重庆三叠系碳酸盐岩热储成因与水—岩作用过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油、煤炭、天然气等传统能源面临枯竭的今天,新能源和可再生能源的开发成为世界经济可持续发展的前提。浅层地热能作为一种可再生的新型环保能源和特殊矿产资源,其开发利用对构建资源节约型和环境友好型社会、保障国家能源安全、改善我国现有能源结构、促进国家节能减排战略目标的实现具有非常重要的意义。重庆是中国西部唯一的直辖市,其浅层地热资源丰富,主要集中分布在重庆都市圈内的川东平行岭谷地区,其浅层地热资源的开发主要以温泉休闲旅游为主。2011年,重庆市被评为“中国温泉之都”,2012年,重庆市欲打造成为“世界温泉之都”。因此,对重庆地区的浅层地热水的来源、水—岩作用过程以及水中各离子的来源和转换等基础性工作的研究显得尤为重要。本研究对川东平行岭谷地区的地下热水(包括温泉出露和人工钻井)进行野外监测、取样和室内分析,并通过对重庆三叠系碳酸盐岩热储的补给区域、径流过程、物质来源的研究建立重庆三叠系碳酸盐岩热储补、径、排概念模型。
     重庆主城区浅层地热水主要为重庆三叠系碳酸盐岩热储热水,其地质特征表现为储水层为下三叠统嘉陵江组的碳酸盐岩。上覆盖层为上三叠统须家河组的致密性砂页岩,下伏底层为下三叠统飞仙关组的碎屑岩夹碳酸盐岩。合理的储水储热构造使得重庆川东平行岭谷地区形成了“山山有资源、峡峡有温泉”的热水库。
     重庆三叠系碳酸盐岩储热系统内所有的地下热水水化学性质相近,其基本特征为pH值呈中性,电导率较高,水温30℃~50℃之间,属浅层中低温地下热水,水化学类型为S04-Ca(Mg)型,是典型的碳酸盐岩热储地下热水。其主要阳离子为Ca2+和Mg2+,主要阴离子为S042-和HC03-,除青木关温泉外,S042-和Ca2+、Mg2+随时空变化较小。热水中的方解石和白云石都处于饱和与不饱和的临界状态,没有明显钙华沉积的现象;Na-K-Mg-Ca图解显示地下热水没有达到水岩平衡状态且各个季节地下热水的物质来源基本—致。
     重庆三叠系碳酸盐岩热储热水的δD值分布在-63.08%o--48.62%o之间,δ18O的值在-9.5%o--6.47%o之间,δD(‰)和δ18O(‰)值的线性关系为δD=(7.666±0.283)δ180+(6.88±2.35)δD,与全球大气降水线接近,表明其补给来源为大气降水。地下热水δD值的d-excess值都落在d-excess=0‰和d-excess=20‰之间,且主要集中在d-excess=10‰附近,表明在水—岩作用中,没有发生明显的δ180漂移。根据氢氧同位素的高程效应,计算得出重庆三叠系碳酸盐岩热储热水的补给区主要是位于海拔460m-1613m的地区。结合长江、嘉陵江对川东平行岭谷背斜内地下水循环的控制,可以认为地下热水的补给来源为川东平行岭谷北端的岩溶出露区域和川东平行岭谷内岩溶槽谷区,主要是北端的岩溶出露区。
     使用高分辨率的自动检测仪器CDTP在线监测北温泉2009-2010年降雨量、北温泉水流量、pH值、水温以及电导率等并分析统计,发现自然出露点地下热水的流量、水温、电导率、以及pH值总体上稳定,但是在一年中,温泉水的流量与当地降雨量存在一定的滞后关系,雨季温泉水流量小,旱季温泉水流量偏大。此外,2008年5.12地震期间对北温泉的水化学特征的监测表明极端地质事件导致北温泉砂岩盖层和含水层裂隙增多、增大,以致盖层裂隙与含水层裂隙贯通,地表或上覆盖层低温水汇入含水层,引起北温泉泉群水温、水量以及水化学特征的变化。
     重庆三叠系碳酸盐岩热储地下热水高SO42-而低HCO3-是其最显著的特征,也是研究其水—岩作用的关键。HC03-与Ca2+、Mg2+、Sr2+成负相关关系,HCO3-与SO42-也存在很强的负相关关系,表明Ca2+、Mg2+、Sr2+以及SO42-的存在对HCO3-有一定的抑制作用。
     通过HC03-的δ13C和He同位素分析发现重庆三叠系碳酸盐岩热储热水存在幔源来源。其中地下热水中HC03-的δ13C值为-9.73%o-3.12‰,表明参与水—岩反应的C02可能既有生物成因,又可能有幔源成因。地下热水的(3He/4He)的比值R与空气的标准气样3He/4He的比值Ra相比,均大于1,佐证了地下热水有幔源的说法。根据同位素质量平衡原理计算得出参与水—岩反应的CO2中,25.2%-68.73%来自于土壤,幔源的占31.27%-74.8%。
     重庆碳酸盐岩热储S042-的含量异常高,且其SO42-的δ34S值在29.70‰-34.32‰之间,异常偏正,体现了下三叠统嘉陵江组二段石膏的δ34S特征。异常高的SO42-源于研究区碳酸盐岩中石膏的溶解,而异常偏正的δ34S值源于四川盆地在早三叠世嘉二期时相对封闭的盐湖环境,强烈的蒸发作用有利于蒸发岩类的形成,水体中的硫酸盐与有机质接触,厌氧微生物的脱硫作用将硫酸盐还原分解出H2S和C02,即细菌从硫酸盐离子中分解出氧,释放出具有比硫酸盐更富集32S的H2S,有利于34s在硫酸盐岩中的富集,导致硫酸盐岩中的34S的增高。
     综合地下热水中87Sr/86Sr和δ13C以及SO42-的δ34S值,其中8042-的δ34S较高,体现了三疊系嘉陵江组二段石膏的特征;87Sr/86Sr较低,体现了碳酸盐岩风特征;而雨季温泉水δ348值较旱季偏轻,δ13C值雨季较早季偏重,主要原因是一些地表径流和砂岩裂隙水通过盖层中的裂隙与温泉水混合,导致温泉水中同位素值出现季节性的差异。
     根据以上水化学、同位素等监测数据,结合研究区地质背景分析,可以归纳重庆三叠系碳酸盐岩热储的补给区域、径流过程、物质来源并建立其补、径、排概念模型:在高程460m-1613m的川东平行岭谷北端的灰岩裸露区和川东平行岭谷的岩溶槽谷区,大气降水和地表径流等入渗补到一个以碳酸盐岩为储热层,砂页岩为上覆盖层、碎屑岩夹灰岩为下伏底层的碳酸盐岩储水系统。水在此储水层中经历了较长的流动途径,不断吸收周围岩体的热量,同时,少量的幔源物质沿地下的裂隙等进入储水层进行混合,发生了石膏的溶解与有C02和H20参与的碳酸盐岩的风化为主的水—岩反应。在径流过程中,地下热水在断裂带上或者是大江大河深切峡谷时受阻,向上运动,并与浅部岩溶冷水和砂岩裂隙水混合,以泉点或者人工钻井的形式排出。
Nowadays, the non-renewable energy sources such as oil, coal and natural gas are being exhausted, therefore, the exploitation of new energy and renewable energy is a premise for sustainable development of world economy. The exploitation of shallow geothermal energy, a new renewable clean energy and a special mineral resources, is very important for building a Resource-conserving and Environment-friendly Society, ensuring national energy safety, adjusting the existing energy structure, and promoting the achievement of the goals of energy saving and green house gas mitigation. Chongqing City, the only municipality in southwestern China, is rich in shallow geothermal energy, which is mostly distributed in the area of eastern Sichuan parallel Ridge and Valley. Its exploitation currently is mainly for the Spa leisure tourism, so Chongqing is named as "A Spa city of China" in2011, and is expected to be "A Spa city in the world" in2012. So, it is very important to carry out the researches on the origin of the geothermal water, water-rock interaction, ions'source and migration of the shallow geothermal energy. In this study, the underground thermal water (including natural outcrops and manual drilling) in the area of eastern Sichuan parallel Ridge and Valley were measured and sampled in fields, and then analyzed in the Laboratory. And a conceptual model of recharge, streamflow and discharge of the thermal water in Carbonate Reservoir in Triassic was established through the study on the recharge regional, runoff process and matter resources of the thermal water in Carbonate Reservoir in Triassic in Chongqing.
     Shallow geothermal water in Chongqing City is the underground thermal water of Triassic Carbonate reservoir. Its geological features are shown that the reservoir bed is located in the carbonate rocks in Jialingjiang formation in Lower Triassic, covered by the sandstone and shale in Xujiahe formation in Upper Triassic as the cap rock, and the Clastic rocks with carbonate rocks in Feixianguan formation in Lower Triassic as the bottom rock. The best reservoir structure made the eastern Sichuan parallel Ridge and Valley a huge Heat reservoir with hot springs found in many gorges.
     It was found that the hydrochemical properties of most of the underground thermal waters are the similar featured by neutral pH, high Electrical Conductivity(EC) and temperature ranging among30℃to50℃, which were identified to low-medium temperature shallow geothermal water. The major cations of these thermal water are Ca2+and Mg2+and the major anions are SO42-and HCO3-, so the chemical types of theses underground thermal water are SO4-Ca (Mg) type, which is a kind of typical Triassic Carbonate Reservoir thermal water. The concentration of SO42-and Ca2+、Mg2+varies slightly by time but significantly by the space. The concentration of SO42-and Ca2+、Mg2+in two springs in Qingmuguan are lower than those in others because of the outcroping geology environment. The calcite and dolomite in the underground thermal water are under the critical state of saturated to unsaturated, and there is no obvious phenomenon of travertine deposition. Na-K-Mg-Ca diagram shows the thermal water in Carbonate Reservoir in Triassic in Chongqing haven't reach the water-rock equilibrium, and the sources of the matters in thermal water are basically the same in each season.
     The value of δD about the thermal water in Carbonate Reservoir in Triassic in Chongqing is between-63.08%o and-48.62%o, while the value of δ18O varies from-9.5%o to-6.47%o. The linear relationship between δD (‰) and δ18O (‰) is δD=(7.666±0.283) δ18O+(6.88±2.35) δD, which is mostly closed to global meteoric water line, therefore, it is confirmed that the source of the thermal water in Carbonate Reservoir in Triassic in Chongqing is from meteoric water. As the difference in temperature between the thermal water and external environment is small, there is no apparent drift of the δ18O in water-rock interaction. Therefore, the value of d is about d=0‰and d=20‰, mainly concentrating in the vicinity of d=10‰.
     The value of δ18O about the thermal water in Carbonate Reservoir in Triassic in Chongqing is between-9.5%o and-6.47%o and the recharging area of this thermal water is at an altitude of460m~1605m. Taking into account together with the Yangzi River and Jialing River which control the underground water circulation in the anticlines in eastern Sichuan parallel Ridge and Valley, it can be realized that the recharging area of the thermal water are the karst areas on the north of the eastern Sichuan parallel Ridge and Valley and the Karst valley in eastern Sichuan parallel Ridge and Valley, but mostly is the karst area on the north.
     A high-resolution automatic detection instrument (CDTP) was used to monitor the pH, temperature, EC and runoff of rain gauge. A lot of data were collected. The data in2009and2010showed that the pH, temperature, EC and runoff in outcropped springs were stable, but the runoff of the spring is larger in dry season and smaller in rainy season. Research on extreme geological events is a common way to study underground thermal water. The hydrocheimcal features of the north spring (BWQ) were measured during the earthquake in Sichuan on May12,2008. The results showed that fissures in the cap rock and reservoir bed turned to be more after the earthquake and the allogenic water filtered into the reservoir bed and lead to the change of the temperature, water quantity and chemical characteristics of BWQ.
     The most striking feature of the thermal water in Carbonate Reservoir in Triassic in Chongqing is high concentration of SO42-and low concentration of HCO3-, and it is the key point for studying the water-rock interaction. There is a negative correlation between the concentration of HCO3-and that of Ca, HCO3-, Mg and of Sr; the concentration of HCO3-are also in strong negative correlation with SO42-. It can be realized that the concentration of Ca, Mg, Sr and SO42-in thermal water restrict the concentration of HCO3-in thermal water. The values of δ13C.DIC in the thermal water are between-9.73‰and-3.12‰, which means that the source of CO2joined in the water-rock interaction are from both biological and mantle sources. The ratio of the value of3He/4He about the thermal water and the value of3He/He about air is bigger than1, which also means that there are some matters from mantle. It was calculated that of the total CO2that were active in the water-rock interaction,25.2%~68.73%is from the soil and31.27%~74.8%from the mantle.
     The concentration of SO42-in thermal water in the Carbonate Reservoir in Triassic in Chongqing is very high and the value of δ34S-SO42-is very heavy which is about29.70‰~34.32‰. The reason for the high concentration of the SO42-is the solution of the gypsum in the carbonate rock in the study area. And the reason for the heavy value of δ34S-SO42-is because of the salt lake in the second period of Jialingling formation in Lower Triassic. Evaporate rocks were formed with strong evaporation, and the sulfate touched with organic matter, decomposing to H2S and CO2under the reducing action of the Anaerobic microorganisms. That is the reducing action of the bacterial made the oxygen get out of the sulfate-ion and release the H2S with more32S than sulfate. This process enriched the34S in the sulfate and made the value of δ34S-SO42-heavy.
     The Value of87Sr/86Sr and δ13C in thermal water in Carbonate Reservoir in Triassic in Chongqing is light and the value of δ34S is heavy. The high value of δ34S means the source of SO42-is the gypsum in the second section of Jialingjiang formation in lower Triassic. Due to the surface runoff and sandstone water filter into cracks in cap rock and mixed with thermal water, resulting in seasonal differences of the value of isotopes in underground thermal water. The value of87Sr/86Sr means the source of Sr is carbonate rock. The value of δ34S is lighter in rain season and the value of δ13C is heavier in rain season.
     A conceptual model of recharge, streamflow and discharge of the thermal water in Carbonate Reservoir in Triassic was established through the study on the recharge regional, runoff process and matter resources of the thermal water in Carbonate Reservoir in Triassic in Chongqing. On the area of the karst area on the north of the eastern Sichuan parallel Ridge and Valley and the karst valley in eastern Sichuan parallel Ridge and Valley that at the altitude of460m to1605m, the precipitation and surface runoff infiltrate into the a Carbonate Reservoir system with the carbonate reservoir bed, sandstone and shale cap rock, and the clastic rocks as carbonate rocks bottom. Water in this aquifer has experienced long flow paths, constantly absorbing the heat from the surrounding rock, mixing with the matters from the mantle and dissolving the gypsum, weathering the carbonate rock with CO2and H2O. During the progress of runoff, the underground thermal water is suffocated by the fault or the valley that were deep dissected by Yangzi river and Jialing River, and then upward moving, mixing with the cold karst water and sandstone water, at last discharged as natural outcropping springs and manual drilling springs.
引文
Ahmad M, Akram W, Hussain S.D,et al. Origin and sub surface history of geothermal water of Murtazabad area, Pakistan:an isotope evidence[J]. Applied Radiation and Isotopes.2001,55: 731-73.
    Ault A U, Kulp J L. The sulfur isotope of marine sulphates. Geochim Cosmochim Acta,1959,16: 201-235.
    Axtmann R C. Environmental impact of a geothermal power plant [J]. Science.1975,187:796-805.
    Barragan, R. M., V. M. Arellano, et al. Isotopic (δ18O,δD) patterns in Los Azufres (Mexico) geothermal fluids related to reservoir exploitation[J]. Geothermics 2005,34 (4):527-547.
    Berge T B, Veal S L. Structure of the Alpine formland[J].Tectonics.2005,24:TC 5011.
    Bowers T.S, Jackson K.J, Helgeson H C. Equilibrium activity diagrams for coexisting minerals and aqueous solutions at pressures and temperatures to 5 kb and 600℃ [M]. Spring-Veriag, Berlin Heidelderg:New York Tokyo,1-10.
    CaPassoG, AjessandroWD, FavaraR,et al. Interaction between the deep fluids and the shallow groundwaters on Vuleanoisland(Italy)[J]. JournalofVolcanology and Geothermal Reseach.2001, 108:187-198.
    Carre6n-DiazeontiC, NelsonST, MayoAL, e.al, Amixed groundwater system at Midway, UT: Diseriminating superim posedloeal and regional discharge[J]. Jo"rnalofHydrology.2003, 273:119-138.
    Clark I, Fritz P. Environmental isotopes in hydrogeology[M].New York:Lewis Publishers.1997, p352.
    Denies P, langmuir D, Harmon R S. Stable carbon istopic ratios and the extence of a gas phase in the evolution of carbonate waters[J]. Geochimica et Cosmochimica Acta,1974,38: 1147-1164.
    Dilsiz C.Conee Ptual hydrodynamic model of the pamuk kale hydrothermal fiel, southwestern Turkey, Based on hydrochemical and isotope data[J]. Hydrogeology Journal.2005,14(4): 562-572.
    Diseriminating superim posedloeal and regional discharge[J]. Jo"rnalofHydrology.2003,273: 119-138.
    Dos Santos Jr, A. E. d. A., D. d. F. Rossetti, et al..rigins of the Rio Capim kaolinites (northern Brazil) revealed by δ18O and δD analyses[J]. Applied Clay Science.2007,37(3~4):281-294.
    Dublyansky YV.Speleogenetic history of the Hungarian hydrothermal karst[J]. Environ Geol 1995,25:24-35.
    Duchi V. Chemical relationship between exploration of geothermal prospects in the Tecuamburro volcano region, Guatemala. Geothermics,1992,21(4):447-481.
    Dynamics of carbon dioxide emission at Mammoth Mountain, California[J]. Earth and Planetary Science Letters.188 (2001):535-541.
    Einsiedl F., Maloszewski P., Stich W.. Multiple isotope approach to the determination of the natural attenuation potential of a highalpine karst system[J]. Journal of Hydrology.2009,365:113-121.
    Ellis A J,Mahon W A J. Geochemistry and geothermal systems[M]. New York. Academic Press. 1977:1-52.
    Fatma Gultekin, Esra Hatipoglu, Arzu Firat Ersoy. Hydrogeochemistry, environmental isotopes and the origin of the Hamamayagi-Ladik thermal spring (Samsun, Turkey)[J]. Environmental Earth Sciences,2011,62(7),1351-1360.
    Fatma Gultekin, Esra Hatipoglu and Arzu Firat Ersoy. Hydrogeochemistry, environmental isotopes and the origin of the Hamamayagi-Ladik thermal spring (Samsun, Turkey)[J]. Environmental Earth Sciences.2011,62(7),1351-1360.
    Fournier, R. O. Geochemical and hydrologic cons iderations and the use of enthalpy~chlorid diagrams in the prediction of underground conditions in hog~spring systems[J]. Journal of volcanology and Geothermal Research.1979(5):1-6.
    Fournier, R. O. Application of water geochemistry to geothermal exploration and reservoir engineering, in Rybach, L. and Muffler, L. J. p. ed.:Geothermal System[J].Principles and Case Histories, Johw Willey and Sons Ltd.1981:109-143.
    Galy A., France-landord C., Derry L.. The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh[J]. Geochimica et Cosmochimica Acta.1999.63, No(13/14):1905-1925.
    Galy A., France~Lanord C. Weathering processes in the Ganges-Brahmaputra basin and the Geochimica et Cosmochimica Acta.2005,69(23):5441-5458.
    Gemiei U, Filiz S. Hydroehemisty of the cesme geothermal area in western Turdey[J]. Journal of Voicanotogy and Geothermal Research.2001,110:171-187.
    Giggenbach W F, Reply to comment by P. Blattner. "Andesitic water":A Phantom of Isotopic Evolution of Water Silicate System [J]. Earth Planet. Sci. Lett.1993.120,519-522.
    Giggenbach W F. "Andesitic water":A Phantom of Isotopic Evolution of Water-Silicate System[J]. Earth and Planetary Science Letters.1990,(120):519-522.
    Glaypool G E, Holser W T,Kaplan I R. Phanerozoic sulfur isotope curve for marine evaporates[J]. Chem Geol,1980,28:199-260.
    H.Borchert,R.O.Muir;The Origin,Metamorphism and Deformation of Evaporites [M]. Beijing: Geology publishing company,1976:171-172.
    Hedenquist J W. The thermal and geochemical structure of the Broadlands-Qhaaki Geothermal system[J]. Geothermica,1990,19(2):151-185.
    Hill CA. Geology of Carlsbad Cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. Bulletin 117, New Mexico Bureau of Mines and Mineral Resources,1987,Sante Fe, NM,150pp.
    Hill CA. Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware Basin, New Mexico and Texas,.1990,AAPG Bull 74(11):1685-1694.
    Hu, Z.W., Huang S.J., Qing, H.R., Wang, Q.D., Wang, C.M., Gao, X.Y.,2008. Evolution and global correlation for strontium isotopic composition of marine Triassic from Huaying Mountains, eastern Sichuan, China. Sci. China Ser. D:Earth Sci.51,540-549.
    Ian. D. Clark, Peter Fritz. Environmental Isotopes in Hydrogeology[M]. New York:Lewis Publishers,1997.
    ImbachT. DeeP groundwater circulation in the tectonically active area of Bursa, Northwest Anatolia, Turkey[J]. Geothermics.1997,26(2):251-278.
    Janik C J. Goff F. Hydrogeochemical exploration of geothermal prospects in the Tecuamburro volcano region Geochemistry [J].1993,12(2):137-147.
    Jennifer L. Lewicki, Tobias Fischer and Stanley N. Williams. Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia:evidence for magmatic contribution[J]. Bulletin of Volcanology.2000,62(4-5):347-361.
    Jens Fiebig, Giovanni Chiodini, Stefano Caliro, Rea Rizzo, Jorge Span Genberc, Johannes C. Hunziker. Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems[J]. Geochimica et Cosmochimica Acta.2004.68(10):2321-2334,
    John D. Rogie a, Derrill M. Kerrick, Michael L. Sorey B,Giovanni Chiodinic, Devin L. Galloway d. Dynamics of carbon dioxide emission at Mammoth Mountain, California[J]. Earth and Planetary Science Letters.188 (2001):535-541.
    Katz B., Bullen T..The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst[J]. Geochimica et Cosmochimica Acta.1996.60(24):5075-5087.
    Keller B.Hydrology of the Swiss Molasse Basin:a review of current knowledge and considerations for the future[J]. Eclogae Geol Helv.1991,85(3):611-652,
    Krouse H R, Grinenko V A. Stable Isotopes:Natural and Anthropogenic Sulphur in the Environmrnt[J]. Chichester:John Wiley and Sons,Inc,1991:1-440.
    Lambrakis, N. and G. Kallergis. Contribution to the study of Greek thermal springs:hydrogeological and hydrochemical characteristics and origin of thermal waters. Hydrogeology Journal 2005,13(3):506-521.
    Larsen D, Swihart G H and Xiao Y. Hydroehemistry and isotope Position of springs in the Teeopa basin, southeastern California,USA[J].ChemiealGeology.2001,179:17-35.
    Larssen T., Carmichael G. R.. Acid rain and acidification in China:the importance of base cation deposition[J]. Environmental Pollution.2000,110(1):89-102.
    Ldaisluas RybachL,Pjartikc Muffler.地热系统[D].北京大学地热研究室,译.地质出版社,1986.
    Ldaisluas RybachL. Radio active heat Production in rock sand its relation to other Petrophysical Parameters,Pureand APPI[J]. GeoPhys.1976a,114:309-318.
    Li X., Liu C., Harue M., et al. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality:A case study of the Shuicheng Basin, SW China[J]. Applied Geochemistry.2010,25:1924-1936
    Moller P,DulskiP,SavaseinY,etal.Rare earth element syttrium and Pbisoto Peratio sinthermal sPring and well waters of West Anatolia,Turkey:ahydroehemieal study of the irorigin[J]. Chemieal Geology.2004,206:97-118.
    Moore J G, Bachelder J N, Cunningham C G. CO22 filed, vesicles in mid2ocenbasalt[J]. J Volcano. GeothermalRes.1977,2:309-327.
    Neven Kresic. Types and Classifications of springs[J]. Groundwater Hydrology of Springs.2010: 45-61.
    Nico Goldscheider.Judit Madl Szonyi. Anita Eross. Review:Thermal water in resources in carbonate rock aquifers[J].Hydrogeology Journal,2010(09).
    Oktay Celmen, Mehmet Celik. Hydrochemistry and environmental isotope study of the geothermal water around Beypazari granitoids, Ankara, Turkey[J]. Environmental Geology.2009,58(8): 1689-1701.
    Oktay Celmen and Mehmet Celik. Hydrochemistry and environmental isotope study of the geothermal water around Beypazri granitoids, Ankara, Turkey[J]. Environmental Geology, 2009,58(8):1689-1701.
    Palmer M., Edmond J. Controls over the strontium isotope composition of river water[J]. Geochimica et Cosmochimica Acta.1992.56:2099-2011.
    Pastorelli, S., L. Marini, et al. Chemistry, isotope values (δD,δ18O,δ34Sso4) and temperatures of the water inflows in two Gotthard tunnels, Swiss Alps[J]. Applied Geochemistry.200116(6): 633-649.
    Pineau,P, J avoy M. Bot tingay 13C/12C ratios of rocks and inclusions in popping rocks of the Mid-Atlantic Ridge and their bearing on the problem of isotopic compositions of deep seated carbon, Earth Planet [J]. Sci. Let t.1976,29:413-412.
    Plamer AN. Geochemical models for the origin of macroscopic solution porosity in carbonate rocks. In; Budd AD, Saller AH, Harris PM(eds) Unconformities and porosity in carbonate strata AAPG Memoir.1995,63:77-101.
    Portugal E, Birkle P, Barragn R M, et.al.Hydrochemieal isotopic and hydrogeolog iealeonce Ptual model ofthe Las Tres Vfrgenes geothermal field,Baja California Sur,M6xico[J]. Journalof Voleanology and Gcothermal Research.2000,101:223-244.
    R. Piekos, M. Wesolowski and J. Teodorczyk. Thermal Analysis of a Hydrated Silica-Sodium Thiosulfate-Sulfur System (si~Na2SO4~S) [J].Journal of Thermal Analysis and Calorimetry, 2001,66(2),541-548.
    Reed M S.Assessmen to flow temperature geothermal resourees of the United States-1982.U.5. Geologieal Survey Circular.1983.
    Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.:Isotopic patterns in modern global precipitation, Geophys. Monogr.1993,78:1-36.
    S. R. H. Worthington and D. C. Ford. High sulfate concentrations in limestone springs:An important factor in conduit initiation[J]. Environmental Geology.1995,25(1):9-15.
    Shand P., Darbyshire D.P.F., Love A.J., et al. Sr isotopes in natural waters:Applications to source characterization and water-rock interaction in contrasting landscapes[J]. Applied Geochemistry. 2009,24:574-586.
    Spence J.,Telmer K.,The role of sulfur in chemical weathering and atmospheric CO2 fluxes:riverine alkalinity budget[J], Chemical Geology.1999,159:31-60.
    Truesdell A H. Chemical techniques in exploration, Summary of section Ⅲ. In:U.N. Symposium on the Dev, and Use of Geothermal [J]. Res,1977,1:53-79.Turkey[J]. Geothermics.1997,26(2): 251-278.
    Ufrecht. Hydrogeologie des Stuttgarter Mineral waster systems Hydrogeology of the mineral water system of Stuttgart[J].Schrift Amters Umweltschutz.2006a (3):1-151.
    V. A. Sosnin and R. Kh. Gabdullin.Study of the thermal stability of a poremit emulsion[J]. Combustion, Explosion, and Shock Waves.1994,30(6):810-816.
    V. V. Savel'ev, A. K. Golovko, L. V. Gorbunova, V. F. Kam'yanov and C. A. Thermal liquefaction of natural asphaltites[J].GalvaliziSolid Fuel Chemistry.2007,41(4):234-239
    Vengosh A, Helvael C and Karaman deresi H. Geoehemical constraints for the origin of thermal waters from westernTurkey[J]. Aplied Geoehemisty.2002,17:163-183.
    Vilomet J., Angeletti B., Moustier S., et al. Application of strontium isotopes for tracing landfilll leachate plumes in groundwater[J]. Environmental Science and Technology.2001,35:4675- 4679.
    Vitoria L., Soler A., Canals A.,et al..Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters:Example of Osona (NE Spain) [J]. Applied Geochemistry.2008,23:3597-3611.
    White,D.E.,Subsurface waters of different origins,Extended abstracts of fifth international symposium on Water-Rock Interaction, National Energy Authority of Iceland[J], Reykjavik, 1986.629-632.
    Wu W., Xu S., Yang J.,et al.Sr fluxes and isotopic compositions in the headwaters of the Yangtze River, Tongtian River and Jinsha River originating from the Qinghai-Tibet Plateau[J]. Chemical Geology.2009,260:63-72.
    Yokoyama T,Nakai S, and Wakita H. Helium and carbon isotope compositions of hot spring gases in the Tibet an Plateau[J]. Journal of Volcanology and Geothermal Research.1999,88:99-107.
    曹云.重庆市北温泉景区温泉和钙华的地球化学研究[D].重庆西南大学,2007.
    曹云.重庆市北温泉与四川康定温泉水之地球化学特征对比[J].中国岩溶,
    曾志刚,蒋富清,,秦蕴珊.现代海底热液沉积物的硫同位素组成及其地质意义[J].海洋学报,2001,23(3)48-56.
    陈锦石,储雪蕾,邵茂茸.三叠纪海德硫同位素[J].地质科学,1986(4):334-336.
    陈墨香,汪集旸,邓孝.中国地热系统类型图及其简要说明[J].地质科学,1996,31(02),114-121.
    储雪蕾.北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究,2000,20(1):87-97.
    戴金星.云南省腾冲县硫磺塘天然气的碳同位素组成特征和成因.8科学通报,1988.33(15):1168-1170
    顾慰祖,林曾平,费光灿等.环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J].水科学进
    郭占荣.地下水动态监测存在问题及对策[J].地下水.1996,18(4):138-140.
    韩贵琳,刘丛强,贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J],地球科学进展,2005,4,394-406.
    洪业汤,张鸿斌,朱泳煊等,西南酸雨来源的稳定硫同位素研究[R],贵阳:中国科学院地球化学研究所,1990.
    洪业汤.张鸿斌,朱泳煊,朴河春,姜洪波,刘德.中国大气降水的硫同位素组成特征[J],自然科学进展,1994,4(6):741-745.
    胡克定.重庆市北温泉危岩带特征与防治对策[J].中国地质灾害与防治学报.1995,6(3):57-62.
    胡作维,黄思静,刘丽红等.四川东部华蓥山海相二叠/三叠系界线附近的锶同位素组成[J].地球学报.2010,31(6):853-859.
    黄爽兵,,李晓,,刘昌蓉.云南省龙陵县地下热水特征及控制因素研究[J].水土保持研究.2007,14(3).147-149.
    姜规模,吴群昌.西安市地下热水资源可持续开发利用探讨[J].地质与资源.2009(3).210-215.
    蒋颖魁,刘丛强,陶发祥,贵州乌江水系河水硫同位素组成特征研究[J],水科学进展,2007,7:558-565.
    蒋颖魁、刘丛强、陶发祥等.贵州乌江水系枯水期河水硫同位素组成研究[J].地球化学,2006,35(6),623-628.
    雷万荣,唐春梅,江凌云.浅谈地下水中铁、锰质的迁移与富集规律.江西科学第24卷第1期2006年2月.
    李大通,张之淦等编译.核技术在水文地质中应用指南.地质出版社,1988.
    李晶莹,张经,流域盆地的风化作用与全球气候变化[J],地球科学进展,2002,17(3):411-419.
    李鸿举.重庆小泉宾馆地下热水的水文地质特征及利用条件[J].四川地质学报,1987,7(1):21-27.
    李四光.地质力学概论[M].北京:科学出版社,1979:139.
    李廷勇,李红春,沈川洲,等.重庆2006-2008年大气降水δD和δ18O特征初步分析[J].水科学进展.2010.21(6):757-764.
    里希特—贝恩布格G著;邱柱国,林文弟译.盐矿床地质.成都:四川人民出版社,1983:77-78.
    林黎,赵苏民,王心义.天津地热水可持续开发利用现状及保护对策规划研究[J].河南理工大学学报:自然科学版,2006,25(2).
    林耀庭,高立明,宋鹤彬.四川盆地海相三叠系硫同位素组成及其地质意义[J].地质地球化学,1998(4):43-46.
    刘帮云.人与自然[J].2003,No23:47.
    刘芳芳.重庆将打造“温泉之都”.[2011-05-07].http://news.xinhuanet.com/newscenter/2005~04/ 11/content 2813462.htm
    刘再华,袁道先,何师意.不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义以我国几个典型岩溶地区为例,[J].地质学报,1997,71(3):281-288.
    刘再华,袁道先,何诗意,张美良.地热C02-水-碳酸盐岩系统的地球化学特征及其C02来源—以四川黄龙沟、康定和云南中甸下给为例[J].中国科学D辑,2000,30(2):209-214.
    罗祥康.论重庆地热——“热水库".2003,23:47.
    罗祥康.重庆市地下热水开发利用条件的初步研究[J].四川地质学报,1987,7(1).
    罗云菊、刘东燕、许模.重庆地下热水径流特征研究[J].地球与环境,2006.34(1):49-54.
    罗云菊.重庆南温泉背斜地下热水可持续开发研究[D].成都:成都理工学院,2000.
    马瑞.碳酸盐岩热储隐伏型中低温热水的成因与水一岩相互作用研究:以山西太原为例[D].中 国地质大学(北京),2007.
    马腾,王焰新,马瑞,等.太原盆地区碳酸盐岩中—低温地热系统演化[J].地球科学-中国地质大学学报.2012,37(2):229-238.
    马致远,王心刚,陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J].”地质通报.2008(6):888-895.
    马致远,余娟.关中盆地地下热水环境同位素分布及其水文地质意义[J].地球科学与环境学报.2008(4):396-401.
    马致远,王心刚,苏艳等.陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J].地质通报.2008(6):888-894.
    马致远.环境同位素地下水文学[M].西安:陕西科技出版社,2004.
    庞忠和,汪集肠,樊志成.利用Si02混合模型计算漳州地热田热储温度.科学通报,1989(1).57-59.
    漆继红,许模.西藏盐井地区地下热水水化学特征差异分析[J].成都理工大学学报(自然科学版).2008(5):580-586.
    钱学溥.重庆附近嘉陵江石灰岩喀斯特水文地质及温泉成因的探讨[A].水文地质工程地质论文集[C].北京:地质出版社,1958.
    冉启虎.“温泉之都”战役已经打响[N].重庆晚报,2006(3):203-204
    上官志冠,刘桂芬,高松升.川滇块体边界断裂的CO2释放及其来源.中国地震[J],1993,9(2):146-153
    上官志冠.长白山天池火山地热区逸出气体的物质来源[J].中国科学(D辑),1997,27(4):319-324
    申建梅,陈宗宇.地热开发利用过程中的环境效应及环境保护[J].地球学报,1998,19(4):402-408.
    沈立成.中国西南地区深部脱气(地质)作用与碳循环研究[D].重庆西南大学,2007.
    石耀霖,曹建玲,马丽,等.唐山井水温的同震变化及其物理解释[J].地震学报,2007,29(5):265-273.
    四川省地矿局南江水文队.中华人民共和国(重庆幅)1:20万区域水文地质调查报告.1977.
    孙占学,高柏,刘金辉.江西省横迳温泉区地热气体地球化学[J].现代地质.2004,18(1)116-120.
    汤洁,徐晓斌,巴金,等.1992-2006年中国降水酸度的变化趋势[J].科学通报,2010,55(8):705-712.
    佟伟,,章铭陶..腾冲地热.北京:科学出版社,1989.
    涂光炽.地球表层热状态及热水沉积沿成矿作用,中国科学院地学部“地学发展若干问题和对策研讨”[C].论文摘要汇编.19902-3.
    汪集旸.能源环境危机下的地热能开发[J].科技导报2012,30(04):3.
    汪集旸.中低温对流型地热系统[M].中国科学出版社,1993.44-47.
    汪秀岩,霍世强,吕艳辉等,浅谈地下水动态监测管理.地下水.2004.26(1):52-54
    王恒纯.同位素水文地质概论[M].北京:地质出版社,1991:156-157
    王恒纯.同位素水文地质概论[M].北京:地质出版社,1991:156-157.
    王良书,Tulinius H, Flovenz O G.冰岛南部Bodmodsstadir地热田的概念模型和自然状态模型[J].南京大学学报,1994.30(2):304-313.
    王帅成,王多义,程建等.广元地区龙门山前缘中低温对流型地热系统分析[J].物探化探计算技术.2010,32(5);542-547.
    王先彬.地震区温泉气体的地球化学特征.中国科学,B辑.1992(8):850-854.
    王先彬.腾冲火山区温泉气体组分和氦同位素组成特征.科学通报,1993.38(9):814-817.
    王先彬编著.稀有气体同位素地球化学和宇宙化学.北京:科学出版社[M],1989:153-220
    王增银,刘娟,崔银祥,等.延河泉岩溶水系统Sr/Mg、Sr/Ca分布特征及其应用[J].水文地质工程地质.2003b.2:15-19.
    王增银,刘娟,王涛,等.锶元素地球化学在水文地质研究中的应用进展[J].地质科技情报.2003a.22(4):91-95.
    魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988:144.
    肖汉全.川南地下热水资源研究及其开发利用[J].四川地质学报2009(2).180-182.
    肖琼,沈立成,袁道先,杨雷,陈展图,汪智军.利用δ180和634S示踪重庆都市圈地下热水循环过程[J].重庆大学学报.2011,34(5):87-93.
    杨平恒,罗鉴银,彭稳等.在线技术在岩溶地下水示踪试验中的应用—以青木关地下河系统岩溶落水洞至姜家泉段为例[J].中国岩溶.2008,27(3):215-231.
    杨平恒.岩溶管道含水介质中的水文地球化学特征及悬浮颗粒物运移规律—以重庆青木关地下河系统为例[D].西南大学,2010.
    叶思源,孙继朝,姜春永.水文地球化学研究线状与进展[J].地球学报,2002(23):477-482.
    于津生,张鸿斌,虞福基等.西藏东部大气降水氧同位素组成特征.地球化学,1980,(2).
    于津生等.西藏东部大气降水氧同位素组成特征.地球化学,1980,(2)
    于晓红,赵宾,邹凤钗等.贵州省铜仁地区地下热水的水化学特征研究[J].吉林化工学院学报.2011,28(5):86-91.
    鱼金子,车用太,刘五洲.井水温度微动态形成的水动力学机制研究[J].地震,1997,17(4)389-396.
    袁道先,刘再华,秦嘉铭,等.碳循环与岩溶地质环境[M].北京:科学出版社,2003:80-94.
    袁道先,蔡桂鸿著.岩溶环境学,1988,重庆出版社,PP332
    袁道先.“岩溶作用与碳循环”研究进展[J].地球科学进展,1999,(5):430-431.
    袁道先等编著,1993,中国岩溶学,地质出版社展,2000,11(1):14-20.
    张保建,沈照理,.聊城市东部岩溶地热田地下热水水化学特征及成因分析[J].中国岩溶.2009(3).263-269.
    张洪平等.中国大气降水稳定同位素组成及影响因素.见:中国地质科学院水文地质工程地质研究所第7号.地质出版社,1991.
    张森琦,李长辉,孙王勇等,西宁盆地热储构造概念模型的建立[J].地质通报,2008.27(1):126-137.
    张生,李统锦.二氧化硅溶解度方程和地温计[J].地质科技情报,1997,16(1):53—58.
    章至沽,韩宝平,张月华.水文地质学基础[M].徐州:矿业大学出版衬,1995.
    赵珂,姜光辉,杨琰等.滇东主要断裂带温泉CO2成因浅析[J].地球与环境.2005,33(2):11-16.
    赵平,多吉,谢鄂军等.中国典型高温热田热水的锶同位素研究[J].岩石学报,2003.19(3):569-576.
    郑淑蕙等.我国大气降水的氢氧稳定同位素研究.科学通报,1983,(13):801-806.
    重庆市北碚区地方志编纂委员会.北碚自然地理[M].重庆:西南师范大学出版社,1986:1-145.
    朱炳球,朱立新,史长义,等.地热田地球化学勘查[D].北京:地质出版社.1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700