塔里木盆地西部古盐岩地球化学与成钾预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为扩大我国紧缺矿产资源——钾盐地质储量,建立有效的用于指导判断或寻找钾矿的新指标,论文以塔里木盆地西部为研究区,地表出露或矿硐盐岩、卤水为研究对象,选择元素、同位素地球化学为主要手段,对不同时空分布古盐岩沉积的海陆相特征、成盐古卤水蒸发浓缩、演化分异等问题进行了系统对比研究,并应用一些新建的地球化学找钾指标评价和预测了最有前景的找钾远景构造单元及相应的地层层位。论文涉及的主要内容可归纳为:
     1) 回顾总结了过去古钾盐找矿研究中采用的主要地球化学方法及基本理论依据。
     2) 分析了塔里木盆地不同构造单元、不同地质时代成钾有利与不利的构造、岩相古地理、地层、物源等宏观地质条件。
     3) 对比讨论了不同时空分布的岩盐基本地球化学组成特征及同位素分布特征。
     4) 通过卤水水化学系数、岩盐Br×10~3/Cl系数,石盐氯同位素,石膏硫同位素及结晶水氧同位素地球化学多指标系统对比分析,联系其宏观成盐地质条件,初步论证了石盐δ~(37)Cl值、石膏δ~(34)S值及石膏结晶水;δ~(18)O值作为贫Br岩盐沉积环境找钾指标的有效性。
     5) 应用新的地球化学找钾指标,联系区域构造、岩相古地理特征,讨论分析了不同构造单元、不同地质时代成盐的海陆相沉积特征,成盐古卤水可能达到的最高蒸发浓缩阶段。
     6) 通过多指标综合对比评价,预测了最有远景的找钾构造单元及相应有利成钾地层层位。
     通过以上内容的对比研究,初步查明了塔里木盆地西部地表出露古岩盐的地球化学组成特征及沉积学特征,根据这些特征综合判断分析,塔里木盆地西部发育的两大次级成盐盆地——库车及莎车盆地成盐既有其共性,又有各自的特点。相同之处在于成盐规模巨大,且在最初的物源供给上都与古特提斯海海侵密切相
It is well known that the resources of potash deposit in our country are very lack and cannot be satisfied to the developing requirement. Therefore, the paper focused on an issue about the ancient sylvite deposit formation in western Tarim Basin where many scientists regarded it as a promising area to find sylvite. The paper selected the western Tarim Basin as main research field, ancient salt rock and brine as study object, geochemistry as main methods. Through systematically and comprehensively contrastive research on ancient salt rock or brine distributed in different space and time, the paper analyzed their marine or continental sedimentary fades, paleo-brine evaporation and evolution. Then based on the research results, the paper prospected the most promising tectonic area and bearing strata to find sylvite deposit. The main content of the paper is as follows:a. The paper made a summary on common geochemical methods about ancient sylvite deposit exploration and summarized their basic theories in past years of sylvite-searching works.b. The paper analyzed the profitable and unfavorable geological conditions for sylvite deposit formation from the view of tectonic geology, sedimentary facies and paleogeography, strata and original source in different tectonic unit and geological periods in western Tarim Basin.c. The paper particularly expounded on the characteristics of geochemical composition and isotopic distribution of ancient salt rock through detailed contrastive analysis on those different tectonic units and periods in western Tarim Basin.
    d. It is proved in the paper that the isotopic value of 8 37C1 in salt, 5 34S in gypsum and also 6 18O in crystalline water of gypsum can be utilized as effective index to find sylvite deposit through comprehensively contrasted with typical hydrochemical features of brine, BrX 1O3/C1 ratio.e. Applying the newest index of potash salt-searching, referring on the characteristics of regional tectonic, sedimentary facies and paleogeography, the paper detailedly discussed and analyzed on the marine or continental sedimentary facies and the possible concentrated stages of the ancient brine that formed present exposed evaporates distributed in different space and time in the surface in western Tarim Basin.f. The research results in the paper prospected the most promising potash deposit-searching tectonic areas and the bearing favorable strata via multi-index evaluation in western Tarim Basin.Finally, the paper concluded that there had some commonness as well as more different respective characters to the salt rock sediment in the two largest sub-basins in Tarim— Kuqa-sub basin and Shaqa-sub basin. The commonness is that there deposit wide and thick salt rock and the original source of salt formation is connected with ancient Mid Sea water invasion. Besides, the content of typical marine elements like Bromine is much lower than those marine salts and the salts are also all lumped with clay minerals in both Kuqa and Shaqa sub-basin. As for differences, Shaqa-sub basin located in the tunnel of ancient Mid Sea water invasion and was always the first place to be flooded by sea water. The exposed salt rock in the surface mostly deposited in the late Cretaceous period and the sedimentary facies were more like marine environment. Moreover, the sedimentary stage of salt rock, especially the salt deposited in the late Cretaceous strata named Tuyiluoke formation in Kashi depression deposited much later than other regions. By contrast, the Kuqa sub-basin located far away from the heading of sea water invasion and the exposed salt rock mostly deposited in the early Tertiary period. The salt rock was intensely undergone great diagenesis and metamorphism by fresh water from Tianshan Mountain. Therefore, the sedimentary facies are more like continental environment. All the
    geochemical indexes showed that the sedimentary stage of the salt rock in early Tertiary strata deposited relatively earlier than that in Kashi depression.In summary, according to the final research outcome, the Kashi depression in western Shaqa sub-basin should be proved as the most favorable and promising potash deposit-searching area and the late Cretaceous strata of Tuyiluoke formation (K2O may be the aim strata to find sylvite deposit. Certainly, those spring or river water with higher background content of Bromine and Boron in Yang Xia Depression in eastern Kuqa sub-basin may also have some clues to indicate the deep sylvite bearing minerals exist. So it is worth while to carry out more detailed research in future.
引文
[1] 袁见齐译.世界钾盐新知.北京:地质出版社,1982.
    [2] 钱自强,曲懿华,刘群.钾盐矿床.北京:地质出版社,1994,223-234.
    [3] 魏东岩.试论钾盐矿床的成矿条件.化工矿产地质.1999,21(1):1-6.
    [4] 陈郁华,袁鹤然,杜之岳.陕北钾盐矿床.陕北奥陶系钾盐层位的发现与研究.地质论评,1988,44(1):100-106.
    [5] 石森.世界钾盐市场形势分析.中国地质,1998(1):26-28.
    [6] 袁见齐.钾肥与钾盐矿床.北京:燃料化学工业出版社,1975:78-79.
    [7] 云南省地质局第十六地质队.怎样找钾盐.北京:地质出版社,1978.
    [8] 四川省地质局第七普查大队.钾盐地质学习资料选编.1975.
    [9] 袁见齐.钾盐专辑(第一辑).北京:中国工业出版社,1963:1-20.
    [10] 张彭熹,张保珍,Lowenstein T.K.,Spancer R.J.试论古代异常钾盐蒸发岩的成因——来自柴达木盆地的佐证[J].地球化学,1991,(2): 134-143.
    [11] 袁见齐.中国碎屑岩系盐类矿床的形成条件.见:为26届国际地质大会撰写的国际交流学术论文集.北京:地质出版社,1980:121-128.
    [12] 《沉积学讲座讲稿汇编》编辑组.许靖华教授沉积学讲座.成都:地质部成都地质矿产研究所出版,1980:103-109.
    [13] 袁见齐,朱上庆,翟裕生.矿床学.北京:地质出版社,1985:221-233.
    [14] 中国科学院盐湖研究所编.青海柴达木盆地晚新生代地质环境演化.北京:科学出版社,1986.79-87.
    [15] 牟保垒.元素地球化学.北京:北京大学出版社,1999:201-219.
    [16] Michael G. Siemann, Michael Schramm. Thermodynamic modelling of the Br partition between aqueous solutions and halite. Geochemica et Cosmochimica Acta, 2000, 64(10): 1681-1693.
    [17] 瓦里亚什科.钾盐矿床形成的地球化学规律.北京:中国工业出版社,1965:105-195.
    [18] 陈郁华.黄海水25℃恒温蒸发的析盐序列及某些微量元素的分布规律.地 质学报,1983,(4):379-395.
    [19] Sun D., Li B., Wang K. A preliminary investigation on evaporating experiments(25℃) for Qinghai Lake water, China. Seventh International Symposium on Salt, Vol 1, 1993:561-570.
    [20] 1951: 96-132.
    [21] Sun Oa-peng, Li Bing-xiao, Ma Yu-hua, et al. An investigation on evaporating experiments for Qinghai Lake water, China. 盐湖研究, 2002, 10 (4): 1-12.
    [22] Sun D., Wu L. Wang K, et al. A preliminary investigation of isothermal evaporation(25℃) of Zhacang Caka Salt Lake brine, Xizang, China. Minerals and Rocks, 1984, 4(1): 16-21.
    [23] 马宝林,温常庆.塔里木盆地沉积岩形成演化与油气.北京:科学出版社,1991:45-53.
    [24] 游海涛,程日辉,刘昌岭.古盐度复原法综述.世界地质,2002,21(2): 111-117.
    [25] DECKKKR P, CHIVAS A R, SHELLEY J M G, et al. Ostraeod shell chemistry: A new palaeoen—vironmental indicator applied to a regressive record from the Gulf of Carpentaria. Palaeogeogr Palaeoclimatol Palaeoecol, 1988, 66: 231—241.
    [26] 邓宏文.钱凯编著.沉积地球化学与环境分析.兰州:甘肃科学技术出版社,1993.
    [27] Elton L. Gouh. Computing for Paleo-salinity according to boron and clay mineral data. ZheAmerican Association of Petroleum Geologists Bulltin, 1971, 55(10): 1829-1837.
    [28] 徐昶.中国盐湖粘土矿物.北京:科学出版社,1993:172-175.
    [29] 曲懿华,袁品泉,帅开业,张瑛,蔡克勤,贾疏源,陈朝德.兰坪-思茅盆 地钾盐成矿规律及预测[M].北京:地质出版社,1998.1-48.
    [30] 周仰康,何锦文,王子玉.硼作为古盐度指标的应用.见:沉积学和有机地球化学学术会议论文选集.北京:科学出版社,1984.55-57.
    [31] COUCH EL. Calculation of paleosalinities from boron and clay minieral data. AAPG Bull, 1971, 55: 1829—1839.
    [32] WALKER C T, PRICEN B. Departure curves for commputing paleosalinities from boron in illites and shales. AAPG, 1963, 47(5): 833—841.
    [33] 李成凤,肖继风.用微量元素研究胜利油田东营盆地沙河街组的古盐度.沉积学报,1988,6(1):100-107.
    [34] 李延河.同位素示踪技术在地质研究中的某些.地学前缘,1998,5(2): 275-281.
    [35] Kaufmann R S, Long L, Bently, et al. Natural chlorine isotope variations. Nature, 1984, 309(5966): 338-340.
    [36] Kaufmann R S, Frape S K, McMutt R, et al. Chlorine stable isotope distribution of Michigun Basin formation waters. Applied Geochemistry, 1993, 8:403-407.
    [37] Desaulniers D E, Kaufmann R S, Cherry JA, et al. ~(37)Cl-~(35)Cl variations in a diffusion controlled ground water system. Geochim Geology, 1986, 31:1757-1764.
    [38] C.J. Eastoe, Austin Long, Lynton S. Land, J. Richard Kyle. Stable chlorine isotopes in halite and brine from the Gulf Coast. Basin: brine genesis and evolution. Chemical Geology, 2001,176: 343- 360.
    [39] Eggenkamp H G M, Kreulen. Chlorine stable isotope fractionation in evaporates. Geochim Cosmochimi Acta, 1995, 59(24):5169-5175.
    [40] 刘卫国,肖应凯,孙大鹏.马海盐湖区卤水和盐类矿物的氯同位素特征及意义.盐湖研究,1995,3(2).
    [41] Spivack A J, You C F, Smith H J. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21-Myr. Nature, 1993, 363:149-151.
    [42] Eastoe C J, Guilber J M, Kaufmann R S. Preliminary evidence for for fraction of stable chlorine isotope in ore-forming systems. Geology, 1989, 17:285-288.
    [43] Magenheim A J., Spivack A J., Michael P J, et al. Chlorine stable isotope composition of the oceanic crust: Implication for earth distribution of chlorine. Earth and Planetary Science Letters, 1995, 131:427-432.
    [44] 王佩仪.稳定同位素分馏机理及其应用的研究.地质科技情报,1993,12 (3): 83-88.
    [45] C.J. Eastore, J.M. Guilber. Stable chlorine in hydrothermal processes. Geochemica et Cosmochimica Acta, 1992, 56: 4247-4255.
    [46] 肖应凯.石墨的热离子发射特性及其应用.北京:科学出版社,2003.174-238.
    [47] 刘卫国,肖应凯,孙大鹏等.马海盐湖区卤水和盐类矿物的氯同位素特征及意义.盐湖研究,1995,3(2):29.
    [48] 孙大鹏,帅开业,高建华,等.氯化物型钾盐矿床氯同位素地球化学的初步研究.现代地质,1998,12(2):229-234.
    [49] Y.K. Xiao, Zhou Yinmin, Wang Qingzhong, et al. A secondary isotopic reference material of chlorine from selected seawater. Chemical Geology, 2002, 182:655-661.
    [50] 张炜明.稳定核素的应用.科学出版社:北京,1983:12.
    [51] 肖应凯,周引民,刘卫国等.海水的氯同位素组成特征.地质论评,2002,48(增刊):264-270.
    [52] Golyshew, S.L., N.I. Padalko, S.A. Pechenkin. Fractionation of stable oxygen and carbon isotopes in carbonate systems: Geochemistry international, 1981, 18:85-99.
    [53] 刘宝琚,曾允孚.岩相古地理基础和工作方法.北京:地质出版社,1985: 321—323
    [54] Keith M L, Weber J N. Carbon and oxygen isotopic composition of sellected limestones and fossils. Geochia Cosmochim Acta, 1964, 28:1787—1816.
    [55] 郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000:235-238.
    [56] Mohamed El Tabakh, Cherdsak Utha-Aroon, B. Charlotte Schreiber. Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. Sedimentary Geology, 1999, 123: 31-62.
    [57] A. Makhnach, N. Mikhajlov, I. Kolosov, L. Gulis, V. Shimanovich, O. Demeneva. Comparative analysis of sulfur isotope behavior in the basins with evaporites of chloride and sulfate types. Sedimentary Geology, 2000, 134: 343-360.
    [58] Harwood, G.M., Coleman, M.L., 1983. Isotopic evidence for UK. Upper Permian mineralization by bacterial reduction of evaporites. Nature 301, 597-599.
    [59] 蒋少涌.硼同位素及其地质应用研究.高校地质学报,2000,6(1):1-14.
    [60] Fisher R.S., Kreiter C.W. Geochemistry and hydrodynamics of deep-basin brines, Palo Duro Basin, Texas, USA. Appl. Geochim, 1987, 2:459-476.
    [61] W. Kloppmann, PH. Negrel, J. Casanova, H. Klinge. Halite dissolutionderived in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica Cosmochimica Acta, 2001, 65(22):4087-4101.
    [62] Vengosh A., Starisnky A., Chivas A.R., et al. Boron isotope variations during fractional evaporation of sea water: New constrines on the marine vs. nonmarine debate. Geology, 1992, 20: 799-802.
    [63] 郑喜玉,张明刚,徐昶等.中国盐湖志.北京:科学出版社,2002:2-5.
    [64] 阿列金 O.A.水化学.北京:北京水利出版社,1957.
    [65] 石油化学工业部化学矿山局编.石油勘探中找钾盐矿的方法.北京:石油化学工业出版社,1977:1-11.
    [66] Walter L.M., A.M. Stueber, T.J. Huston. Br-Cl-Na systematics in Illinois Basin fluids: constrants on fluid origin and evolution. Geology, 18:315-318.
    [67] 林耀庭,唐庆,熊淑君.四川盆地海相三叠系异常水化学探盐找钾的研究.化工矿产地质,1999:7-14.
    [68] 赵振华.元素地球化学.见:欧阳自远主编:地球化学:历史、现状和发展趋势.北京:原子能出版社,1996:48-55.
    [69] H. G. M. Eggenkamp, R. Kreulen, A. F. Koster Van Groos. Chlorine stable isotope fractionation in evaporates. Geochimica et Cosmochimica Acta, 1995, 59(24): 5169-5175.
    [70] 周栋,刘存富.河北沧州地区天然水的氯同位素组成.地球科学,1996,21(5):561-566.
    [71] 彭齐鸣,许虹.硼同位素地球化学及其示踪意义.地质地球化学,1994,5: 55-59.
    [72] 刘丛强.流体-岩石反应体系中的硼同位素地球化学。地质地球化学,1996,25(1):93-100.
    [73] Ellis A. J., Mahon W A J. Natural hydrothermal systems and experimental hot-water interactions, Part 2. Geochimica et Cosmochimica Acta, 1967, 28:519-538.
    [74] Syfried W E Jr., Janecky D R, et al. Alteration of the oceanic crust: Implication for geochemical cycles of litjium and boron. Geochimica et Cosmochimica Acta, 1984, 48: 557-569.
    [75] Lyons W B, Welch K A. Lithium in waters of a polar desert. Geochimica et Cosmochimica Acta, 1997, 6(20):4309-4319.
    [76] Hoers J, Sywall M. Lithuim isotope composition of Queaternary and Tertiary biogene carbonates and global lithium isotope balance. Geochimica et Cosmochimica Acta, 1997, 61:2679-2690.
    [77] Chart L H, Edmond J M, Thompson G, et al. Lithium isotope composition of submarine basalts: implications for modification of subare mantle by slab-derived fluids. Chemical Geology, 1999, 160:255-280.
    [78] Chan L H., Kastner M. Lithium isotope composition of fluids and sediments at the Costa Rica subduction zone: results fromODP Sites 1039 and 1040. Transaction of American Geophysics, 1998, Union 79, 395.
    [79] Zhang L B, Chan L H., Gieskes J M. Lithium isotope geochemistry of pore waters from Ocean Drilling Program: Sites 918 and 919, Irminger Basin. Geochimica et Cosmochimica Acta, 1998, 62:2437-2450.
    [80] Chan L H, Edmond J M. Variation of lithium isotope composition in the marine environment: A preliminary report. Geochimica et Cosmochimica Acta, 1988, 52:1711-1717.
    [81] James F. Hogan, Joel D. Blum. Boron and lithium isotopes as groundwater tracers: a study at the Fresh Kills Landfill, Staten Island, New York, USA. Applied Geochemistry, 2003, 18:615-627.
    [82] Bottomley D J, Katz A, Chan L H, Starinsky A, Douglas M, et al. The origin and evolution of Canacidian Shield brines: Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave Craton. Chemical Geology, 1999, 159:295-320.
    [83] Vengosh A, Stariinsky A, Kolodny Y, et al. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the dead sea, Israel. Geochim et Cosmochim Acta, 1991a, 55:1689-1695.
    [84] 袁见齐.袁见齐教授盐矿地质论文集.北京:学苑出版社,1989.44-50.
    [85] 张义民.新疆库车盆地地质特征及成钾条件.新疆地质,1981,41(1): 18-41.
    [86] 陈楚铭,卢华夏,贾东等.塔里木盆地晚第三纪-第四季沉积特征、构造变形与石油地质意义.沉积学报,1998,16(2):113-116.
    [87] 贾承造,姚慧君,魏国齐等.塔里木盆地板块构造演化和主要构造单元地质构造特征.见:童晓光,梁狄刚主编.塔里木盆地油气勘探论文集.乌鲁木齐:新疆科技卫生出版社,1992.207-225.
    [88] 贾承造,魏国齐,姚慧君等.盆地构造演化与区域构造地质.北京:石油 工业出版社,1995.175-180.
    [89] 崔田秀.钾盐找矿工作中的综合地球物理—地质研究.化工矿产地质,1995,17(3).
    [90] 蔡春芳,梅博文,马亭,陈传平,李伟,柳常青.塔里木盆地流体岩石相互作用研究.北京:地质出版社,1997.8-10.
    [91] 袁见齐,霍承禹,蔡克勤.高山深盆的成盐环境—一种新的成盐模式的剖析.地质论评,29(2):159-165.
    [92] 郝诒纯,关绍曾,叶留生等.塔里木盆地西部地区新近纪地层及古地理特征.地质学报,2002,76(3):289-298.
    [93] 周江羽,韩燕英,林忠民.塔北地区下石炭统含盐层系的沉积演化及成盐机理.新疆石油地质,1999,20(3):244-247.
    [94] 张义民,王佐仁,贺光正.库车盆地地质特征和成钾条件分析.新疆地质,1986,4(1):57-71.
    [95] 郭宪璞,丁孝忠,何希贤.塔里木盆地中新生代海侵和海相地层研究的新进展.地质学报,2002,76(3):299-307.
    [96] 唐天福,杨桓仁.新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性.北京:科学出版社,1989.
    [97] 雍天寿.西塔里木盆地海相晚白垩世一早第三纪地层.新疆石油地质,专辑,1984:1—75.
    [98] 雍天寿,单金榜.白垩纪及早第三纪塔里木海湾的形成与发展.沉积学报,1986,4(3):67—75.
    [99] Frey R W, Howard J D, Pryor W A. Ophiomorpha: its morphologic, taxonomic, and environmental significance. J. Paleogeogr. Paleoclim. Plaeoec., 1978, 23(3~4):199-220.
    [100] Dilley F C. Cretaceous foraminiferal biogeography. J. Geol. Spec. Iss 4, 1971: 169-190.
    [101] Schroder-Adams C J, Leckie D A. Paleoenvironmental changes in the Cretaceous (Albian to Turonian) Colorado Group of Western Canada: microfossil, sedimentological and geochemical evidence. Cretaceous Res. 17, 1996: 311-365.
    [102] 孙宝生,刘增生,王招明.塔里木盆地喀什拗陷几个地质问题的新认识.新疆地质,Vol 21,No.1,2003:78-84.
    [103] Tim K. Lowenstein, Ronald J. Spencer, Zhang Pengxi. Origin of ancient potash evaporates.: Clues from the modern nonmarine Qaidam Basin of western China. Science, 1989, 245:1090-1092.
    [104] 刘兴起,蔡克勤,于升松.基于Pitzer模型的茶卡盐湖卤水及盐类矿物形成的地球化学模拟.中国科学(D辑),2003,33(3):247-507.
    [105] Philips F M, Bentley H W. Isotopic fractionation during ion filtration: 1. theory. Geochim Cosmochim Acta, 1987, 1087 (51): 683-695.
    [106] Vengosh A, Chivas A R, McCullonch M T. Direct determination of boron and chlorine isotopes in geological materials by negative thermal-ionization mass spectrometry. Chem Geo, 1989, 79: 333-343.
    [107] 肖应凯,金琳,刘卫国等.大柴达木湖的氯同位素组成.科学通报,1994,39(41):1319-1322.
    [108] 刘卫国,肖应凯,孙大鹏等.柴达木盆地盐湖氯同位素组成的初步研究.科学通报,1994,39(20):1918-1919.
    [109] 肖应凯,刘卫国,周引民等.盐湖卤水和盐类矿物的氯同位素组成.科学通报,1996,41(22):2067-2071.
    [110] Xiao Yingkai, Liu Weiguo, Zhou Yinmin, et al. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China. Chinese Journal of Oceanology and Liminology, 2000, 18 (2): 169-177.
    [111] 刘卫国,彭子成,肖应凯.硼、氯同位素测定方法及地球化学研究进展.地球科学进展,1998,13(6):547-554.
    [112] 郑绵平,刘文富,许德明.我国的成盐时代和有利成钾地区的探讨.地质矿产研究,1974,1:117-123.
    [113] Holster W T. Catastrophic chemical event in history of the ocean. Nature, 267:402-408.
    [114] Holster W T, Kaplan I R. Isotope geochemistry of sedimentary sulfates. Chem. Geo., 1:93-135.
    [115] Holster W T, Magaritz, Ripperdan R L. Global isotope events. In: Global Events and Event Stratigraphy in the Phanerzoic(ed O H Walliser), Springer-Verlag, Berlin, 1996, 63-88.
    [116] Habicht K S, Canfield D E. Sulfur isotope fraction during bacterial sulfate reduction in organic-rich sediments. Geochim. Cosmochim Acta, 1997, 61:5351-5361.
    [117] Habicht, Canfield D E, Rethmeier. Sulfur isotope fraction during bacterial reduction and disproportionation of thiosulfate and sulfate. Geochim. Cosmochim. Acta, 1998, 62:2585-2595.
    [118] Nielson, H. Uber den fraktionierungsfaktor der bakteriellen sulfatreduktion in der nature: Isotope Titles Spec. Issue ASTI 69, v. 1.
    [119] Wedepohl, K.H. Isotope in nature, in: Wedepohl, K.H. Handbook of geochemistry, 1978:1-40.
    [120] Mekhtieva, V.L. Sulfur isotopic composition ofsediments and brines of modern and ancient Kara-Bogaz-Gol. Geokhimija, 5, 1980:745-752.
    [121] Mohamed El Tabakh, Cherdsak Utha-Aroon, B. Charlotte Schreiber. Sedimentology of the Cretaceous Maha SarakhamEvaporites in the Khorat Plateau of Northeastern Thailand. Sedimentary Geology, 123, 1999:31-62.
    [122] El Tabakh, M., Schreiber, B.C. Utha-Aroon, C., Coshell, L., Warren, J. K. Diagenetic origin of Basal anhydrite in the Cretaceous Maha Sarakham salt: Khorat Plateau, NE Thailand. Sedimentology 45, 1998: 45-58.
    [123] 李亚文,韩蔚田.南海海水25℃等温蒸发实验研究.地质科学,30(3),1995:233-239.
    [124] 于津生,李耀菘.中国同位素地球化学研究.北京:科学出版社,1997: 589—593.
    [125] 林年丰,李昌静,钟佐燊等.环境水文地质学.北京:地质出版社,1990: 176-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700