电动汽车用永磁电机温度场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车用永磁电机的工作环境限制了电机的冷却系统设计,使得电机温度场的计算变得复杂,而电机的温升计算是电机的运行可靠性及寿命估计的重要依据,在指导电机设计时显得尤为重要。为研究这一问题,基于传热学、流体力学理论及耦合场相关知识,本文中对电动汽车用永磁电机的温度计算进行了分析计算,以确定电机温升是否满足要求。
     本文首先对电机部分模型进行了相关等效,在不影响温升结果精度的前提下简化了计算。分析了电机内的各导热体的导热系数和各边界面的散热系数并予以修正,同时研究了电机内温度场的热源——电机的损耗及其分布。在此基础上建立了电机传热学分析模型并运用有限元软件对电机的温度场进行分析,并利用多截面分析方法,推出电机各位置的大致温度,结合热源大小及其分布找出电机的最热点,进而分析电机的三维温度分布。同时,分析了冷却水流量改变对电机温升的影响。
     根据耦合基本原理,本文同时对电机内部的流固热耦合场进行了计算。将电机水套内的冷却流体场和电机温度场进行耦合求解,确定边界条件,并得到电机各部分的三维温度分布的仿真结果,然后将得到的结果和有限元分析结果进行对比,两者结果基本相符,对于电机的性能校核及设计分析具有一定的工程应用价值。
The working environment of the permanent magnet motor used in electric cars limits the cooling system design of the motor, making it complicated to calculate its temperature field. But the temperature rise computation in electric motors plays a very important role in estimating the operation reliability and lifespan of the motor, and especially in guiding the motor design. To study the problem, based on heat transfer, fluid mechanics theory and coupling field knowledge, the temperature calculation of the permanent magnet motor used in electric vehicles is analyzed in this paper, so that we can know whether the motor temperature rise meet the requirements.
     This paper firstly makes equivalent exchanges relatively to parts of the motor model, which simplifies the calculation in the premise of ensuring the accuracy of the temperature rise. The coefficient of heat conductivity of every parts and coefficient of the heat transfer of all boundaries in the motor is analyzed and modified. And the heat source of the motor temperature field-the loss and its distribution in the motor. On above basis we building the heat transfer analysis model and analyzing the temperature field with the finite element software, then calculate the temperature of different locations roughly with multi-slice analysis method, combined with the heat source and its distribution, we can also find the most hot point of the motor of the size most hot find, and then the three dimensional temperature distribution of the motor. At the same time, the influence of changing the cooling water flow to the motor temperature rise was analyzed.
     According to the coupling principle, the paper analyzes the internal fluid-solid thermal coupled field in the motor then. solve the coupled field Confirm the boundary conditions and obtain the three dimensional temperature distribution results in each part of the simulation, and then Comparing the results with the results of the finite element analysis we will find both results are consistent. The study of this paper makes a great sense to the checking of motor performance and design.
引文
[l]李科,胡欲立,永磁直流电机温度场分析[J].鱼雷技术,2010.
    [2]唐任远.稀土永磁电机发展综述.电气技术[J].2005(4):1-4.
    [3]史启明,马忠乾,杨宏秀.稀土永磁电机的应用现状及其发展趋势[J],中国重型装备.2008.12.
    [4]徐贵清.电动汽车用驱动电机系统的现状及发展趋势[J].应用技术,2010(32):303.
    [5]胡淑环,永磁电机热计算研究[D].沈阳:沈阳工业大学,2009.
    [6]陈柳钦,我国新能源汽车产业发展面临的问题[J],汽车工业研究,2011.6
    [7]胡林,谷正气,黄晶,颜运昌.电动汽车的关键技术分析[J]:机械制造:2005年10期.
    [8]B.D.J.Maynes, R.J.Kee, C.E.Tindall, R.GKenny. Simulation of Airflow and Heat Transfer in Small Alternators Using CFD[J]. IEE Proceedings Electric Power Applications. 2003,150(2): 146-152.
    [9]Johan Driesen, Ronnie J.M.Belmans, Kay Hameyer. Finite-Element Modeling of Thermal Contact Resistances and Insulation Layers in Electrical Machines[J]. IEEE Transactions on Industry Applications, 2001,37(1):15-20.
    [10]范镇南,基于电磁场与温度场计算的贯流式水轮发电机阻尼系统损耗发热研究[D],重庆:重庆大学,2007
    [11]张雪,水轮发电机流固热耦合仿真分析及通风散热参数研究[D],天津:天津大学机械学院,2007.
    [12]苏鲍里先科,丹科,亚科夫烈.电机中的空气动力学与热传递[M].北京机械工业出版社,1985.
    [13]魏永田等.电机内热交换[M].北京:机械工业出版社,1998.
    [14]张晓晨,屏蔽电机综合物理场协同计算与相关因素分析[D],哈尔滨:哈尔滨理工大学,2006
    [15]李伟力,袁世鹏,霍菲阳,张奕黄,基于流体传热理论永磁风力发电机温度场计算[J],电机与控制学报,2011,15(9).
    [16]李伟力,付敏,周封,魏永田,程树康.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场[J],中国电机工程学报,2000年5期.
    [17]高彦骋,刘卫国.基于Ansys的11kW无刷直流电动机温度场分析[J].微电机,2008
    [18]崔杨,胡虔生,黄云凯,任意频率正弦波条件下铁磁材料损耗计算[J].微电机,2007,33(2):23-26.
    [19]M.Shanel, S.J.Pickering, D.Lampard. Application of Computational Fluid Dynamics to the Cooling of Salient Electrical Machines[J]. ICEM 2000. Espoo Finland: Helsinki University of Technology, 2000.
    [20]K.Preis.I.Bardi, O.Biro, C.Magele, W.Renhart, K.R.Richter, G.Vrisk, Numerical Analysis of 3D Magneto static Fields[J], IEEE Transactions on Magnetics, 1991,27(5): 3798-3803.
    [21]吴海鹰,大中型永磁电机温度场数值计算[D],武汉:华中科技大学,2007
    [22]G.Cannistra, Labini. Thermal Analysis in an Induction Machine Using Thermal Network and Finite Element Methods[J], Fifth International Conference on Electrical Machines and Drives, 1991:300-304.
    [23]陈世坤,电机设计.北京:机械工业出版社,2007.7.
    [24]周封.大型同步电机内流场及温度场耦合的研究[D].哈尔滨:哈尔滨工业大学,2005.
    [25]李伟力,孔祥春,王华.匝间绝缘对水轮发电机转子最热段温度场的影响[J].哈尔滨大学学报1998.
    [26]Y.C.Chen, C.L.Chen, CFD Modeling for Motor Fan System[J], IEEE International Electric Machines and Drives Conference, IEMDC'03. Madison, Wisconsin, USA,2003:764-768.
    [27]杨芳春,张民.风冷式矿用防爆三相异步电动机定子绕组温度场的计算[J].电工技术学报,1993,(4):31-35.
    [28]陈卓,周萍,梅炽.传递过程原理[M].湖南:中南大学出版社,2011.
    [29]安志华.巨型全空冷水轮发电机通风模拟试验及计算研究[D].哈尔滨:哈尔滨理工大学,2005.
    [30]江建中,傅为农.斜槽异步电动机的多截面有限元法分析[J].电工技术学报,1997.
    [31]王水发,陈德为,基于ANSYS的异步电动机二维稳态温度场分析[J].电气传动自动化,2011.
    [32]张大为,汤蕴璆.大型水轮发电机定子最热段三维温度场的有限元计算[J].哈尔滨电工学院学报,1992,(3):15-18.
    [33]张峰.参数化设计的研究现状与发展趋势[J].机械工程师,2002,(1):13-15.
    [34]M.Anxo Prieto Alonso, X.M.Lopeza Femandez, Manual Perez Donsion Harmonic Effects on Rise of A Squirrel Cage Induction Motor[J]. ICEM 2000. EspooFinland: Helsinki University of Technology, 2000.
    [35]李桃.涡流、温度耦合场的建模及有限元的数值分析[D].浙江:浙江大学,2006.
    [36]P.Lombard and G.Meunier. A General Purpose Method for Electric and Magnetic Combined Problems for 2D, Axis-symmetric and Transient System[J]. IEEE Trans. on Mag.Vol.29. 1993.
    [37]张丽芬.采用热—流耦合方法对内冷式涡轮叶片换热的计算研究[D].西安:西北工业大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700