尕海湖全新世沉积记录高分辨率古气候研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尕海湖是位于青藏高原东北部、德令哈盆地的一内陆封闭性湖泊,对气候变化响应非常敏感,是研究区域环境对全球变化响应的理想地点。本文利用在尕海湖西北岸获得的DG02孔岩芯沉积物样品的粒度、磁化率(平均年代分辨率为37a)和孢粉(平均年代分辨率为65a)等多气候代用指标的综合分析,重建尕海湖全新世以来的古气候环境演化历史,并同周边及其他区域气候记录进行广泛的对比,探讨该地区全新世以来可能的气候变化驱动机制。
     全新世以来,尕海湖地区的古气候大致经历了以下3个主要气候变化阶段:①在11400~7910cal aB.P.期间,对应早全新世。研究区气候整体冷湿,大致分为两个阶段,早期在结束新仙女木冷事件之后,气温有所回升,降水增加;后期气温有所降低,降水量仍较高,气候相对冷湿。②在7910~5110cal aB.P.期间,研究区气候暖湿,水热组合条件最好,是本区域真正意义上的气候适宜期。③在5110~230cal aB.P.期间,研究区气候整体冷干,大致分为三个阶段,早期气候冷干;中期,气温稍有回升,气候温干;后期,气候表现为冷湿。同时在全新世期间发生8.2cal KaB.P.、6.4cal kaB.P.、5.8cal kaB.P.、5.2cal kaB.P.、2.6cal kaB.P.和1.2cal kaB.P.等6次快速变冷或变干事件。总的来看,尕海湖地区全新世以来的气候变化历史同季风边缘区的一些气候记录基本上是一致的,但是由于不同气候记录的敏感性以及不同区域气候客观上存在的地区性差异,使得一些具体的变化细节对比可能出现一定的差别。另外,考虑到不同气候记录的样品分析精度、定年精度等方面存在一定的差异,对全新世期间一些重要气候事件的确认与对比还有赖于开展更多的高精度年代序列和提高样品分析精度。
     根据孢粉共存分析法重建该地区全新世以来多气候参数的变化序列,结果显示各参数的共存区间为:年均温(2.2~8℃)、年均降水量(131~363mm)、最冷月均温(-15.8~-8℃)、最热月均温(18.5~23℃)、平均最小月降水量(2~3mm)、平均最大月降水量(26.4~88.4mm)、大于5℃的有效积温(1578~2458℃·d)、相对湿度(49~57%)。尕海湖全新世时期的气候与现代气候类型整体上保持一致,但在全新世不同时期气候有微小的波动,中全新世(7910~5110cal aB.P.)年均温达到最高,而在5110 cal aB.P.后开始变冷,并逐步趋向现代的温度。全新世降水量总体上比现代降水量多,早全新世(11400~7910cal aB.P.)降水量最高,此后降水量逐渐降低,并在晚全新世逐渐出现干旱化。
     尕海湖位于季风边缘区,全新世以来气候在不同时期受到西风环流、亚洲夏季风等影响,与低纬热带海洋地区的海-气相互作用也具有一定的联系,但最重要的气候驱动因素可能还是太阳辐射的变化,包括地球气候系统复杂的、非线性的相互作用与反馈过程。
Gahai Lake is a closed inland lake, which is located in the northeast Delingha Basin, Qinghai—Tibet Plateau. It is very sensitive in the response to climate change and is the ideal location to study the regional environment response to global change. Based on comprehensive analysis of granularity, magnetic susceptibility (average resolution is 37a) and pollen (average resolution is 65a ) in DG02 core obtained from the west-northern margin of Gahai Lake, and compared with the climate records from the adjacent areas, this article reconstructed the Holocene climate and discussed the possible climate change-driven mechanism in the study area.
     Gahai Lake had gone through three major paleclimate stage in the Holocene. The first stage was from 11400 to 7910cal aB.P., which was corresponding to early Holocene. The climate was cold and wet, which can be divided into two periods. The early period was at the end of the Younger Dryas cold event, with inceasing temperature and precipitation. In the late period the temperature decreased slightly but the precipitation is still high, which means the climate was relative wet and cold. The second stage was from 7910 to 5110cal aB.P., with the climate of warm and wet, and the combinations of the heat and precipitation in this region were best of all epoch, which was actually the Holocene optimum. The third stage was from 5110 to 230cal aB.P., with the climate of cold and dry as a whole, which can be divided into three periods. In the early period, the climate was cold and wet. In the second period, the temperature recovered slightly and the climate was warm and dry. Later, the climate was cold and wet. At the same time, it had six cold or dry events in 8.2cal kaB.P., 6.4cal kaB.P., 5.8cal kaB.P., 5.2cal kaBP, 2.6cal kaB.P. and 1.2 cal kaB.P. in the Holocene.
     Climate change in the Gahai Lake since Holocene was similar to the record of marginal zone of monsoon, but there were some differences of details in the climate change, due to different sensitivity of climate proxy and the regional climate. Taking into account the different precision of climate proxy, dating precision et al, the affirmation of some key Holocene climate events would depend on more accurate data of chronology and samples.
     Based on the Coexistence Approach that reconstructed Holocene climate, the result showed the coexistence intervals of each parameter: mean annual temperature(2.2~8℃), mean annual precipitation(131~363mm), mean temperature of the coldest month(-15.8~-8℃), mean temperature of the warmest month(18.5~23℃), mean minimum monthly precipitation(2~3m), mean maximum monthly precipitation (26.4~88.4mm), growing-day degrees above 5℃(1578~2458℃·d), mean relative humidity(49~57%). The Holocene climate overall consisted with modern climate types in Gahai Lake, but it had small fluctuations at different periods. The highest annual average temperature reached the highest in Mid-Holocene(7910~5110 cal aB.P.), but it began cold at 5110cal aB.P. and gradually become a modern temperature. Precipitation in Holocene was more than modern time’s. Precipitation was the most in early Holocene(11400~7910cal aB.P.) and then the precipitation gradually deceased and then emerged drought in the late Holocene(5110~230cal aB.P.).
     Gahai Lake, which is located in the monsoon marginal, may be influenced by westerly circulation and the Asian summer monsoon at different stage in the Holocene, and also contacts with the low latitude air–sea interactions of the tropical ocean regions.
引文
[1]温孝胜,彭子成,赵焕庭.中国全新世气候演变研究的进展.[J].地球科学进展.1999, 14(3):292-298.
    [2]刘东生,刘嘉麒,吕厚远.玛珥湖高分辨率古环境研究的新进展.[J].第四纪研究.1998, 11(4):289-295.
    [3]王苏民,冯敏.内蒙古岱海湖泊环境变化与东南季风强弱的关系.[J].中国科学(B辑). 1991,21(7):759-768.
    [4]韩淑缇,瞿章.北疆巴里坤湖内陆型全新世气候特征.[J].中国科学(B辑).1992,11(11): 1201-1209.
    [5]朱允铸.柴达木盆地新构造运动及盐湖发展演化.[M].北京:地质出版社.1994.
    [6]甑勇译.更新世与全新世界线.[J].国外地质.1984,9:6-14.
    [7]刘嘉麒,倪云燕,储国强.第四纪的主要气候事件.[J].第四纪研究.2001,21:239-248.
    [8]施雅风,孔昭宸,王苏民等.中国全新世大暖期的气候波动与重要事件.[J].中国科学(B辑).1992,(12):1300-1308.
    [9]施雅风,孔昭宸,王苏民等.中国全新世大暖期鼎盛阶段的气候与环境.[J].中国科学(B辑). 1993,(8):865-873.
    [10]Denton G H,Karlen W. Holocene climatic variations:their paterns and possible cause.[J].Quaternary Research.1973,3:155-205.
    [11]O’Brien S.R.,Mayewski P.A.,Meeker L.D. et al. Complexity of holocene climate as eeconstructed from a greenland ice core.[J].Science.1995,270:1962-1964.
    [12]GRIP members.Climate instability during the interglacial period recored in GRIP ice core.[J].Nature.1993,364:203-207.
    [13]Bond G,William S,Cheseby M,et al. A pervasive millennial-cycle in North Atlantic climate during the Holocene.[J].Science.1997,278:1257-1266.
    [14]Bianchi G G,McCave I N. Holocene periodicity in north Atlantic climate and deep-ocean flow south of Iceland.[J].Nature.1999,397:515-517.
    [15]Baker P A,Seltze G O,Fritz S C,et al. The history of south American tropical precipitation for the past 25000 years.[J].Science.2001,291:640-643.
    [16]陈发虎,朱艳,李吉均等.民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化. [J].科学通报.2001,46(17):1414-1419.
    [17]Hong Y T,Hong B,Lin,Q H,et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene.[J]. Earth Planet Science Letter.2003, 211:371-380.
    [18]周卫建,卢雪峰,武振坤等.若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年.[J].科学通报.2001,46(12):1040-1044.
    [19]王华,洪业汤,朱咏煊等.青藏高原泥炭腐殖化度的古气候意义.[J].科学通报.2004, 49(7):686-691.
    [20]汪卫国,冯兆东,Khosbaryar P等.蒙古全新世气候变化研究进展.[J].地球科学展. 2005,20(2):240-247.
    [21]Mayewski P A,Rohling E E,Stager J C,et al. Holocene climate variability. [J].Quaternary Research.2004,62:243-255.
    [22]Beget J E. Radiocarbon-dated evidence of worldwide early Holocene climate change. [J].Geology.1983,11:389-393.
    [23]Alley R B,Mayewski P A,Sowers T,et al. Holocene climatic instability:a prominent widespread event 8200 yr ago.[J].Geology.1997,25:483-486.
    [24]王杰,周尚哲,许刘兵.“8.2ka BP冷事件”的研究现状展望.[J].冰川冻土.2005, 27(4):520-527.
    [25]王宁练,姚檀栋,Thompson,L.G.等.全新世早期强降温事件的古里雅冰芯记录证据.[J].科学通报.2002,47(11):818-823.
    [26]Stager J C,Cumming B,Meeker L D. A high-resolution 11400yr diatom record from lake Victoria,East Mrica.[J].Quaternary Research.1997,47:81-89.
    [27]Dahl-Jensen D,Mosegaard K,Gundesstrup N,et al. Past temperature directly from the Greenland Ice Sheet.[J].Science.1998,282:268-271.
    [28]Raymonde and Francoise.Pollen-inferred precipitation time-series from equatorial mountains,Aferica,the last 40kyr BP.[J].Global and Planetary Change.2000,26(1-3):25-50.
    [29]Feng Z D,An C B,Wang H B.Holocene climatic and environmental changes in the arid and semi-arid areas of China:a review.[J].The Holocene.2006,16(1):1-12.
    [30]安芷生,波特S,吴锡浩等.中国中东部全新世气候适宜期与东亚夏季风变迁.[J].科学通报.1993,38(14):1302-1305.
    [31]吴锡浩,安芷生,王苏民等.中国全新世气候适宜期东亚夏季风时空变迁.[J].第四纪研究.1994,1:24-37.
    [32]An Z S,Porter S C,Kutzbach J E,et al. Asynchronous Holocene optimum of the East Asian monsoon.[J].Quaternary Science Review.2000,19:743-762.
    [33]Hughes M K,Diaz H F. Was there a“Medieval Warm Period”,and if so,where and when.[J].Climatic change.1994,26:109-142.
    [34]竺可桢.中国五千年气候变迁的初步研究.[J].中国科学.1973,16(2):168-189.
    [35]王绍武,闻新宇,罗勇等.近千年中国温度序列的建立.[J].科学通报.2007,52:958-964.
    [36]Yang X P,Zhu Z D,Jaekel D, et al. Late Quaternary Palaeoenvironment change andlandscape evolution along the Keriya River,Xinjiang,China:the relationship between high mountain glaciations and landscape evolution in foreland desert regions.[J].Quat Int.2002,97/98:155-166.
    [37]王绍武.小冰期气候的研究.[J].第四纪研究.1995,(3):202-212.
    [38]李明启,靳鹤龄,张洪.小冰期气候的研究进展.[J].中国沙漠.2005,25(5):731-737.
    [39]王劲松,李金豹,陈发虎,等.树轮宽度记录的天山东段近200a干湿变化.[J].冰川冻土.2007,29(2):209-216.
    [40]郑绵平,赵元艺,刘俊英.第四纪盐湖沉积与古气候.[J].第四纪研究.1998,(4):297-307.
    [41]陈克造,Bowler,J.W..柴达木盆地察尔汗盐湖沉积特征及其古气候演化的初步研究.[J].中国科学(B辑).1985,15(5):463-474.
    [42]黄麒,孟昭强,刘海玲等.柴达木盆地察尔汗盐湖区古气候波动模式的初步研究.[J].中国科学(B辑).1990,20(5):652-4663.
    [43]刘兴起,王永波,沈吉等.16000a以来青海茶卡盐湖的演化过程及其对气候的响应.[J].地质学报.2007,81(6):843-849.
    [44]强明瑞.青藏高原北缘苏干湖湖芯记录的全新世气候变化研究.[D].兰州大学博士论文. 2002.
    [45]强明瑞,陈发虎,张家武等.2ka来苏干湖沉积碳酸盐稳定同位素记录的气候变化.[J].科学通报.2005,50(13):1385-1392.
    [46]Zhao Yan,Yu Zicheng,Chen Fahu et al. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin,northwest China.[J].Review of Palaeobotany and Palynology.2007,145:275-288.
    [47]陈忠.冰消期晚期以来德令哈尕海湖气候环境演变的碳、氧同位素记录.[D].中国科学院青海盐湖研究所博士学位论文.2007.
    [48]张西营,马海州,韩风清等.德令哈盆地尕海湖DG03孔岩芯矿物组合与古环境变化.[J].沉积学报.2007,25(5):767-773.
    [49]曹广超,马海州,隆浩等.柴达木盆地东部尕海湖DG03孔岩芯粒度特征及环境意义.[J].中国沙漠.2008,28(6):1073-1077.
    [50]何元庆,姚檀栋,沈永平等.冰芯与其他记录所揭示的中国全新世大暖期变化特征.[J].冰川冻土.2003,25(1):11-18.
    [51]姚檀栋,Thompson L G.敦德冰芯记录与过去5ka温度变化.[J].中国科学(B辑).1992,10: 1089-1093.
    [52]邵雪梅,梁尔源,黄磊等.柴达木盆地东北部过去1437a的降水变化重建.[J].气候变化研究进展.2006,2(3):122-126.
    [53]邵雪梅,黄磊,刘洪滨等.树轮记录的青海德令哈地区千年降水变化.[J].中国科学D辑. 2004,34(2):145-153.
    [54]康兴成,张其花.青海都兰过去2000年来的气候重建及其变迁.[J].地球科学进展.2000, 15(2):215-221.
    [55]曾永年,冯兆东,曹广超.末次冰期以来柴达木盆地沙漠形成与演化.[J].地理学报.2003, 58(3):452-458.
    [56]郝永萍,方小敏,奚晓霞等.柴达木盆地东缘晚更新世气候变化的古土壤发生记录.[J].地理科学.1998,18(4):249-254.
    [57]段水强.德令哈盆地湖泊湿地变化与生态需水初步研究.[J].中国农村水利水电.2005, (9):22-23.
    [58]刘秀菊.柴达木盆地晚全新世湖泊孢粉记录与气候变化.[D].兰州大学硕士学位论文. 2007.
    [59]郑喜玉,张明刚,徐昶等.中国盐湖志.[M].北京:科学出版社.2002:173-174.
    [60]中国科学院青海甘肃综合考察队.柴达木盆地资源植物.[M].西宁:青海人民出版社. 1964.
    [61]窦衍光.长江口邻近海域沉积物粒度和元素地球化学特征及其对沉积环境的指示.[D].国家海洋局第一海洋研究所硕士学位论文.2007.
    [62]谢远云,李长安,王秋良等.江汉平原江陵湖泊沉积物粒度特征及气候环境意义.[J].吉林大学学报(地球科学版).2007,37(3):570-577.
    [63]刘兴起,王苏民,沈吉.青海湖QH-2000钻孔沉积物粒度组成的古气候古环境意义.[J].湖泊科学.2003,15(2):112-117.
    [64]吉云平.不同类型沉积物中磁化率的解释.[D].北京大学硕士学位论文.2007.
    [65]王建,刘泽纯,姜文英等.磁化率与粒度、矿物的关系及其古环境意义.[J].地理学报. 1996,51(2):155-163.
    [66]Oldfield F. Environmental Magnetism a personal perspective.[J].Quaternary Science Reviews.1991,10:73-85.
    [67]吴瑞金.湖泊沉积物的磁化率、频率磁化率及其古气候意义——以青海湖、岱海近代沉积物为例.[J].湖泊科学.1993,5(2):128-135.
    [68]张振克,吴瑞金,王苏民.岱海湖泊沉积物频率磁化率对历史时期环境变化的反映.[J].地理研究.1998,17(3):297-302.
    [69]胡守云,吉磊,王苏民等.呼伦湖地区扎赉诺尔晚第四纪湖泊沉积物的磁化率变化及其影响因素.[J].湖泊科学.1995,7(1):33-40.
    [70]胡守云,王苏民,Appel E等.呼伦湖湖泊沉积物磁化率变化的环境磁学机制.[J].中国科学(D辑).1998,28(4):334-339.
    [71]张振,宋春晖,张平等.青藏高原昆仑山垭口盆地晚上新世以来沉积物磁化率与气候变化. [J].资源调查与环境.2007,28(3):205-213.
    [72]钟巍,王立国,李偲.塔里木盆地南缘沉积物磁化率、δ13 C与粒度及其气候环境意义.[J].地理研究.2005,24(1):98-104.
    [73]许清海,李月丛,阳小兰等.北方草原区主要群落类型表土花粉分析.[J].地理研究. 2005,24(3):394-402.
    [74]王伏雄,钱南芬,张玉龙等.中国植物花粉形态(第二版).[M].北京:科学出版社.1995.
    [75]席以珍,宁建长.中国干旱半干旱地区花粉形态研究.[J].Yushania.1994,11:119-191.
    [76]唐领余,沈才明,李春海等.花粉记录的青藏高原中部中全新世以来植被与环境.[J].中国科学(D辑:地球科学).2009,39(5):615-625.
    [77]Mosbrugger,Utescher.The coexistence approach:A method for quantitative reconstruction of Tertiary terrestrial paleoclimate data using plant fossils. [J].Pala ogeogr Palaeoclimatol Palaeoecol.1997,134:61-86.
    [78]徐景先.云南中西部地区晚第三纪孢粉植物群及其古植被和古气候研究.[D].中国科学院博士学位论文.2002.
    [79]寇香玉.新生代孢粉分析与古气候定量重建的研究.[D].中国科学院博士学位论文. 2005.
    [80]姚轶锋.海南岛长昌盆地始新世孢粉植物群及其古植被和古气候研究.[D].中国科学院博士学位论文.2006.
    [81]史冀忠,刘招君,柳蓉等.辽宁抚顺盆地始新世古气候定量研究.[J].吉林大学学报(地球科学版).2008,38(1):50-55.
    [82]New M,Lister D,Hulme M,et al. A high-resolution data set of surface climate over global land areas.[J].Climate Research.2002,21(1):1-25.
    [83]郑卓,黄康有,许清海等.中国表土花粉与建群植物地理分布的气候指示性对比.[J].中国科学(D辑).2008,38(6):701-714.
    [84]杨勇,李长安,胡思辉等.武汉青山“砂山”粒度特征及其成因指示.[J].沉积学报.2008, 26(3):487-493.
    [85]施祺,王建民,陈发虎.石羊河古终端湖泊沉积物粒度特征与沉积环境初探.[J].兰州大学学报(自然科学版).1999,35(1):194-198.
    [86]梁明媚.山东山旺中新世孢粉植物群及古气候和古生态研究.[D].中国科学院博士学位论文.2001.
    [87]Thompson L G,Wu Xiaoling,Thompson E M,et al. Holocene-Late Pleistocene climatic ice core records from the Dunde Ice Cap,China.[J].Annals of Glaciology.1989,10: 178-182.
    [88]卫克勤,林瑞芬.祁连山敦德冰芯氧同位素剖面的古气候信息探究.[J].地球化学.1994, 23(4):311-320.
    [89]姚檀栋,Thompson,L.G.,施雅风等.古里雅冰芯中末次间冰期以来气候变化记录研究.[J].中国科学(D辑).1997,27(5):348-353.
    [90]杨志红,姚檀栋,黄翠兰等.古里雅冰芯中的新仙女木期事件记录.[J].科学通报.1997, 42(18):1975-1978.
    [91]王宁练,姚檀栋,Thompson,L.G.等.全新世早期强降温事件的古里雅冰芯记录证据.[J].科学通报.2002,47(11):818-823.
    [92]Hoogendoorn R M,Boels J F,Krooneneberg S B,et al. Development of the Kura,Delta Azerbaijan;a record of Holocene Caspian sea-level changes.[J].Marine Geology. 2005, 222-223:359-380.
    [93]Boomer I.,Aladin N.,Plottnikov I.et al. The palaeolimnology of the Aral Sea: a review.[J].Quaternary Science Reviews.2000,19:1259-1278.
    [94]Karabanov E.B.,Williams D.F.,Kuzmin M.et al. Ecological collapse of Lake Baikal and Lake Hovsgol ecosystems during the Last Glacial and consequences for aquatic speciesdiversity.[J].Palaeogeography,Palaeoclimatology,Palaeoecology.2004, 209:227-243.
    [95]黄小忠.新疆博斯腾湖记录的亚洲中部干旱区全新世气候变化研究.[D].兰州大学博士学位论文.2006.
    [96]陶士臣,安成邦,陈发虎等.新疆巴里坤湖8.8cal kaBP以来植被演替的花粉记录.[J].古生物学报.2009,48(2):194-199.
    [97]薛积彬,钟巍.新疆巴里坤湖全新世环境记录及区域对比研究.[J].第四纪研究.2008, 28(4):610-620.
    [98]刘兴起,沈吉,王苏民等.青海湖16ka以来的花粉记录及其古气候古环境演化.[J].科学通报.2002,47(17):1351-1355.
    [99]刘兴起,沈吉,王苏民等.16ka以来青海湖湖相自生碳酸盐沉积记录的古气候.[J].高校地质学报.2003,9(1):38-46.
    [100]孙千里,周杰,肖举乐.岱海沉积物粒度特征及其古环境意义.[J].海洋地质与第四纪地质.2001,21(1):93-95.
    [101]许清海,肖举乐,中村俊夫等.孢粉资料定量重建全新世以来岱海盆地的古气候.[J].海洋地质与第四纪地质.2003,23(4):99-108.
    [102]张美良,程海,林玉石.贵州荔波1.5万年以来石笋高分辨率古气候环境记录.[J].地球化学.2004,33(1):65-74.
    [103]Fleitmann D.,Burns S.J.,Mudelesee M.,et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman.[J].Science.2003,300: 1737-1739.
    [104]Gupta A.K.,Anderson D.M.,Overpeck J.T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the north Atlantic Ocean.[J]. Nature.2003,421(23):354-357.
    [105]Wei K.,Gasse F.. Oxygen isotopes in lacustrine carbonates of West China revisited:Implications for post glacial changes in summer monsoon circulation.[J].Quaternary Science Reviews.1999,18(12):1315-1334.
    [106]孙爱芝.黄土高原西部末次冰消期以来的植被及环境变化研究.[D].兰州大学博士学位论文. 2007.
    [107]Wang L.,Sarnthein M.,Erlenkeuser H.,et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the soyth China Sea. [J].Marine Geology.1999,156:245-284.
    [108]Pelejero C.,et al. High-resolution Uk37 temperature reconstructions in the South China Sea over the past 220kyr.[J].Paleoceanography.1999,14(2):224-231.
    [109]黄元辉.末次冰消期以来南海北部深海硅藻及其对东亚季风演变的沉积响应.[D].华东师范大学博士学位论文.2008.
    [110]沈吉,王苏民,Matsumoto,R.等.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化.[J].中国科学(D辑).2004,34(6):582-589.
    [111]翟新伟.蒙古高原全新世气候与环境变化研究.[D].兰州大学博士论文.2004.
    [112]李吉均.中国西北地区晚更新世以来环境变迁模式.[J].第四纪研究.1990,10(3): 197-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700