风力发电机的流体场和温度场数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国政府在政策扶植力度方面的不断加大,以及能源危机感在全球的蔓延,我国风能产业呈现飞速发展的态势,无论是从培育新的经济增长点、提高中国的产业竞争力考虑,还是着眼于减少能源带来的环境污染、应对气候变暖的挑战,都需要风电产业快速健康发展。但目前存在的电机温升和噪音过高问题,严重制约着我公司风电产品的进一步发展。
     本论文采用ANSYS FLUENT仿真软件对3MW和5MW两种风力发电机的流体动力学和温度场进行仿真分析,并在仿真分析结果的基础上,调整改进电机的技术参数,从而改善电机的散热效果,满足系统要求,大大缩小研发周期,降低研发成本。论文介绍了本课题的背景和该项目对我公司来说的战略意义,详细地介绍了3MW和5MW两种风力发电机的流体动力学和温度场仿真分析过程,对流体场和温度场分析结果进行了认真的研究思考,提出了切实可行的改进措施,并和试验数据对比验证,收到了很好的效果。
     针对发电机的通风结构及其内部流体的流动特性对电机内热量的传导以及运行性能具有很重要的影响,以一台5MW双馈异步风力发电机和一台3MW半直驱永磁风力发电机为例,根据流体力学以及传热学理论,建立三维流体场与温度场耦合的求解域物理模型,给出了计算边界条件和分析假设条件,采用有限体积法对其进行数值求解,在利用发电机的整体温升对研究方法及计算结果进行校核的基础上,对发电机内不同冷却介质的速度、迹线、温升等参量的空间分布特性进行详细分析。通过计算,揭示大功率发电机内冷却介质流变特性的分布规律,可为同类型发电机的通风结构设计以及更大容量风力发电机流体场的准确计算提供理论依据。
In recent years, the development of wind power industry in China is booming in a burst due to the policy lunched by the state government with the purpose to foster the industry with increasing efforts, as well as the sense of energy crisis spreading around the world. However, we need a rapid and healthy development of wind power business whether based on the consideration of cultivating new economic growth points and improving China's industrial competitive force or with the intention to reduce environment pollution caused by energy generation and to face the challenge of global warming. All in all, at present, the existing technology problems, such as excessive motor temperature rise and excessive noise, seriously restrain the further development of wind power business in our company.
     In this thesis, it despribes how to use ANSYS FLUENT simulation software to perform the fluid dynamics and temperature field simulation analysis for3MW and5MW wind power generators, how to adjust the technical parameters of the generator to improve the cooling effect of the generator to meet the system requirements based on the simulation analysis results so as to greatly reduce development cycle and development costs. This paper introduces the background of the subject and explains the strategic significance of the project for our company, and interprets the analysis process of fluid dynamics and temperature field simulation of3MW and5MW generators in details, carefully investigates the analysis results of fluid field and temperature field, offers practicable improvement measures, and varifies the results with test data, and finally achieves a satisfied end.
     Heat transfer and operating performance of generator are closely related to the ventilation structure and fluid flow behaviour. Taken a5MW large doubly-fed wind generator and a3MW permant magnent wind generator as examples, present basic hypothesis and boundary condition, physical model of three dimensional fluid and temperature coupled field was established according to hydromechanics and heat transfer theory. On the base of the correctness of researching method and computing result proved by the temperature rise distribution of the whole generator, the space distribution characters of different cooling medium inner generator, such as flow velocity, path line, temperature rise and heat transfer coefficient, were analysed numerically using finite volume method. Rheological properties of cooling medium inner generator was obtained, by which a theory gist for design of ventilation structure for the same type generator and accurate calculation of fluid fields for the larger capacity wind generator is provided.
引文
[1]程明张运乾张建忠风力发电机发展现状及研究进展[J]《电力科学与技术学报》2009.24
    [2]李伟力袁世鹏霍菲阳张奕黄 基于流体传热理论永磁风力发电机温度场计算[J] 《电机与控制学报》2011.9
    [3]丁树业孙兆琼姜楠等 大功率双馈风力发电机内部流变特性数值仿真[J]《电机与控制学报》2011.4
    [4]李伟力程鹏张美巍等1.5MW永磁风力发电机电磁场与温度场计算与分析[J] 《电机与控制学报》2010.12
    [5]何山王维庆 黄嵩等大型永磁风力发电机定子温度场改进的研究[J]《水力发电》2008.11
    [6]李科胡欲立永磁直流电机温度场分析[J]《鱼雷技术》2010.3
    [7]王福军《计算流体动力学分析--CFD软件原理与应用》[M]北京清华大学出版社2005.5
    [8]江有名丁树业葛云中大容量风力发电机内流体场及温度场的数值分析[J]
    《大功率变流技术》2010.4
    [9]王正茂 阎治安崔新艺 苏少平 《电机学》 [M]西安交通大学出版社2004
    [10]陈世坤 《电机设计》[M]机械工业出版社 哈尔滨电机制造学院2000.6
    [11]任泽霈《对流换热》[M] 高等教育出版社2003
    [12]吕艳玲戈宝军超高压发电机失磁异步运行时转子温度场分析[J] 《电机与控制学报》 2011.1
    [13]李伟力周封大型水轮发电机转子温度场的有限元计算及相关因素的分析[J]《中国电机工程学报》 2002.10
    [14]邱兆义程双胜电机用冷凝器翅片侧空气热力过程的三维数值模拟计算及分析[J]《船电技术》2009.3
    [15]路义萍李伟力等大型空冷汽轮发电机转子温度场数值模拟[J]《中国电机工程学报》 2007.12
    [16]徐明宇温嘉斌吴桂珍防爆型高功率密度电机温度场与流体场综合计算[J]《防爆电机》2008.3
    [17]路义萍郑国丽等大型空冷汽轮发电机转子多种通风方案比较[J]《电机与控制学报》2010.8
    [18]何山王维庆黄嵩等 大型永磁风力发电机定子温度场改进的研究[J] 《水 力发电》2008.34
    [19]何山王维庆张新燕等大型永磁同步风力发电机定子温度场研究[J] 《太阳能学报》2009.3
    [20]李伟力杨雪峰顾德宝等 多风路空冷汽轮发电机定子内流体流动与传热耦合计算与分析[J] 《电工技术学报》2009.12
    [21]路义萍郑国丽李俊亭等 空内冷汽轮发电机的转子多路通风均匀性[J]《中国电机工程学报》2010.3
    [22]丁树业孙兆琼苗立杰等 大型发电机定子主绝缘温度场数值研究[J] 《电机与控制学报》2010.7
    [23]丁树业李伟力靳慧勇等 发电机内部冷却气流状态对定子温度场的影响[J]《中国电机工程学报》2006.26
    [24]靳慧勇李伟力马贤好等 大型空冷汽轮发电机定子内流体速度与流体温度数值计算与分析[J] 《中国电机工程学报》2006.2
    [25]李伟力丁树业靳慧勇 基于耦合场的大型同步发电机定子温度场的数值计算[J] 《中国电机工程学报》2005.25
    [26]李伟力侯云鹏等大型水轮发电机定子股线导热的数值计算[J] 《中国电机工程学报》2001.7
    [27]程树康李伟力等大型发电机定子绝缘老化后非线性温度场计算[J] 《哈尔滨工业大学学报》2003.1
    [28]周兰欣乔瑾等空冷岛风机群经济调度的数值模拟研究[J]《华北电力大学学报》2011.2
    [29]黄广霞余亚辉分段式永磁直线同步电机温度场分析[J]《机电技术》2009.4
    [30]王建民让余奇电机噪声分析与抑制措施[J]《船电技术》2010.8
    [31]李昕初探电机噪声分析与降噪措施[J] 《中国科技博览》2009.18
    [32]黄琳娣顾捷单相无刷直流风扇电机噪声分析[J]《微电机》2009.2
    [33]陈勇YTVF系列电机噪声分析和防止措施[J]《现代零部件》2004.3
    [34][苏]A.H.鲍里先科等 《电机中的空气动力学与热传递》[M]魏书慈邱建甫译北京机械工业出版社 1985
    [35]蒋彦龙元伟伟张秋等 MW级风力发电机水冷系统的优化设计[J]《南京航空航天大学学报》 2008.40
    [36]魏新劳薛庆会王永红等 大型电机磁极线圈匝间绝缘中频试验技术研究[IJ]《哈尔滨理工大学学报》2009.14
    [37]孟大伟师阳赵勇 感应电动机端部附加损耗的分析与计算[J] 《哈尔滨理工大学学报》 2010.15
    [38]章本照印建安张宏基 流体力学数值方法[M] 北京 机械工业出版社 2003
    [39]张奕传热学南京 东南大学出版社,2004
    [40]CHEN J, NAYAR C V, XU L. Design and finite-element analysis of an outer-rotor permanent-magnet generator for directly couple wind turbines[J]. IEEE Transactions on Magnetics,2000,36 (5):3802 - 3809.
    [41]DONMEZER Y, ERGENE L T. Cogging torque analysis of interior-type permanent-magnet brushless DC motor used in washers[J]. Electromotion,1 - 3 July,2009, Lille.2009:1 - 6.
    [42]RUKMI Dutta, SAAD Sayeef, RAHMAN M. F. Cogging torque analysis of a segmented interior permanent magnet machine [J]. IEMDC’07,3 - 5 May, 2007, Antalya.2007:781 - 786.
    [43]RUKMI Dutta, SAAD Sayeef, RAHMAN M F. Analysis of cogging torque and its effect on direct torque control (DTC) in a segmented interior permanent magnet machine[J]. PESC 2007, 17 - 21 June,2007, Orlamdo, FL.2007: 2568 - 2574.
    [44]KANG Gyuhong, JIN Hur. Analytical prediction and reduction of the cogging torque in interior permanent magnet motor[J]. Electrical Machines and Drives, 15 May,2005, San Antonio.2005:1620 - 1624.
    [45]PARK Kyoungjin, JUNG Daesung Jung, CHANG Hongsoon, etal. A study on the reducing of cogging torque of IPMSM[J]. ICEMS 2008,17 - 20 Oct, 2008, Wuhan.2009:3137 - 3141.
    [46]LEE Seunghoon, HAN Kwangkyu, AHN Hojin, et al. A study on reduction of vibration based on decreased cogging torque for interior type permanent magnet motor[J]. IAS’08,5 - 9 Oct, 2008, Edmonton, Alta. 2008:1 - 6.
    [47]KANG Gyuhong, SON Youngdae, KIM Gyutak, et al. A novel cogging torque reduction method for interior-type permanent - magnet motor[J]. IEEE Transactions on Industry application,2009,45(1):161 - 167.
    [48]NICOLA Bianchi, SIVERRIO Bolognani. Design techiniques for reducing the cogging torque in surface - mounted PM motors[J]. IEEE Transactions on Magnetics,2002,38(5):1259 - 1265.
    [49]LI Touzhu, SLEMON Gordon. Reduction of cogging torque in permanent magnet motors[J]. IEEE Transactions on Magnetics,1988,24(6):2901 -2903.
    [50]BRETON C, BARTOLOME J, BENITO J A, et al. Influence of machine symmetry on reduction of cogging torque in permanent magnet brushless motors[J]. IEEE Transactions on Magnetics,2000,36(5):3819 - 3823.
    [51]ARMOR A F, CHADM VK. Heat flow in the stator core of large turbine-generators by the method of three-dimensional finite elements:Part I: Analysis by scalar potential formulation:Part II:Temperature distribution in the stator iron[J]. IEEE Trans, PAS - 95,1976, (5):1648 - 1668.
    [52]MILOS Bekovic, ANTON Hamler. Determination of the heating effect of magnetic fluid in alternating magnetic field[J]. IEEE Transactions on Magnetics, 2010,46(2):552 - 555.
    [53]MARIGNETTI F, DRLLI Colli V, COIA Y. Design of Axial Flux PM Synchronous Machines Through 3-D Coupled Electromagnetic Thermal and Fluid-Dynamical Finite-Element Analysis[J]. IEEE Transactions on Industrial Electronics,2008,55 (10):3591 - 3601.
    [54]KRISTIANSEN H, FALLET T, BJORNEKLETT A. A study on the evaporation heat transfer in the cooling of high power electronic[J]. Semiconductor Thermal Measurement and Management Symposium.1994:114 - 120.
    [55]SARKAR D. Use of 3-dimensional finite elements for computation of temperature distribution in the stator of an induction motor[J]. IEE Proceeding B,1991,138(2):75 - 86.
    [56]XYPTERAS J, HATZIATHANASSIOUV. Thermal analysis of an electrical machine taking into account the iron losses and the deep-bar effect[J]. IEEE Transactions on Energy Conversion,1999,14(4):996 - 1003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700