祁连山区现代冰川面积变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
祁连山地处我国西北干旱半干旱地区,是我国重要的生态屏障,是亚大陆型冰川与极大陆型冰川的过渡地带,是我国现代冰川研究的发祥地。祁连山冰川变化研究不仅具有重要的科学意义,同时也具有重要的生态意义和社会意义。
     本文利用Landsat卫星TM、ETM+影像,在数字高程模型和第一次中国冰川编目数据的辅助下提取了1990年、2000年和2010年三个时段的整个祁连山区的冰川边界信息,并对其空间分布特征和空间变化特征进行了分析。另外结合我们提取的其它山系的冰川面积信息和已发表的研究成果,通过数据整合,我们计算得到了我国冰川约半个世纪以来的变化信息,并对其时空变化特征进行了分析。同时我们还分析了气温、降水和零度层高度在1961年至2010年间变化的时空特征。结合气候变化的时空特征,我们分析了冰川变化的控制因素,利用该分析结果,我们分析了冰川变化对温度变化的时间滞后性。根据滞后性分析的结果,我们建立了温度与冰川变化之间的经验模型,最后以气候模式的预测结果作为输入,利用该经验模型预测了未来冰川变化。本文的主要结论如下:
     (1)祁连山区冰川面积的分布特征:a、在高程上,冰川的分布形态类似正态分布,其峰值出现在海拔5,000米左右;b、冰川主要分布在朝北的坡向;c、冰川分布随冰川规模增大面积变大;d、祁连山西部地区冰川分布面积大于东部地区。
     (2)冰川面积的变化特征:a、1990年至2010年祁连山区冰川面积缩小了22.8±3%,2000年至2010年相对1990年至2000年退缩速度有所加快;b、祁连山区低海拔的冰川退缩速度高于高海拔地区,以海拔5,000米为大致分界点,近十年冰川在高海拔地区退缩速度减慢;c、在祁连山区,在南向的坡向的冰川退缩速度大于北向坡向的退缩速度,而南向坡向中又以西南坡向的退缩速度最大;d、在祁连山区,小规模的冰川退缩速度快,而大规模的冰川退缩速度慢,且不同规模的冰川均表现出2000年至2010年间的退缩速度较1990年至2000年间的退缩速度加快;e、祁连山区东部的冰川退缩速度快于西部;f、1956年至2010年间祁连山区的冰川整体处于退缩状态,面积减小了30.36%,年均退缩率为0.56%,1963年至2010年,我国冰川整体处在退缩状态,面积减小了15.7%,年均退缩速率为0.33%;g、在过去约半个世纪里,青藏高原周缘地区冰川退缩比例大于高原腹地。
     (3)冰川变化的控制因素:a、温度对1956年至2010年祁连山区冰川的退缩特征和1963年至2010年我国西部冰川的退缩特征起到了控制性作用;b、祁连山区在消融区加速消融,温度增加起了重要贡献;而积累区消融减缓,降水增加起到了重要的补偿作用;c、祁连山东部冰川海拔较低、规模较小、大部分属于亚大陆型冰川,致使其在1990年至2010年间退缩速度快于西部的冰川;d、以温度为主导的多种因素叠加导致了在过去约半个世纪里,青藏高原周缘地区冰川退缩比例大于高原腹地。
     (4)冰川变化对温度变化的滞后性:a、祁连山地区冰川面积变化约滞后于年平均气温变化10年;b、全国冰川面积变化约滞后于年平均气温8至10年。
     (5)冰川变化预测:a、至2030年祁连山地区冰川面积相对于2010年,退缩比例为17%;b、至2050年祁连山地区冰川面积相对于2010年,退缩比例为37%;c、至2030年我国西部地区冰川面积相对于2010年,退缩比例为14%;b、至2050年我国西部地区冰川面积相对于2010年,退缩比例为29%。
The Qilian Mountains are located in the arid and semiarid regions of northwestern China. It is an important ecological barrier, a transition zone between subcontinental glaciers and extreme continental glaciers, and the birthplace of modern glacier research in China. Studying glaciers in this area not only has a scientific significance, but also has ecological and social importance.
     Landsat TM, ETM+images were used with the help of digital elevation models and the first Chinese Glacier Inventory data to delineate the outlines of glaciers in the whole area in1990,2000and2010. Spatial distribution and variation characteristics of the glaciers were analyzed. Combined with our own results and previously published results, we calculated glacier area change information in China during the past half century. Then we analyzed the spatial and temporal characteristics of glacier area changes in China, and the trends in temperature, precipitation and freezing level from1961to2010. We also analyzed controlling factors of glacier area changes and time lag between glacier area changes and temperature changes. Based on the results of time lag analysis, we established an empirical model to predict glacier area changes. Finally, using the empirical model, we projected glacier area changes in the future. The main conclusions are as follows:
     (1) Characteristics of glacier distribution in the Qilian Mountains:the pattern of glacier area distribution with elevation was similar to the shape of normal distribution and the peak was at approximately5,000m; glaciers were distributed mainly in the north-facing aspect; glacier areas increased relative to their size class; more glaciers were distributed in the western portion than in the eastern portion of the study area.
     (2) Characteristics of glacier changes:glaciers shrank22.38±3%in the Qilian Mountains from1990to2010and the shrinkage accelerated during the second decade; glaciers shrank faster at lower elevations than at higher elevations; glacier shrinkage accelerated below5,000m and slowed down above5,000m; glaciers shrank faster in the south-facing aspect than in the north-facing aspects while maximum shrinkage occurred in the southwest aspect; smaller glaciers shrank faster than larger ones, and the shrinkage accelerated among all the size classes from2000to2010; glacier shrank faster in the eastern portion than in the western portion of the study area; glaciers shrank30.36%with an annual change rate of0.56%in the Qilian Mountains from1956to2010; glaciers shrank15.7%with an annual change rate of0.33%in China from1963to2010; glaciers shrank faster in the peripheral areas than internal areas of the Tibetan Plateau during the past half century.
     (3) Controlling factors of glacier area change:temperature was the main controlling factor of glacier area change in the Qilian Mountains during the period of1956-2010; temperature was the main controlling factor of glacier area change in China during the period of1963-2010; increasing temperature played an important role in accelerating glacier area shrinkage in ablation zones from2000to2010, while increasing precipitation compensated for melting caused by increasing temperature, resulting in reduced shrinkage in accumulation zones; since glaciers in the eastern portion of the Qilian Mountains were small, at low elevation and subcontinental type, they shrank faster than in the western portion; rising temperature accompanied by other factors caused faster glacier shrinkage in the peripheral areas than in the internal areas of the Tibetan Plateau in China during the past half century.
     (4) Time lag between glacier area change and temperature change:glacier area change lagged10years behind temperature change in the Qilian Mountains; glacier area change lagged between8to10years behind temperature change in China.
     (5) Prediction of glacier changes:glaciers in the Qilian Mountains are projected to shrink at an average rate of17%by2030and37%by2050compared to2010; glaciers in China are projected to shrink at an average rate of14%by2030and29%by2050compared to2010.
引文
[1]Andreassen L M, Paul F, Kaab A, Hausberg J E. Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s[J]. The Cryosphere.2008, 2(2):131-145.
    [2]Barry R, Gan T Y. The global cryosphere:past, present and future[M]. New York:Cambridge University Press.2011.
    [3]Bolch T, Menounos B, Wheate R. Landsat-based inventory of glaciers in western Canada, 1985-2005[J]. Remote Sensing of Environment.2010a,114(1):127-137.
    [4]Bolch T, Yao T, Kang S, Buchroithner M F, Scherer D, Maussion F, Huintjes E, Schneider C. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976-2009[J]. Cryosphere.2010b,4(3):419-433.
    [5]Calmanti S, Motta L, Turco M, Provenzale A. Impact of climate variability on Alpine glaciers in northwestern Italy[J]. International Journal of Climatology.2007,27(15):2041-2053.
    [6]Chen X Q, Cui P, Li Y, Yang Z, Qi Y Q. Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet)[J]. Geomorphology.2007,88(3-4):298-311.
    [7]Cuffey K M, Paterson W S B. The physics of glaciers[M]. Butterworth-Heinemann: Butterworth-Heinemann.2010.
    [8]Ding Y J, Liu S Y, Li J, Shangguan D H. The retreat of glaciers in response to recent climate warming in western China[J]. Annals of Glaciology.2006,43(1):97-105.
    [9]Duan K Q, Yao T D, Wang N L, Liu H C. Numerical simulation of Urumqi Glacier No.1 in the eastern Tianshan, central Asia from 2005 to 2070[J]. Chinese Science Bulletin.2012, 57(34):4505-4509.
    [10]Free M, Angell J K, Durre I, Lanzante J, Peterson T C, Seidel D J. Using first differences to reduce inhomogeneity in radiosonde temperature datasets[J]. Journal of Climate.2004,17(21): 4171-4179.
    [11]Frey H, Paul F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories[J]. International Journal of Applied Earth Observation and Geoinformation.2012,18:480-490.
    [12]Guo W Q, Liu S Y, Wei J F, Bao W J. The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing[J]. Annals of Glaciology.2013, 54(63):299.
    [13]Hodge S M, Trabant D C, Krimmel R M, Heinrichs T A, March R S, Josberger E G. Climate variations and changes in mass of three glaciers in western North America[J]. Journal of Climate.1998,11(9):2161-2179.
    [14]IPCC. Climate Change 2007:The Physical Science Basis[Z]. New York:Cambridge University Press,2007.
    [15]Jiang X, Wang N L, He J Q, Wu X B, Song G J. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin. 2010,55(20):2079-2087.
    [16]Kendall M G. Rank Correlation Methods[M]. London:Charles Griffin.1975.
    [17]Konig M, Winther J G, Isaksson E. Measuring snow and glacier ice properties from satellite[J]. Reviews of Geophysics.2001,39(1):1-27.
    [18]Li B L, Zhu A X, Zhang Y C, Pei T, Qin C Z, Zhou C H. Glacier change over the past four decades in the middle Chinese Tien Shan[J]. Journal of Glaciology.2006,52(178):425-432.
    [19]Li B L, Zhang Y C, Zhou C H. Remote sensing detection of glacier changes in Tianshan Mountains for the past 40 years[J]. Journal of Geographical Sciences.2004,14(3):296-302.
    [20]Li J, Liu S Y, Shangguan D H, Zhang Y S. Identification of ice elevation change of the Shuiguan River No.4 glacier in the Qilian Mountains, China[J], Journal of Mountain Science. 2010,7(4):375-379.
    [21]Li K M, Li H L, Wang L, Gao W Y. On the relationship between local topography and small glacier change under climatic warming on Mt. Bogda, eastern Tian Shan, China[J]. Journal of Earth Science.2011a,22(4):515-527.
    [22]Li X, Cheng G D, Jin H J, Kang E, Che T, Jin R, Wu L Z, Nan Z T, Wang J, Shen Y P. Cryospheric change in China[J]. Global and Planetary Change.2008,62(3-4):210-218.
    [23]Li Z Q, Li H L, Chen Y N. Mechanisms and simulation of accelerated shrinkage of continental glaciers:a case study of Urumqi Glacier No.1 in eastern Tianshan, Central Asia[J]. Journal of Earth Science.2011b,22(4):423-430.
    [24]Li Z, Su W X, Zeng Q Z. Measurements of glacier variation in the Tibetan Plateau using landsat data[J]. Remote Sensing of Environment.1998,63(3):258-264.
    [25]Liu C H, Kang E S, Liu S Y, Chen J M, Liu Z X. Study on the glacier variation and its runoff responses in the arid region of Northwest China[J]. Science in China Series D-Earth Sciences. 1999,42S:64-71.
    [26]Liu Q, Liu S, Zhang Y, Wang X, Zhang Y, Guo W, Xu J. Recent shrinkage and hydrological response of Hailuogou glacier, a monsoon temperate glacier on the east slope of Mount Gongga, China[J]. Journal of Glaciology.2010,56(196):215-224.
    [27]Liu S Y, Sun W X, Shen Y P, Li G. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply [J]. Journal of Glaciology.2003,49(164):117-124.
    [28]Mann H B. Nonparametric tests against trend[J]. Econometrica.1945,13(3):245-259.
    [29]Mitchell T D, Jones P D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids[J]. International Journal of Climatology. 2005,25(6):693-712.
    [30]Narama C, Kaab A, Duishonakunov M, Abdrakhmatov K. Spatial variability of recent glacier area changes in the Tien Shan Mountains Central Asia using Corona (-1970) Landsat (-2000) and ALOS (-2007) satellite data[J]. Global and Planetary Change.2010,71(1-2): 42-54.
    [31]Nesje A, Johannessen T, Birks H J B. Briksdalsbreen, western Norway:climatic effects on the terminal response of a temperate glacier between AD 1901 and 1994[J]. Holocene.1995,5(3): 343-347.
    [32]Nie Y, Zhang Y, Liu L, Zhang J. Glacial change in the vicinity of Mt. Qomolangma(Everest), central high Himalayas since 1976[J]. Journal of Geographical Sciences.2010,20(5): 667-686.
    [33]Pan B T, Cao B, Wang J, Zhang G L, Zhang C, Hu Z B, Huang B. Glacier variations in response to climate change from 1972 to 2007 in the western Lenglongling mountains, northeastern Tibetan Plateau[J]. Journal of Glaciology.2012a,58(211):879-888.
    [34]Pan B T, Geng H P, Hu X F, Sun R H, Wang C. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains, NW China[J]. Earth and Planetary Science Letters.2010,292(1):148-157.
    [35]Pan B T, Zhang G L, Wang J, Cao B, Geng H P, Wang J, Zhang C, Ji Y P. Glacier changes from 1966-2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing[J]. Cryosphere.2012b,6(5):1087-1101.
    [36]Paul F, Huggel C, Kaab A, Kellenberger T, Maisch M. Comparison of TM-derived glacier areas with higher resolution data sets. EARSeL Workshop on Remote Sensing of Land Ice and Snow, Bern,11.-13.3.2002a. EARSeL eProceedings 2,15-21.
    [37]Paul F, Kaab A, Maisch M, Kellenberger T, Haeberli W. The new remote sensing derived Swiss glacier inventory:I. Methods[J]. Annals of Glaciology.2002b,34(1):355-361.
    [38]Pellikka P, Rees W G. Remote sensing of glaciers:techniques for topographic, spatial and thematic mapping of glaciers[M]. London:CRC Press.2011.
    [39]Peterson T C, Karl T R, Jamason P F, Knight R, Easterling D R. First difference method: Maximizing station density for the calculation of long-term global temperature change[J]. Journal of Geophysical Research.1998,103(D20):25967-25974.
    [40]Raup B, Kaab A, Kargel J S, Bishop M P, Hamilton G, Lee E, Paul F, Rau F, Soltesz D, Khalsa S, Beedle M, Helm C. Remote sensing and GIS technology in the global land ice measurements from space (GLIMS) project[J]. Computers & Geosciences.2007a,33(1): 104-125.
    [41]Raup B, Racoviteanu A, Khalsa S, Helm C, Armstrong R, Arnaud Y. The GLIMS geospatial glacier database:A new tool for studying glacier change[J]. Global and Planetary Change. 2007b,56(1-2):101-110.
    [42]Sakai A, Fujita K, Duan K, Pu J, Nakawo M, Yao T. Five decades of shrinkage of July 1st glacier, Qilian Shan, China[J]. Journal of Glaciology.2006,52(176):11-16.
    [43]Sakai A, Fujita K, Narama C, Kubota J, Nakawo M, Yao T D. Reconstructions of annual discharge and equilibrium line altitude of glaciers at Qilian Shan, northwest China, from 1978 to 2002[J]. Hydrological Processes.2010,24(19):2798-2806.
    [44]Scherler D, Bookhagen B, Strecker M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover[J]. Nature Geoscience.2011,4(3):156-159.
    [45]Shangguan D H, Liu S Y, Ding Y J, Ding L F, Xiong L B, Cai D, Li G, Lu A Q, Zhang S, Zhang Y. Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory and recent satellite imagery[J]. Annals of Glaciology,2006,43(1):79-85.
    [46]Shangguan D H, Liu S Y, Ding Y J, Ding L F, Xu J L, Jing L. Glacier changes during the last forty years in the Tarim Interior River basin, northwest China[J]. Progress in Natural Science. 2009,19(6):727-732.
    [47]Shangguan D H, Liu S Y, Ding Y J, Li J, Zhang Y, Ding L F, Wang X, Xie C W, Li G. Glacier changes in the West Kunlun Mountains, China from 1970 to 2001 derived from Landsat TM/ETM+and Chinese glacier inventory data[J]. Annals of Glaciology.2007,46(1): 204-208.
    [48]Shangguan D H, Liu S Y, Ding Y J, Zhang Y S, Li X Y, Wu Z. Changes in the elevation and extent of two glaciers along the Yanglonghe river, Qilian Shan, China[J]. Journal of Glaciology.2010,56(196):309-317.
    [49]Shi Y F. Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia[J]. Quaternary International.2002,97-8:79-91.
    [50]Shi Y F. Concise glacier inventory of China[M]. Shanghai:Shanghai Popular Science Press. 2008.
    [51]Shi Y F, Liu S Y. Estimation on the response of glaciers in China to the global warming in the 21st century[J]. Chinese Science Bulletin.2000,45(7):668-672.
    [52]Singh V P, Singh P, Haritashya U K. Encyclopedia of snow, ice and glaciers[M]. Springer. 2011.
    [53]Sun W J, Qin X, Ren J W, Yang X G, Zhang T, Liu Y S, Cui X Q, Du W T. The surface energy budget in the accumulation zone of the Laohugou Glacier No.12 in the Western Qilian Mountains, China, in summer 2009[J]. Arctic Antarctic and Alpine Research.2012,44(3): 296-305.
    [54]Tino P, Tobias B, Wei J F, Liu S Y. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery[J]. Remote Sensing of Environment.2013,130:233-244.
    [55]Vuille M, Bradley R S. Mean annual temperature trends and their vertical structure in the tropical Andes[J]. Geophysical Research Letters.2000,27(20):3885-3888.
    [56]Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark B G, Bradley R S. Climate change and tropical Andean glaciers:Past, present and future[J]. Earth-Science Reviews.2008, 89(3-4):79-96.
    [57]Wang L P, Xie Z C, Wang X, Liu S Y, Ding L F, Shangguan D H. The glacier area changes in the Qangtang Plateau based on the multi-temporal grid method and its sensitivity to climate change[J]. Journal of Mountain Science.2011a,8(6):882-893.
    [58]Wang N L, He J Q, Pu J C, Jiang X, Jing Z F. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years[J]. Chinese Science Bulletin.2010, 55(33):3810-3817.
    [59]Wang P, Li Z, Gao W. Rapid shrinking of glaciers in the Middle Qilian Mountain region of Northwest China during the last-50 years[J]. Journal of Earth Science.2011b,22(4): 539-548.
    [60]Wang W C, Yao T D, Yang X X. Variations of glacial lakes and glaciers in the Boshula mountain range, southeast Tibet, from the 1970s to 2009[J]. Annals of Glaciology.2011c, 52(58):9-17.
    [61]Wang Xll. Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test[J]. Journal of Applied Meteorology and Climatology.2008a, 47(9):2423-2444.
    [62]Wang Xll. Penalized maximal F test for detecting undocumented mean shift without trend change[J]. Journal of Atmospheric and Oceanic Technology.2008b,25(3):368-384.
    [63]Wang X, Xie Z C, Li Q Y, Wang S H, Cheng L. Sensitivity analysis of glacier systems to climate warming in China[J]. Journal of Geographical Sciences.2008c,18(2):190-200.
    [64]Wang Y T, Hou S G, Hong S M, Hur S D, Liu Y P. Glacier extent and volume change (1966-2000) on the Su-lo Mountain in northeastern Tibetan Plateau, China[J]. Journal of Mountain Science.2008d,5(4):299-309.
    [65]Wu L Z, Li X. China glacier information system[Z]. China Ocean Press, Beijing,2004.
    [66]Wu S S, Yao Z J, Huang H Q, Liu Z F, Chen Y S. Glacier retreat and its effect on stream flow in the source region of the Yangtze River[J]. Journal of Geographical Sciences.2013,23(5): 849-859.
    [67]Wu Y H, Zhu L P. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000[J]. Journal of Geographical Sciences. 2008,18(2):177-189.
    [68]Xu J L, Liu S Y, Zhang S Q, Guo W Q, Wang J. Recent changes in glacial area and volume on Tuanjiefeng Peak region of Qilian Mountains, China[J]. Plos One.2013,8(8):e705748.
    [69]Xu X K, Pan B L, Hu E, Li Y J, Liang Y H. Responses of two branches of Glacier No.1 to climate change from 1993 to 2005, Tianshan, China[J]. Quaternary International.2011, 236(1-2):143-150.
    [70]Yao T D, Thompson L, Yang W, Yu W S, Gao Y, Guo X J, Yang X X, Duan K Q, Zhao H B, Xu B Q, Others. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change.2012,2(9):663-667.
    [71]Yao T D, Wang Y Q, Liu S Y, Pu J C, Shen Y P, Lu A X. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J]. Science in China Series D-Earth Sciences.2004,47(12):1065-1075.
    [72]Ye Q H, Chen F, Stein A, Zhong Z W. Use of a multi-temporal grid method to analyze changes in glacier coverage in the Tibetan Plateau[J]. Progress in Natural Science.2009a, 19(7):861-872.
    [73]Ye Q H, Kang S C, Chen F, Wang J H. Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and G1S technologies[J]. Journal of Glaciology.2006a,52(179):537-545.
    [74]Ye Q H, Yao T D, Chen F, Kang S C, Zhang X Q, Wang Y. Response of glacier and lake covariations to climate change in Mapam Yumco basin on Tibetan plateau during 1974-2003[J]. Journal of China University of Geosciences.2008,19(2):135-145.
    [75]Ye Q H, Yao T D, Kang S C, Chen F, Wang J H. Glacier variations in the Naimona'nyi region, western Himalaya, in the last three decades[J]. Annals of Glaciology.2006b,43(1):385-389.
    [76]Ye Q H, Zhong Z W, Kang S C, Stein A, Wei Q F, Liu J S. Monitoring Glacier and Supra-glacier Lakes from Space in Mt. Qomolangma Region of the Himalayas on the Tibetan Plateau in China[J]. Journal of Mountain Science.2009b,6(3):211-220.
    [77]Ye Q H, Zhu L P, Zheng H X, Naruse R J, Zhang X Q, Kang S C. Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies[J]. Journal of Glaciology.2007,53(183):673-676.
    [78]Zhang M J, Wang S J, Li Z Q, Wang F T. Glacier area shrinkage in China and its climatic background during the past half century[J]. Journal of Geographical Sciences.2012a,22(1): 15-28.
    [79]Zhang Q, Li J F, Chen Y D, Chen X H. Observed changes of temperature extremes during 1960-2005 in China:natural or human-induced variations?[J]. Theoretical and Applied Climatology.2011,106(3-4):417-431.
    [80]Zhang S Q, Ye B S, Liu S Y, Zhang X W, Hagemann S. A modified monthly degree-day model for evaluating glacier runoff changes in China. Part Ⅰ:model development[J]. Hydrological Processes.2012b,26(11):1686-1696.
    [81]Zhang T, Xiao C D, Colgan W, Qin X, Du W T, Sun W J, Liu Y S, Ding M H. Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya[J]. Journal of Glaciology.2013,59(215).
    [82]Zhang Y S, Liu S Y, Shangguan D H, Li J, Zhao J D. Thinning and shrinkage of Laohugou No.12 glacier in the Western Qilian Mountains, China, from 1957 to 2007[J]. Journal of Mountain Science.2012c,9(3):343-350.
    [83]Zhao C Y, Nan Z R, Cheng G D, Zhang J H, Feng Z D. GIS-assisted modelling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters[J]. Ecological Modelling.2006,191(3):487-500.
    [84]Zhou S Q, Nakawo M, Sakai A, Matsuda Y, Duan K Q, Pu J C. Water isotope variations in the snow pack and summer precipitation at July 1 Glacier, Qilian Mountains in northwest China[J]. Chinese Science Bulletin.2007,52(21):2963-2972.
    [85]白金中,李忠勤,张明军,高闻宇.1959—-2008年新疆阿尔泰山友谊峰地区冰川变化特征[J].干旱区地理.2012,35(1):116-124.
    [86]蔡迪花,马金辉,年雁云,刘时银.慕士塔格峰冰川变化遥感研究[J].兰州大学学报:自然科学版.2006,42(1):13-17.
    [87]曹泊.祁连山东段冷龙岭现代冰川变化研究[D].兰州大学,2013.
    [88]曹泊,潘保田,高红山,姜少飞.1972-2007年祁连山东段冷龙岭现代冰川变化研究[J].冰川冻土.2010,32(2):242-248.
    [89]车涛,李新,Mool P.K.,许建初.希夏邦马峰东坡冰川与冰川湖泊变化遥感监测[J].冰川冻土.2005,27(6):801-805.
    [90]陈锋,康世昌,张拥军,游庆龙.纳木错流域冰川和湖泊变化对气候变化的响应[J].山地学报.2009,27(6):641-647.
    [91]陈广庭,曾凡江.祁连山西段水文水资源及其特征[J].干旱区研究.2011,28(5):744-749.
    [92]陈晓清,崔鹏,杨忠,齐永青.近15a喜玛拉雅山中段波曲流域冰川和冰湖变化[J].冰川冻土.2005,27(6):793-800.
    [93]程瑛,李栋梁,胡文超,沈福.祁连山冰川消融与高空气温变化的关系[J].高原气象.2002,21(2):217-221.
    [94]程瑛,徐殿祥,宋秀玲.近50年祁连山西段夏季气候变化对冰川发育的影响[J].干旱区研究.2009,26(2):294-298.
    [95]崔之久.贡嘎山现代冰川的初步观察—纪念为征服贡嘎山而英勇牺牲的战友[J].地理学报.1958,24(3):318-342.
    [96]丁永建.中国和瑞士冰川波动之对比研究[J].冰川冻土.1996,18(s)1.
    [97]丁永建,叶佰生,刘时银.祁连山中部地区40a来气候变化及其对径流的影响[J].冰川冻土.2000,22(3):193-199.
    [98]董志文,任贾文,秦大河,秦翔.祁连山老虎沟12号冰川积雪化学特征及环境意义[J].冰川冻土.2013,35(2):327-335.
    [99]杜建括.基于遥感与实测的玉龙雪山冰川变化[D].兰州大学,2011.
    [100]杜文涛,秦翔,刘宇硕,王旭峰.1958-2005年祁连山老虎沟12号冰川变化特征研究[J].冰川冻土.2008,30(3):373-379.
    [101]杜文涛,秦翔,孙维君,刘宇硕.祁连山老虎沟冰川积累区风速、风向变化特征研究[J].冰川冻土.2012,34(1):29-36.
    [102]符淙斌,王强.气候突变的定义和检测方法[J].大气科学.1992,16(4):482-493.
    [103]高闻宇,李忠勤,李开明,张明军.基于遥感与GIS的库克苏河流域冰川变化研究[J].干 旱区地理.2011,34(2):252-261.
    [104]郭忠明,王宁练,毛瑞娟,武小波.基于MODIS反演祁连山七一冰川雪粒径[J].地理科学.2012,33(3):378-384.
    [105]何毅,杨太保,田洪阵,李兆钧.近23年来北天山冰川面积变化对气候的响应[J].干旱区资源与环境.2013,27(3):53-60.
    [106]黄汲清.中国的冰川[J].冰川冻土.1984,6(1):85-93.
    [107]黄茂桓,孙作哲.我国大陆型冰川运动的某些特征[J].冰川冻土.1982,4(2):35-45.
    [108]姜珊,杨太保,王秀娜,田洪阵.1973-2010年布喀塔格峰冰川波动对气候变化的响应[J].干旱区资源与环境.2013,27(3):47-52.
    [109]焦克勤,井哲帆,韩添丁,杨惠安.42a来天山乌鲁木齐河源1号冰川变化及趋势预测[J].冰川冻土.2004,26(3):253-260.
    [110]晋锐,车涛,李新,吴立宗.基于遥感和GIS的西藏朋曲流域冰川变化研究[J].冰川冻土.2004,26(3):261-266.
    [111]康兴成,丁良福.天山和祁连山的冰川物质平衡、雪线位置与天气气候的关系[J].冰川冻土.1981,3(1):53-56.
    [112]李成秀,杨太保,田洪阵.1990-2011年西昆仑峰区冰川变化的遥感监测[J].地理科学进展.2013,32(4):548-559.
    [113]李德平,王利平,刘时银,谢自楚.小冰期以来羌塘高原中西部冰川变化图谱分析[J].冰川冻土.2009,31(1):40-47.
    [114]李吉均.祁连山的平顶冰川[J].兰州大学学报.1961,(1):56-66.
    [115]李健,秦翔,孙维君,张明杰.祁连山老虎沟12号冰川近地层微气象特征分析[J].高原气象.2012,31(2):370-379.
    [116]李开明,李忠勤,高闻宇,王林.近期新疆东天山冰川退缩及其对水资源影响[J].科学通报.2011,56(32):2708-2716.
    [117]李巧媛.不同气候变化情景下青藏高原冰川的变化[D].湖南师范大学,2011.
    [118]李巧媛,谢自楚.周期性升温下冰川系统的变化预测研究——以长江流域冰川系统为例[J].冰川冻土.2008,30(4):583-589.
    [119]李全莲,王宁练,武小波,谢君.祁连山七一冰川雪冰和冰川融水中正构烷烃和多环芳烃的分布特征及来源研究[J].冰川冻土.2010,32(4):706-713.
    [120]李向应,秦大河,井哲帆,李月芳.祁连山七一冰川流域微量元素的日变化及采样后未过滤的影响[J].中国科学:地球科学.2012,42(11):1745-1756.
    [121]李艳丽.近10年来气候变化对东昆仑山北坡山地及山前绿洲植被的影响研究[D].兰州大学,2011.
    [122]李震,孙文新,曾群柱.综合RS与GIS方法提取青藏高原冰川变化信息--以布喀塔格峰为例[J].地理学报.1999,54(3):263-268.
    [123]李治国,姚檀栋,叶庆华,田立德.西藏年楚河满拉水库上游冰川变化及其影响[J].冰川冻土.2010,32(4):650-658.
    [124]李治国,姚檀栋,叶庆华,田立德.1980~2007年喜马拉雅东段洛扎地区冰川变化遥感监测[J].地理研究.2011,30(5):939-952.
    [125]李忠勤,董志文,张明军,王飞腾.天山乌鲁木齐河源冰川积雪化学特征及其季节变化[J].地球科学(中国地质大学学报).2011,36(4):670-678.
    [126]李忠勤,韩添丁,井哲帆,杨惠安.乌鲁木齐河源区气候变化和1号冰川40a观测事实[J].冰川冻土.2003,25(2):117-123.
    [127]李忠勤,沈永平,王飞腾,李慧林.冰川消融对气候变化的响应——以乌鲁木齐河源1号冰川为例[J].冰川冻土.2007,29(3):333-342.
    [128]刘潮海,康尔泗,刘时银,陈建明.西北干旱区冰川变化及其径流效应研究[J].中国科学(D辑:地球科学).1999,29(S1):55-62.
    [129]刘金龙,刘登忠,王长海.新疆阿格勒达坂地区冰川变化分析[J].地矿测绘.2011,27(4):21-23.
    [130]刘时银,鲁安新,丁永建,姚檀栋.黄河上游阿尼玛卿山区冰川波动与气候变化[J].冰川冻土.2002,24(6):701-707.
    [131]刘时银,上官冬辉,丁永建,韩海东.20世纪初以来青藏高原东南部岗日嘎布山的冰川变化[J].冰川冻土.2005,27(1):55-63.
    [132]刘晓尘,效存德.1974—-2010年雅鲁藏布江源头杰玛央宗冰川及冰湖变化初步研究[J].冰川冻土.2011,33(3):488-496.
    [133]刘宇硕,秦翔,杜文涛,孙维君.祁连山老虎沟12号冰川运动特征分析[J].冰川冻土.2010,32(3):475-479.
    [134]刘宇硕,秦翔,张通,张明杰.祁连山东段冷龙岭地区宁缠河3号冰川变化研究[J].冰川冻土.2012,34(5):1031-1036.
    [135]鲁安新,姚檀栋,刘时银,丁良福.青藏高原各拉丹冬地区冰川变化的遥感监测[J].冰川冻土.2002,24(5):559-562.
    [136]鲁安新,姚檀栋,王丽红,刘时银.青藏高原典型冰川和湖泊变化遥感研究[J].冰川冻土.2005,27(6):783-792.
    [137]毛瑞娟,蒋熹,郭忠明,吴红波.基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究[J].冰川冻土.2013,35(2):301-309.
    [138]聂勇,张镱锂,刘林山,张继平.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J].地理学报.2010,65(1):13-28.
    [139]蒲焘.基于水化学与同位素的典型海洋型冰川流域水文过程研究[D].兰州大学,2013.
    [140]蒲健辰,姚檀栋,段克勤,坂井亚规子.祁连山七一冰川物质平衡的最新观测结果[J].冰川冻土.2005,27(2):199-204.
    [141]钱亦兵,吴世新,吴兆宁,李锦.喀尔里克山冰川资源近50a来的变化及保护对策[J].干旱区地理.2011,34(5):719-725.
    [142]谯程骏.唐古拉山冬克玛底地区冰川变化遥感监测[J].安徽农业科学.2010,38(14):7703-7705.
    [143]切排.河西走廊多民族关系的基本特点和主要问题[J].中南民族大学学报(人文社会科学版).2008,28(4):87-90.
    [144]任炳辉.我国现代冰川变化及其与气候变化的关系[J].冰川冻土.1988,10(3):244-249.
    [145]任贾文,黄茂桓.冰川活动层温度状况的传热学分析——以祁连山羊龙河5号冰川为例[J].冰川冻土.1981,3(3):23-28.
    [146]上官冬辉,刘时银,丁良福,张世强.1970—2000年念青唐古拉山脉西段冰川变化[J].冰川冻土.2008,30(2):204-210.
    [147]上官冬辉,刘时银,丁永建,丁良福.利用ASTER影像对慕士塔格公格尔山冰川解译与目录编制[J].冰川冻土.2005,27(3):344-351.
    [148]沈永平,刘时银,甄丽丽,王根绪.祁连山北坡流域冰川物质平衡波动及其对河西水资源的影响[J].冰川冻土.2001,23(3):244-250.
    [149]施雅风.祁连山冰雪利用研究初步开展[J].科学通报.1958,(18):574-575.
    [150]施雅风.J.L.R.阿伽西——近代冰川学说的奠基人[J].冰川冻土.1986,8(2):179-182.
    [151]施雅风.中国冰川与环境—现在、过去和未来[M].北京:科学出版社,2000a.
    [152]施雅风.简明中国冰川目录[M].上海市:上海科学普及出版社,2004:205.
    [153]施雅风,刘时银.中国冰川对21世纪全球变暖响应的预估[J].科学通报.2000b,45(4):434-438.
    [154]施雅风,任炳辉,谢自楚.三十年来我国冰川学研究的进展[J].冰川冻土.1979,1(2):1-6.
    [155]施雅风,谢自楚.中国现代冰川的基本特征[J].地理学报.1964,30(3):183-213.
    [156]施雅风,谢自楚,张祥松,黄茂桓.二十五年来中国冰川学的回顾与展望[J].地理学报.1985,40(4):367-376.
    [157]施雅风,杨针娘.中国冰川资源估算及其对河流的作用[J].水文.1982,(S1):6-12.
    [158]宋高举,王宁练,陈亮,贺建桥.祁连山近期七一冰川融水径流特征分析[J].冰川冻土.2008,30(2):321-328.
    [159]宋高举,王宁练,蒋熹,贺建桥.气候变暖背景下祁连山七一冰川融水径流变化研究[J].水文.2010,32(2):84-88.
    [160]宋文娟.新疆奇台县冰川波动与气候、水文变化研究[D].新疆大学,2008.
    [161]孙维君,秦翔,任贾文.祁连山老虎沟12号冰川积累区消融期能量平衡特征[J].冰川冻土.2011a,33(1):38-46.
    [162]孙维君,秦翔,徐跃通.祁连山老虎沟12号冰川辐射各分量年变化特征[J].地球科学进展.2011b,26(3):347-354.
    [163]田洪阵,杨太保,刘沁萍.1976-2010年祁连山中段岗格尔肖合力雪山冰川退缩和气候变化的关系研究[J].干旱区资源与环境.2012a,26(7):41-46.
    [164]田洪阵,杨太保,刘沁萍.基于遥感技术的近40a来敦德冰川变化和气候变化的关系研究[J].冰川冻土.2012b,34(2):277-283.
    [165]田洪阵,杨太保,刘沁萍.近40年来冷龙岭地区冰川退缩和气候变化的关系[J].水土保持研究.2012c,19(5):34-38.
    [166]王建,许君利,张世强,刘时银.天山南坡科其喀尔冰川流域水化学侵蚀及大气CO-2沉降量分析[J].环境科学.2010,31(4):903-910.
    [167]王利平,谢自楚,刘时银,丁良福.1970—2000年羌塘高原冰川变化及其预测研究[J].冰川冻土.2011,33(5):979-990.
    [168]王宁练,贺建桥,蒲健辰,蒋熹.近50年来祁连山七一冰川平衡线高度变化研究[J].科学通报.2010,55(32):3107-3115.
    [169]王宁练,蒲健辰.祁连山八一冰川雷达测厚与冰储量分析[J].冰川冻土.2009,31(3):431-435.
    [170]王宁练,张祥松.近百年来山地冰川波动与气候变化[J].冰川冻土.1992,14(3):242-250.
    [171]王培华.清代河西走廊的水利纷争及其原因——黑河、石羊河流域水利纠纷的个案考察[J].清史研究.2004a,(2):78-82.
    [172]王培华.清代河西走廊的水利纷争与水资源分配制度——黑河、石羊河流域的个案考察[J].古今农业.2004b,(2):60-67.
    [173]王璞玉,李忠勤,曹敏,李慧林.近50a来天山博格达峰地区四工河4号冰川表面高程变化特征[J].干旱区地理.2011,34(3):464-470.
    [174]王庆敏.祁连山冰雪的综合利用[J].兰州大学学报.1961,(1):49-55.
    [175]王盛,蒲健辰,王宁练.祁连山七一冰川物质平衡及其对气候变化的敏感性研究[J].冰川冻土.2011,33(6):1214-1221.
    [176]王世金,秦大河,任贾文.中国冰川旅游资源空间开发布局研究[J].地理科学.2012,32(4):464-470.
    [177]王淑红,谢自楚,戴亚南,刘时银.阿尔泰山冰川系统结构、近期变化及趋势预测[J].干旱区地理.2011,34(1):115-123.
    [178]王淑红,谢自楚,李巧媛.近期东西天山冰川变化的对比研究[J].冰川冻土.2008,30(6):946-953.
    [179]王欣,谢自楚,刘时银,上官冬辉.塔里木河源区冰川系统变化趋势预测[J].山地学报.2006,24(6):641-646.
    [180]王旭,周爱国,Florian Siegert,张志.念青唐古拉山西段冰川1977-2010年时空变化[J].地球科学-中国地质大学学报.2012,37(5):1082-1092.
    [181]王叶堂,侯书贵,鲁安新,刘亚平.近40年来天山东段冰川变化及其对气候的响应[J].干旱区地理.2008,31(6):813-821.
    [182]王玉哲,任贾文,秦大河,秦翔.利用卫星资料反演区域冰川冰量变化的尝试——以祁连山为例[J].冰川冻土.2013,35(3):583-592.
    [183]王宗太,刘潮海,尤根祥.中国冰川目录(Ⅰ)祁连山区[M].兰州:1981.
    [184]王宗太,郑本兴,米德生.俄罗斯著名冰川学家道尔古辛教授对中国现代冰川学研究的指导与贡献[J].冰川冻土.2011,33(3):702-706.
    [185]武安斌.疏勒南山岗纳楼5号冰川现代冰碛物的沉积组构特征[J].兰州大学学报.1980,(3):119-126.
    [186]武安斌.祁连山冰川沉积物的粒度分布特征及流体动力环境的讨论[J].兰州大学学报.1988,(S1):29-35.
    [187]武小波,李全莲,宋高举,贺建桥.祁连山七一冰川融水化学组成及演化特征明.环境科学.2008,29(3):613-618.
    [188]武震,刘时银,张世强.祁连山老虎沟12号冰川冰下形态特征分析[J].地球科学进展.2009,24(10):1149-1158.
    [189]武震,张世强,刘时银,杜文涛.祁连山老虎沟12号冰川冰内结构特征分析[J].地球科学进展.2011,26(6):631-641.
    [190]谢自楚.冰川物质平衡及其与冰川特征的关系[J].冰川冻土.1980,2(4):1-10.
    [191]谢自楚.气候变化与西北冰川[J].中国科学院院刊.1986,(4):297-301.
    [192]谢自楚,丁良福.高亚洲冰川物质平衡及其对气候变化的响应研究[J].冰川冻土.1996,18(S1):4-11.
    [193]谢自楚,冯清华,刘潮海.冰川系统变化的模型研究—以西藏南部外流水系为例[J].冰川冻土.2002,24(1):16-27.
    [194]谢自楚,冯清华,王欣,康尔泗.中国冰川系统变化趋势预测研究[J].水土保持研究.2005,12(5):77-82.
    [195]谢自楚,李巧媛,王淑红.冰川系统模型及其应用—以金沙江流域为例[J].干旱区地理.2008,31(4):502-511.
    [196]辛晓冬,姚檀栋,叶庆华,郭柳平.1980—2005年藏东南然乌湖流域冰川湖泊变化研究[J].冰川冻土.2009,31(1):19-26.
    [197]徐鹏,朱海峰,邵雪梅,尹志勇.树轮揭示的藏东南米堆冰川小冰期以来的进退历史[J].中国科学:地球科学.2012,42(3):380-389.
    [198]许君利,刘时银,张世强,上官冬辉.塔里木盆地南缘喀拉米兰河克里雅河流内流区近30a来的冰川变化研究[J].冰川冻土.2006,3(28):312-318.
    [199]颜东海,李忠勤,高闻宇,王璞玉.祁连山北大河流域冰川变化遥感监测[J].干旱区研究.2012,29(2):245-250.
    [200]彦立利,王建.基于遥感的冰川信息提取方法研究进展[J].冰川冻土.2013,35(1):110-118.
    [201]阳勇,陈仁升,吉喜斌.近几十年来黑河野牛沟流域的冰川变化[J].冰川冻土.2007,29(1):100-106.
    [202]杨建平,丁永建,刘时银,鲁安新.长江黄河源区冰川变化及其对河川径流的影响[J].自然资源学报.2003,18(5):595-602.
    [203]杨威.藏东南然乌湖地区冰川变化与径流特征研究[D].中国科学院青藏高原研究所,2008.
    [204]杨针娘.祁连山冰川水资源[J].冰川冻土.1988,10(1):36-46.
    [205]姚檀栋,刘时银,蒲健辰,沈永平.高亚洲冰川的近期退缩及其对西北水资源的影响[J].中国科学(D辑:地球科学).2004,34(6):535-543.
    [206]姚晓军,刘时银,郭万钦,怀保娟.近50a来中国阿尔泰山冰川变化——基于中国第二次冰川编目成果[J].自然资源学报.2012,27(10):1734-1745.
    [207]姚永慧,励惠国,张百平.近30年来天山托木尔峰东侧分水岭处冰川变化[J].干旱区地理.2009,32(6):828-833.
    [208]叶庆华,陈锋,姚檀栋,王景华.近30年来喜马拉雅山脉西段纳木那尼峰地区冰川变化的遥感监测研究[J].遥感学报.2007,11(4):511-520.
    [209]曾磊,杨太保,田洪阵.近40年东帕米尔高原冰川变化及其对气候的响应[J].干旱区资源与环境.2013,27(5):144-150.
    [210]张国梁.贡嘎山地区现代冰川变化研究[D].兰州大学,2012.
    [211]张国梁,潘保田,王杰,上官冬辉.基于遥感和GPS的贡嘎山地区1966—-2008年现代冰川变化研究[J].冰川冻土.2010,32(3):454-460.
    [212]张华伟,鲁安新,王丽红,郭忠明.基于遥感的祁连山东部冷龙岭冰川变化研究[J].遥感技术与应用.2010,25(5):682-686.
    [213]张华伟,鲁安新,王丽红,郭忠明.祁连山疏勒南山地区冰川变化的遥感研究[J].冰川冻土.2011,33(1):8-13.
    [214]张杰,韩涛,王建.祁连山区1997—-2004年积雪面积和雪线高度变化分析[J].冰川冻土.2005,27(5):649-654.
    [215]张明杰,秦翔,杜文涛,刘宇硕.1957-2009年祁连山老虎沟流域冰川变化遥感研究[J].干旱区资源与环境.2013,27(4):70-75.
    [216]张瑞江,方洪宾,赵福岳.青藏高原近30年来现代冰川的演化特征[J].国土资源遥感.2010a,(S1):49-53.
    [217]张瑞江,方洪宾,赵福岳,曾福年.青藏高原近30年来现代冰川面积的遥感调查[J].国土资源遥感.2010b,(S1):45-48.
    [218]张淑萍,张虎才,陈光杰,常凤琴.1973-2010年青藏高原西部昂拉仁错流域气候、冰川变化与湖泊响应[J].冰川冻土.2012,34(2):267-276.
    [219]张廷斌,张建平,吴华,别小娟.1990—-2000年间西藏林芝地区冰川变化研究[J].冰川冻土.2011,33(1):14-20.
    [220]赵力强.冷龙岭冰川表面沙尘及冰川近期变化研究[D].兰州大学,2009.
    [221]郑本兴,赵希涛.梅里雪山明永冰川的特征与变化[J].冰川冻土.1999,21(2):145-150.
    [222]中国科学院高山冰雪利用研究队.祁连山现代冰川考察报告[M].北京:科学出版社,1958.
    [223]中国科学院兰州冰川冻土研究所,祁连山冰雪利用研究队.祁连山冰川的近期变化[J].地理学报.1980,35(1):48-57.
    [224]中国人民解放军九二六部队遥感组.在陶莱地区冰川地貌调查中应用航卫照片的初步尝试[J].青海地质.1981,(3):58-63.
    [225]中科院兰州冰川冻土所巴托拉冰川考察组.喀喇昆仑山巴托拉冰川考察与研究[Z].北京:科学出版社,1980.
    [226]朱良燕.基于M-K法的安徽省气候变化趋势特征R/S分析及预测[D].安徽大学,2010.
    [227]祝合勇,杨太保,田洪阵.1973-2010年阿尔金山冰川变化[J].地理研究.2013,32(8):1430-1438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700