地震作用下复杂斜坡响应规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川大地震诱发了数以万计的地质灾害,震后调查揭示,深切河谷谷坡中上部坡折部位、单薄山脊部位、地形突出部位破坏最为严重,具有明显的地形放大效应。国内外专家虽已意识到这一现象,但苦于实测资料少,而且数值模拟与实际监测数据差异大,难以提出符合实际的斜坡不同高程部位地震动放大系数。目前国内重大工程高边坡仍然采用地震部门提供的单一基岩峰值加速度(未考虑地形放大效应)评价地震工况下的稳定性,这在很大程度上埋下了安全隐患。为了深入探讨这一放大规律,作者在中国地调局及国家基金委的资助下,通过收集汶川主震监测数据,开展震后典型滑坡、崩塌现场调查,以及通过掘进斜坡平硐、设立地表观测剖面对汶川余震作用进行监测,采用统计分析、定性描述、半定量分析、数值模拟等方法,对汶川主震动参数特征,龙门山地区复杂斜坡动力响应特征,及汶川余震在斜坡剖面上的动参数变化特征等进行了研究,并对主震地震波作用下不同条件的斜坡响应进行了数值动力分析,首次较为全面地揭示了复杂斜坡地震动响应规律。主要研究成果及结论如下:
     (1)首次在河谷两岸斜坡(青川东山~狮子梁)不同高程掘进平硐进行地震动观测,而且监测到多次汶川余震完整剖面数据。参照河谷测点(788m),对8次有感~中强地震分析揭示,东山中部(871m)呈现“凸”型响应,放大系数可达2.0,狮子梁中部(893m)呈现“凹”型响应,即河谷两岸中部相近高程呈现相反动力响应。结合各监测点地质条件、边界特征、地脉动测试成果等研究揭示,斜坡地震动力响应程度微地貌是关键,场地条件具有重要影响作用,即地形凸出及多面临空的东山中部斜坡放大效应最为显著,而潜在滑塌体内的地下水增大了狮子梁中部场地的阻尼,对地震动具有消弱作用。
     (2)国内首次对青川~平武活动断裂带附近局部地形设置了地表观测剖面,并监测了多次有感~中强余震。根据青川桅杆梁斜坡地表观测剖面所监测的18次有感~中强地震,参照河谷785m测点分析揭示,桅杆梁805m测点水平及竖直向地震动峰值加速度放大系数为1~3.0倍,875m测点呈现水平南北向峰值加速度选择性放大,放大系数多在4倍以上,且该分量傅里叶谱主频率集中于2.5~5.5Hz。结合监测点地质条件、边界特征、汶川地震的破坏特征及监测结果等研究表明,桅杆梁凸出地形、近EW走向的条形山体对地震动具有明显控制效应,较大振幅及中低频率地震波与地形产生明显的共振效应,使得水平南北方向峰值加速度放大非常明显并导致沿单薄山脊的震裂破坏。
     (3)国内首次对前山断裂通过的斜坡地形设置了地表观测剖面,并监测到多次有感~中强余震。根据绵竹九龙镇山前斜坡地表地震动观测剖面所监测的11次有感~中强地震,参照山前平原776m测点分析揭示,斜坡873m测点水平及竖直向动峰值加速度呈现减小,908m测点水平及竖直向地震动峰值加速度均体现为放大,放大系数1~4.8倍。结合斜坡各测点地质条件、边界特征及地脉动测试成果等研究表明,908m测点近距临空面平台地形有利于地震动响应,而873m测点的缓坡地形及断层破碎带不利于地震动响应。
     (4)对龙门山及邻近地区振幅大于30gal的228条汶川地震波监测数据进行了峰值加速度及傅里叶频谱的统计分析。揭示了汶川地震动峰值加速度竖向与水平向比值1/2以上占61.9%~64.48%,其中大于2/3占22%~30%,且在距离断层上盘70km以内该比值大于2/3,而断层下盘20~70km,该比值趋于1/2~2/3。傅里叶频谱分析揭示,竖直向主频率值小于3Hz占57%,水平向主频率值小于3Hz约占40%,而上盘竖直向以高频为主且总体大于水平向,下盘则相反。分析表明发震断层的逆冲作用对上盘的竖向能量贡献明显,对震害发育的“上盘效应”具有贡献作用。
     (5)对青川县境内的刘家湾、赵家山等滑坡进行了深入调查与分析,揭示了典型地震滑坡的基本特征及成因机理。在此基础上,对斜坡地震地质灾害的发育与断裂活动、地形地貌、岩性、岩体结构、地震波等影响因素进行了耦合分析,提出了强震条件下高位滑坡的形成条件及其运动程式:即滑体沿结构面、风化卸荷带或岩层分界面等快速拉剪破坏→突然的触发效应形成水平抛出或斜向上抛出→空中滑翔→俯冲着陆或铲刮崩撞→碎屑流化过程。
     (6)基于震区大量斜坡剖面地脉动卓越频率测试成果(3~6Hz),结合汶川主震地震波傅里叶频谱分析,认为汶川地震丰富的高振幅、中低频率地震波与山区斜坡的共振效应是加重山地次生灾害异常发育的主要因素之一。
     (7)对不同地貌、不同性状岩性等斜坡的数值动力分析揭示,地震动峰值加速度放大系数一般可达1.0~2.0倍,局部地形及性状差异岩性的影响作用可使放大系数达到3.0~6.0倍。数值分析显示“内硬外软”性状差异岩性组合斜坡在分界面产生拉应力集中,坡体地震动峰值加速度响应最为强烈,结合调查研究认为在高陡地形条件下“外软”岩体易形成抛射效应。
     (8)综合平硐观测剖面、地表观测点监测数据,以及数值动力计算分析等研究表明,随斜坡高程增加地震动峰值加速度呈非线性放大,放大系数一般为1~3.0倍,局部地形的共振效应,岩体物理性状差异变化等作用可使得动峰值加速度的放大系数达到4.0倍及以上。
Tens of thousands of geohazards were induced by Wenchuan earthquake. Survey revealed that the most serious damage occurred in the transition parts of the middle to upper slope of deep valley, thin ridges and especially parts of prominent terrain. Those positions have obvious topographic amplification effects. Although domestic and foreign experts have been aware of this phenomenon, as a result of less measured data and large differences between the numerical simulations and monitoring data, it is difficult to propose the ground motion amplification factors of a slope in different elevations. At present, the stability evaluation of high slopes in major projects still use single a peak acceleration of bedrock (without considering topographic amplification effect) provided by earthquake departments, which leaves large potential safety hazard. For the sake of deep research on amplification law of slopes, in funding of China geological survey bureau and Nation science foundation, through collecting main earthquake waves, surveying typical landslides and rockfalls after earthquake, excavating slope adits and setting surface observation profiles for aftershock monitoring, methods of statistical analysis, qualitative description, semi-quantitative analysis and numerical simulations are adopted to study the main seismic parameters characteristics, dynamic response characteristics of complex slopes and variation of seismic parameters on the slope profiles aftershocks, moreover, numerical dynamic analysis is performed on the slope response considering the different conditions when excited by main earthquake waves. Based on the above work, for the first time more comprehensive seismic response laws of complex slopes are revealed. The main results and conclusions are reached as follows:
     (1) It is not only the first time to excavate adits in different elevations of valley slopes on two opposite sides (Dongshan-Shiziliang mountain) for ground motion observations, but also the first time to do the monitoring on several aftershocks. Relative to 788m monitoring point, analysis on eight earthquakes with felt to middle intensity shows the opposite dynamic response in the similar heights on both sides of the valley. The peak acceleration in 871m of Dongshan is amplified at the factor of 2.0 while that in 893m of Shi ziliang is reduced. As reflected by research in combination of geological conditions, boundary characteristics and test results of microtremor, microrelief is one of the key factors and site conditions have an important effect on seismic response extent. The protruding topography and multi-directional free surfaces of Dongshan middle slope have the most obvious amplification, but groundwater in potential landslides of Shi ziliang increases site damping to reduce dynamic reponse.
     (2) The first time we set surface observation profiles for local topography close to Qingchuan-Pingwu active fault and monitor a large number of felt to middle aftershocks. Relative to 785m monitoring point, analysis on 18 earthquakes shows that horizontal and vertical peak accelerations in 805m of Wei ganliang amplify 1.0 ~3.0 times, while selective amplification is presented at 875m monitoring point in the north-south horizontal component. This component amplifies more than 4 times and its main frequency of Fourier spectrum focuses on 2.5~5.5Hz. Research by combinating geological conditions, boundary characteristics, macro geohazards distribution and monitoring results reveals that the protruding topography and EW-striking mountain of Wei ganliang has control effect on seismic response. High amplitude and low frequency seismic waves produce obvious resonance with topography, making significant peak acceleration amplification and leading to cracking damage along the thin ridge.
     (3) The first time we set surface observation profile for slope topography passed by the front fracture and monitor a large number of felt to middle aftershocks. Relative to 776m monitoring point of piedmont plain in Mianzhu jiulong town, analysis on 11 earthquakes shows that horizontal and vertical peak accelerations in 908m amplify 1.0 ~4.8 times while they reduce at 873m point. Research by combinating geological conditions, boundary characteristics and test results of microtremor reveals that platform terrain in 908m is beneficial to seismic response, but mild slopes and fault zone in 873m both go against the effect.
     (4) Statistic analysis is performed on peak accelerations and Fourier spectrums based on 228 recordings of main earthquake with amplitudes large than 30gal in Longmenshan and its neighbouring regions. Results show that the ratio of vertical-to- horizontal peak accelerations greater than 1/2 occupies 61.9%~64.48%, 22%~30% of which is more than 2/3. Within 70km of hanging wall this ratio is greater than 2/3, but between 20 and 70km in the footwall it tends to 1/2~2/3. Fourier spectrum analysis reveals that the predominant frequency less than 3Hz of vertical components occupies 57%, while that of the horizontal components occupies 38%~40%. In the hanging wall, the predominant frequency of vertical components concentrates on the high values and it is greater than that of the horizontal components, which is opposite in the footwall. Analysis shows that thrust motion of the causative fault obviously contributes to vertical energy in the hanging wall, and also contributes to“the hanging-wall effect”of geohazards development.
     (5) Basic features and genetic mechanism of typical earthquake landslides are reflected through deep investigation and analysis for Liu Jia Wan and Zhao jiashan landslides in the territory of Qingchuan. On this basis, coupling study is conducted on influencing factors such as fracture activities, topography, lithology, rock structure, seismic wave and so on. Then formation conditions and movement mode of high slope landslides caused by a strong earthquake are proposed: quick tension and shear failure of landslide along structural plane, weathering zone or contact surface between rock layers→sudden trigger effect forming horizontal or oblique throwing→gliding in the air→dive landing or scraping and collapse hiting→debris flows process.
     (6) Based on the predominant frequency test results of microtremor (3~6Hz) and Fourier spectrum analysis, the resonance effect is one of the main factors of secondary geohazards development in Wenchuan earthquake.
     (7)Numerical dynamic analysis for different topography, lithological characteristics and other factors of slopes reveals that the general amplification factor of peak acceleration is 1.0~2.0, but the influence of local topography and diversity lithology can make amplification factor reach 3 to 6. Numerical simulations show that a slope with internally hard and externally soft lithology combination generates tension stress concentration on the interface of lithology, and it shows the strongest seismic response in peak accelerations. The‘externally soft’rock in high and steep topography is prone to generate projection effects.
     (8) Comprehensive research on adit observation profiles, monitoring data and numerical seismic analysis shows that the peak accelerations display a non-linear amplification with the elevation increase of the slope. The general amplification factor is 1.0~3.0, but resonance effect of local topography and difference in physical properties of rock can make magnification factor up to 4 times or more.
引文
[1]黄润秋.“5.12”汶川大地震地质灾害的基本特征及其对灾后重建影响的建议[J].中国地质教育,2008,(2):21-24.
    [2]黄润秋,许强.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [3]宋胜武编.汶川大地震工程震害调查分析与研究[M].北京:科学出版社,2009:155-156.
    [4]中国地震局震害防御司.中国强震记录汇报第十二集第一卷,汶川8.0级地震未校正加速度记录[M].北京:地震出版社,2008,9.
    [5]李忠生.国内外地震滑坡灾害研究综述[M].灾害学,2003,18(4):64-70.
    [6] GB 18306-2001(中国地震动参数区划图)国家标准第1号修改单.
    [7]周本刚,王裕明.中国西南地区地震滑坡的基本特征[J].西北地震学报,1994,16(1).
    [8]邹谨敞,邵顺妹,蒋荣发.古浪地震滑坡的分布规律和构造意义[J].中国地震,1994,10(2).
    [9]康来迅,王建荣.昌马断裂带地震滑坡的展布特征[J].山地研究,1995,13(1):35-41.
    [10]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报,1997,6(1):25-30.
    [11]尹光华,李军,张勇,等.尼勒克地震滑坡的统计分析及初步研究[J].内陆地震,2001,15(1).
    [12]杨涛,邓荣贵,刘小丽.四川地区地震崩塌滑坡的基本特征及危险性分区[J].山地学报,2002,20(4):456-460.
    [14] DAVID K.K.Landslides caused by earthquakes[J].Geological Society of America Bulletin,95:406-421.
    [15] BIJAN KHAZAI,NICHOLAS SITAR.Evaluation of factors controlling earthquake -induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events[J].Engineering Geology, 71(1-2) :79-95.
    [16]许强,黄润秋.“5.12”汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报,2008,16(6).
    [17]宋胜武.汶川大地震工程震害调查分析与研究[M] .//黄润秋“5.12”汶川地震地质灾害与地质环境概况.北京:科技出版社,2009:155-156.
    [18]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
    [19]黄润秋.汶川地震地质灾害研究[M].北京:科技出版社,2009,235-245.
    [20]黄润秋,李为乐.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报,2009,17(1):19-28.
    [22]张永双,雷伟志,石菊松,等.四川5.12地震次生地质灾害的基本特征初探[J].地质力学学报,2008,14(2):109-114.
    [23]宋胜武.汶川大地震工程震害调查分析与研究[M] .//刘汉湖,黄润秋,巨能攀,等.成兰铁路安县段地震地质灾害遥感判识分析.北京:科技出版社,2009:213-220.
    [24]王运生,罗永红,吉峰,等.汶川大地震山地灾害发育的控制因素分析[J].工程地质学报,2008,16(6):759-763.
    [25] LAWARENCE L DAVIS,LEWIS R WEST.Observed effects of topography on ground motion[J].Bulletin of the Seismological Society of America,1973,63:283-298.
    [26] BOORE.A note on the effect of simple topography on seismic SH waves[J].Bulletin of theSeismological Society of America ,1972,62:275-284.
    [27] DONALD W GRIFFITHS,G.A.BOLLINGER.The effect of Appalachian mountain topography on seismic waves[J],Bulletin of the Seismological Society of America ,1979,69:1081-1105.
    [28] CELEBI M.Topographic and geological amplification detemined from strong-motion and aftershock records of 3 March 1985 Chile earthquake[J].Bulletin of the Seismological Society of America ,1987,77:1147-1157.
    [29] HARTZELL S H,CARVER D L,KING K W.Initial investigation of site and topographic effects at Robinwood ridge California[J].Bulletin of the Seismological Society of America ,1994,84:1336-1349.
    [30]ASHFORD S A,SITAR N.Topographic amplification in the 1994 Northridge earthquake: Analysis and observation.6th U.S National conference on Earthquake Engineering[C],1997.
    [31] KAWASE.Time-domain response of a semi-circular canyon for incident SV,P,and rayleigh waves calculated by the discrete wavenumber boundary element method[J].
    [32]GELI L,BARD P Y,JULLIEN B.The effects of topography on earthquake ground motion:A review and new results[J].Bulletin of the Seismological Society of America,1988,78:42-63.
    [33] PEDERSEN H,LEBRUN B,HATAFEID D,ET AL.Gound motion amplitude across ridges[J].Bulletin of the Seismological Society of America,1994,84:1786-1800.
    [34] PEDERSEN H,SANCHEZ-SESMA F J,CAMPILLO M.Three-dimensional scattering by two-dimensional topographies[J].Bulletin of the Seismological Society of America,1994,84:1169-1183.
    [35] ASHFORD S A,SITAR N,LYSMER J,DENG N.Topographic effects on the seismic response of steep[J].Bulletin of the Seismological Society of America,1997,87:701-709.
    [36] ASHFORD S A,SITAR N.Analysis of topographic amplification of inclined shear waves in a steep coastal bluff[J].Bulletin of the Seismological Society of America,1997,87:692-700.
    [37]刘洪兵,朱晞.地震中地形放大效应的观测和研究进展[J].世界地震工程,1999,15(3):20-25.
    [38]刘昌森,吕美丽.上海地区地震放大效应的初步探讨[J].上海地质,1998,1:7-13.
    [39]王运生,王士天.地球自转和日月引潮力与滑坡灾害发育的相关性探讨[J].成都理工学院学报,1998,25(1):48-52.
    [40]石玉成,王兰民,张颖.黄土场地覆盖层厚度和地形条件对地震动放大效应的影响[J].西北地震学报,21(2) :203-208.
    [41]祁生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学E辑技术科学,2003,33(增刊):28-40.
    [42]王环玲,徐卫亚.高烈度区水电工程岩石高边坡三维地震动力响应分析[J].岩石力学与工程学报,2005,24(增2) :5890-5895.
    [43]秋仁东,石玉成,付长华.高边坡在水平动荷载作用下的动力响应规律研究[J].世界地震工程,2007,23(2) :131-138.
    [44]徐光兴,姚令侃,李朝红等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报,2008,30(6) :918-923.
    [45]潘旦光,楼梦麟.河谷地形对土层地震反应的影响[J].北京科技大学学报,2008,30(11) :1217-1222.
    [46]王义锋,郑文棠,石崇.岩质高边坡的地震时程响应分析[J].三峡大学学报(自然科学版),2008,30(3) :1-5.
    [47]陈建春,高福荣,汪洵波.冶勒大坝地震动力反应分析[J].四川水力发电,2008,27(4) :99-104.
    [48]韩子荣,杨书祥.爆破地震效应对高陡边坡的影响[J].http://www.cnki.net.
    [49]朱传统,刘洪根,等.地震波参数沿边坡坡面传播规律公式的选择[J].爆破,1988,02.
    [50]裴来政.金金堆城露天矿高边坡爆破震动监测与分析[J].爆破,2006,23(4):82-85.
    [51] STEVEN L KRAMER . Geotechnical Earthquake Engineering[M].New Jersey : Prentice2Hall Inc,USA,1996.
    [52]顾淦臣.论土石坝的地震液化验算和坝坡抗滑稳定计算[J].岩土工程学报,1981,3(4):33-41.
    [53] LESHCHINSKY D,SAN K CHING.Pseudo-static stability of slopes:Design[J].Journal of Geotechnical Engineering,1994,120(9):1514-1532.
    [54] LING H I,CHENG A D.Rock sliding induced by seismic force[J].Intemational journal of rock mechanics and mining sciences,1997,34(6):1021-1029.
    [55] SIYAHI,BILGE G.Pseudo-static stability analysis innormally consolidated soil slopes subjected to earthquake[J].Teknik Dergi/Technical journal of Turkish chamber of civil enginers,1998,9(DEC):457-461.
    [56] AUSILIO E,CONTE E,DENTE G.Seismic stability analysis of reinforced slopes[J].Soil dynamics and earthquake engineering,2000,19(3):159-172.
    [57] BIONDI G,CASCONE E,MAUGERI M.Flow and deformation of sandy slopes[J].Soil dynamics and earthquake enginering,2002,22(10):1103-1114.
    [58] SIAD L.Seismic stability analysis of fractured rock slopes by yield design theory[J].Soil dynamics and earthquake enginering,2003,23(3):203-212.
    [59]张倬元,王士天,王兰生.工程地质分析原理(第二版) [M].北京:地质出版社,1993.
    [60]李天池.地震与滑坡的关系及地震滑坡预测的探讨(节录) [C].滑坡文集(第二集).北京:人民铁道出版社,1979:127-132.
    [61]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001,20(3):83-88.
    [62]刘忠玉,魏建东.饱和黄土边坡的动力稳定性分[J].岩土力学,2005,26(2):198-202.
    [63]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977,(10):372-376.
    [64]王思敬,张菊明.边坡岩体滑动稳定的动力学分析[J].地质科学,1982,(4):162-170.
    [65]薛守义.岩体边坡动力性研究[D].合肥:中国科学院地质研究所,1989.
    [66]王赞军,江志萍,张家庆等.滑坡危险性分析中地震动的概率性估算及地震滑坡的危险性评判[J].高原地震,1998,10(1):40- 45.
    [67]《中国地震动参数区划图》(GB18306.2001).
    [68]邵龙潭,唐洪祥,孔宪京,等.随机地震作用下土石坝边坡的地震稳定性分析[J].水利学报,1999,(11):66-71.
    [69]张建海,范景伟,何江达.用刚体弹簧元求解边坡、坝基动力安伞系数[J].岩石力学与工程学报,1999,18(4):387-391.
    [70]陶连金,苏生瑞,张倬元.节理岩体边坡的动力稳定性分析[J].工程地质学报,2009,9(1):32-38.
    [71]徐建平,谢伟,白冰.随机地震作用下土坡的永久变形研究[J].武汉理工大学学报,2002,24(9):55-58.
    [72]祁生文,伍法权,刘春玲,等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23 (16) :2792-2797.
    [73]祁生文.边坡动力响应分析及应用研究[D].北京:中国科学院地质与地球物理研究所,2002.
    [74]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,24(4):553-560.
    [75]周圆π,李守,刘迎曦,等.遗传算法在边坡地震稳定性分析中的应用[J].2003,24(Supp):95-98.
    [76]姚爱军,苏永华.复杂岩质边坡锚固工程地震敏感性分析[J].土木工程学报,2003,36(11):34-37.
    [77]陈蜀俊,党晓英,曾心传,等.奉节长江北岸边坡在地震荷载作用下的稳定性分析[J].岩石力学与工程学报,2004,23(4):657-662.
    [78]祁生林,祁生文,伍法权,等.基于剩余推力法的地震滑坡永久位移研究[J].工程地质学报,2004,12(1):63-68.
    [79]陈玲玲,陈敏巾,钱胜国.岩质陡高边坡地震动力稳定分析[J].长江科学院院报,2004,21(1):33-35.
    [80]门玉明,彭建兵,李寻昌,等.层状结构岩质边坡动力稳定性试验研究[J].世界地震工程,2004,20(4):131-136.
    [81]姜彤,马莎,许兵,等.边坡在地震作用下的加卸载响应规律研究[J].岩石力学与工程学报,2004,23(22):3803-3807.
    [82]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,25(1):164-171.
    [83]刘红帅,薄景山,刘德东.岩土边坡地震稳定性评价方法研究进展[J].防灾科技学院学报,2007,9(3):20-27.
    [84]黄润秋,裴向军,张伟锋,等.再论大光包滑坡特征与形成机制[J].工程地质学报,2009,17(6):725-736.
    [85]四川省1:10万县(市)地质灾害调查与区划报告[M],1999-2006.
    [86]中华人民共和国地质矿产部.四川省区域地质志[M].北京:地质出版社,1982.
    [87]成都地质调查中心.四川省特大型滑坡调查与风险评价报告[R].2010.
    [88]宋胜武.汶川大地震工程震害调查分析与研究[M].//洪时中.汶川大地震基本特征概述.北京:科技出版社,2009.
    [89]宋胜武.汶川大地震工程震害调查分析与研究[M].//陈运泰,张勇,杜海林,等.汶川特大地震震源特性分析报告.北京:科技出版社,2009,6-17.
    [90]于海英,王栋,杨永强,等.汶川8.0级地震强震动特征初步分析[J].震灾防御技术,2008,3(4):321-336.
    [91]周荣军,赖敏,余桦,等.汶川Ms8.0地震四川及邻区数字强震台网记录[J].岩石力学与工程学报,2010,29(9).
    [92]周朝晖.2008年四川汶川8.0级地震强震动台网观测记录[J].四川地震,2008,4:25-29.
    [93]中华人民共和国电力行业标准.GB/水工建筑物抗震设计规范[S].DL 5073-2000.
    [94]陈国兴.岩土地震工程学[M].北京:科学出版社,2007:85-95.
    [95]胡聿贤.地震工程学(第二版)[M] .北京:地震出版社,2006.
    [96]徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-629.
    [97]李勇,周荣军,DENSMOREAL,等.映秀-北川断裂的地表破裂带与变形特征[J].地质学报,2008,82(12):1688-1706.
    [98]周荣军,黄润秋,雷建成,等.四川汶川8.0级地震地表破裂与震害特点[J].岩石力学与工程学报,2008,27(11):2173-2183.
    [99]吴健,吕红山,刘爱文.汶川地震烈度分布与震源过程相关性的初步研究[J].震灾防御技术,2008,3(3):222-229.
    [100]陈运泰.汶川地震的成因、破裂过程及成灾机理[J].河南减灾科普网,2009,03.
    [101]孟晓春,黄志斌,陈会忠,等.地震学与地震观测[M].北京:地震出版社,2007:169-170.
    [102]黄润秋,许强,等.汶川地震地质灾害研究[M] .//催芳鹏,张明,李丽慧,等.P-S波时差耦合作用下斜坡崩滑效应及致灾预测研究.北京:科技出版社,2009,342-418.
    [103]黄润秋,许强,等.汶川地震地质灾害研究[M] .//冯文凯,黄润秋,董秀军等.强震条件下斜坡震裂机理与防治对策研究.北京:科技出版社,2009,607-618.
    [104]王海云,谢礼立.自贡市西山公园地形对地震动的影响[J].地球物理学报,2010,53(7):1631-1638.
    [105]胡进军,谢礼立.地下地震动频谱特点研究[J].地震工程与工程振动,2004(24):1-8.
    [106]李杰.几类反应谱的概念差异及其意义[J].维普资讯http://www.cqvip.com.
    [107]许强,裴向军、黄润秋.汶川地震大型滑坡研究[M].北京:科技出版社,2009.
    [108]周荣军,李勇,ALEXANDER L DENSMORE,等.青藏高原东缘活动构造[J].矿物岩石,2006,6:40-51.
    [109]李勇,曾允孚,伊海生.龙门山前陆盆地沉积及构造演化[M].成都科技出版社,1995.
    [110]李勇,黄润秋,周荣军,等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009,17(1):3-16.
    [111]李勇,孙爱珍.龙门山造山带构造地层学研究[J].地层学杂志,2000,24(3):201-205.
    [112]王立彬.四川汶川地震原因已有初步结论[EB/OL].http://www.gov.cn/jrzg/2008/05/18/ content-981554.htm.
    [113]许强,李为乐.汶川地震诱发滑坡方向效应研究[J].四川大学学报(工程科学版),2010,42(增刊):7-14.
    [114]王运生,孙书勤,李永昭.第四纪地质学及地貌学简明教程[M].四川大学出版社,2007.
    [115]刘汉龙.土动力学与岩土地震工程[C].中国土木工程学会第九届土力学及岩土工程学术会议论文集.2003,10:25-28.
    [116]黄润秋,许强,等.汶川地震地质灾害研究[M] .//祁生文.强震触发斜坡失稳机理及动力过程研究.北京:科技出版社,2009,260-271.
    [117]尤明庆.岩石试样的强度及变形破坏过程[M].北京,地质出版社,2000.
    [118]孙广忠.论“岩体结构控制论”[J].工程地质学报,1993.
    [119]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [120]黄润秋.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004.
    [121]陈仲候.工程与环境物探教程[M].北京:科学出版社,2005.
    [122]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66-68.
    [123]冯希杰,金学申.场地土对基岩峰值加速度放大效应分析[J]工程地质学报,2001,09(04):385-400.
    [124]林良俊,方成,李小杰,等.5.12汶川地震灾区地质灾害情况初步分析[J].水文地质工程地质,2008,35(4):129-132.
    [125]吴树仁,石菊松,姚鑫,等.四川汶川地震地质灾害活动强度分析评价[J].地质通报,2008,27(11):1900-1906.
    [126]“5.12”汶川地震房屋震害研究专家组.“5.12”汶川地震房屋建筑震害分析与对策研究报告[J].四川地震,2009,(2):42-48.
    [127]王运生,徐鸿彪,罗永红,等.地震高位滑坡形成条件及抛射运动程式研究[J].岩石力学与工程学报,2009,28(11):2360-2368.
    [128]谢礼立,张晓志.地震动记录持时与工程持时[J].地震工程与工程振动,1988,31-38.
    [129]中华人民共和国电力行业标准.GB/水工建筑物强震动安全监测技术规范[S].DT/T5416-2009.
    [130]童广才,刘康和.场地卓越周期的确定[J ].电力勘测,2000,(6) :44-461.
    [131]高广运.场地卓越周期的讨论与测定[J ].工程勘察,2000, (5) :29-311.
    [133]黄润秋,许强,等.汶川地震地质灾害研究[M] .//王来贵.强震条件下斜坡崩滑机理的模拟试验研究.北京:科技出版社,2009,298-339.
    [134] PEDENEN H,LEBTUN B,HATZFEID D,CAMPILLO M,BARD P.Ground motion amplitude across ridge [J],Bulletin of the Seismological Society of America,1994,84:1786-1800.
    [135]唐春安,左宇军,秦泗凤,等.汶川地震中的边坡浅层散裂与抛射模式及其动力学解释[C]//第十届全国岩石力学与工程学术大会论文集.2009:258-262.
    [136]刘红帅.岩质边坡地震稳定性分析方法研究[D].北京:中国地震局工程力学研究所,2006.
    [137]韩丽芳.龙池地区地震地质灾害发育规律及成因机制研究[D].成都:成都理工大学环境与土木工程学院,2009.
    [138]江岳安.绵竹市绵远河地区地震地质灾害发育规律及成因机制研究[D].成都:成都理工大学环境与土木工程学院,2009.
    [139]魏鹏.石亭江地区地震地质灾害发育规律及成因机制研究[D].成都:成都理工大学环境与土木工程学院,2009.
    [140]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报.2009,28(6):1239-1249
    [141]李渝生.新建铁路成兰线“CK40-CK140”段地质构造及地震断裂区测地质调查报告[R],2010.
    [142]陈倩,魏昌利,等.汶川地震灾区地质灾害勘查成果综合集成报告[R],2010.
    [143] http://video.baby.sina.com.cn/v/b/13744394-1378363673.html
    [144]高孟谭,陈学良,愈言祥,等.“5.12”汶川8.0级地震汉源烈度异常机理初步探讨[J].震灾防御技术.2008,3(3):216-223.
    [145]李镜芬.浅谈岩土边坡地震稳定性评价方法研究进展[J].广东科技.2008,6(25).
    [146]冯落.天津滨海软土地区地震频谱和场地动力效应研究[D].北京:北京交通大学,2010
    [147]梁力,王伟,李明.某露天矿岩质高边坡地震动力响应及稳定性分析[J].金属矿山2008,8:21-25.
    [148]陈建君.复杂山区斜坡地震动力响应分析[D].成都:成都理工大学环境与土木工程学院.2009,06.
    [149]袁丽侠.场地土对地震波的放大效应[J].世界地震工程.2003,01:113-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700