [76]程继贵,应美芳,王成福.碳纤维增强铜基轴承合金的制造工艺和性能研究[J].中国机械工程,1995,6(3):59-62.
    [77]张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋势[J].纤维复合材料,2004,1(50):50-54.
    [78]唐谊平.短碳纤维表面处理新工艺及其在铝基、铜基复合材料中的应用研究[D].上海:上海交通大学,2007.
    [79]曾庆冰.溶胶-凝胶法TiO2涂层碳纤维增强铝基复合材料的研制[J].高分子材料科学与工程,1999,7(15):171-175.
    [80]郝艳霞,朱俊武,杨绪杰等.溶胶-凝胶法A1203涂层碳纤维的制备与表征[J].南京理工大学学报,2004,6(28):653-662.
    [81]曹峰,彭平,李效东.氧化铝/氧化硅溶胶对碳纤维表面的处理及应用[J].复合材料学报,1999,(16):22-29
    [82]T. Hahishin, J. Murashita, A. Joyama. Oxidation-resistant coating of Carbon fibers with TiO2 by sol-gel method [J]. J Ceram Soc Jpn,1998,106(1229):1-5.
    [83]庹新林,王伯羲.碳纤维表面镀铜的研究[J].北京理工大学学报,1999,(19)5:642-645.
    [84]陶宁,查正根,张良等.碳纤维表面电镀铜的研究[J].表面技术,2001,(4)8:125-129.
    [85]霍彩红,何为,范中晓.碳纤维表面金属化工艺研究[J].表面技术,2003,32(6):40-42.
    [86]O.A. Gawad, M.H. Abou Tabl, Z. Abdel Hamid, et al. Electroplating of chromium and Cr-carbidecoating for carbon fiber[J]. Surf Coat Technol,2006,201(3-4):1357-1362.
    [87]林德春,张德雄.固体火箭发动机材料现状和前景展望[J].宇航材料工艺,1999,29(5):1-4.
    [88]A. Kitamura, T. Teraoka, R. Sagra. X-ray diffraction studies on the stress transfer of transversely loaded carbon fiber reinforced composite[J]. Proceedings of OCCM-Ⅳ,2000(4): 1473-1480.
    [89]Z. Zhu, X. Kuang, G. Carotenuto. Fabrication and properties of carbon fiber-reinforced copper composite by controlled three-step electrodeposition[J]. J Mater Sci,1997, 32(1):1061-1067.
    [90]J. Korab, a, P. Stefanika, G. Korb. Thermal conductivity of unidirectional Copper matrix-carbon fiber composites[J]. Composites Part A,2002,33(4):577-581.
    [91]J.C. Xu, H. Yu,L. Xia. Effects of some factors on the tribological properties of the short carbon fiber-reinforced copper composite[J]. Mater Des,2004,25(6):489-493.
    [92]Y.Z. Wan, Y.L. Wang, H.L. Lou. Effect of metal diffusion barrier on thermal stabilitiy of metal-coated carbon fibers[J].J Mater Sci,2001,26(2):2809-2814.
    [93]周义刚,杨延清.碳化硅连续纤维增强钛基复合材料的研究进展[J].金属学报,200238(s):461-465.
    [94]Y.Q. Yang, H.J. Dudek, J. Kumpfert, et al. Titanium'98(XITC98)(M). Beijing:Int Acad Pub, 1998:931-934.
    [95]C.C. Tang, E.M. Elssfah, J. Zhang, et al. Morphology and composition controlled synthesis of aluminum borate nanowires without catalysts[J]. Nanotechnology,2006,17(3):2362-2367.
    [96]V. Gamier, G. Fantozzi,D. Nguyen, et al. Influence of SiC whisker morphology and nature of SiC/Al2O3 interface on thermomechanical properties of SiC reinforced Al2O3 composites[J]. J Eur Ceram Soc,2005,25(15):3485-3493.
    [97]柯阳林.纳米SiC晶须改性Ti(C,N)基金属陶瓷的组织与性能研究[D].武汉:华中科技大学,2007.
    [98]靳治良,李胜利,李武等.晶须增强体复合材料的性能与应用[J].盐湖研究,2003,1l(4):57-66.
    [99]陈尔凡,郝春功,李素莲等.晶须增韧复合材料[J].化工新型材料,2006,34(5):14.
    [100]Y.J. Lin, C.M. Chuang. The effects of transition metals on carbothermal synthesis of β-SiC powder[J]. Ceram Int,2007,33(5):779-784.
    [101]G.Z. Cambaz, G.N. Yushin, Y. Gogotsi, et al. Anisotropic Etching of SiC Whiskers[J]. Nano Lett,2006,6(3):548-551
    [102]H.R. Rezaie, W.M. Rainforth, WE. Lee. Fabrication and mechanical properties of SiC platelet reinforced mullite matrix composites[J]. J Eur Ceram Soc,1999,19(9):1777-1787.
    [103]R.M. German. Enhanced sintering through second phase additions[J]. Powder Metall,1985, 28(1):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700