柴达木盆地西部油田卤水形成演化的水化学和锶同位素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴达木盆地西部一些背斜构造单元古近纪-新近纪地层赋存有储量巨大的油田卤水资源,有望成为第四纪盐湖卤水的后续利用资源。通过野外实地考察取样,参考已有数据资料,本文选取资源丰富,有一定区域代表性的柴达木盆地西部茫崖拗陷小梁山、南翼山、油泉子、开特米里克、油墩子、油砂山等典型构造区石油钻孔自喷油田卤水为主要研究对象,地表盐湖、晶间卤水为参比,分析了其水化学特征和锶同位素数据。在此基础上初步探讨了卤水的成因、演化和物源信息。这一研究对于丰富同位素示踪、水-岩相互作用等基础理论具有重要研究意义,同时对于正确评价待开发油田卤水资源的成因、演化,进一步分析其开发利用潜力、物源保障程度有突出的现实研究价值,并可能创造长远的社会经济效益。
     通过与海水、青海湖陆相水蒸发曲线对比,从卤水化学成分、水化学演化特征分析和87Sr/86Sr值的对比发现,柴达木盆地西部油田卤水、盐湖晶间卤水及新近纪沉积的石盐都具有同源性,主要是壳源高87Sr/86Sr值低Sr2+含量流体端元与幔源低87Sr/86Sr值高Sr2+含量流体端元的混合,地表水和深源水混合参与油田卤水演化,其化学演化主要受控于水-岩反应、深部水的混合以及蒸发浓缩和岩盐的溶解作用。根据油田卤水的演化特征和成因类型推断,柴达木盆地西部油田卤水矿化度高,储量可观,补给源充足。其中K、B、Li资源远超工业开采品位,Br、Sr等也达到工业开采品位,有优越的高品位综合开发利用前景。
There have much oilfield brine developed in the Tertiary strata in the western Qaidam Basin, which will be likely become the brine resources to make up for the limited salt lake resources in future. Basing on known data and the filed work, we collected some oilfield brine samples from petroleum drills in Xiaoliangshan, Nanyishan, Youquanzi, Kaitemilike, Youdunzi and Youshashan tectonic anticlines of the representative Mangya Depression as major objects and referenced salt lake brine and intercrystalline bittern. Through analyzed on their basic characters of hydrochemistry and the date of 87Sr/86Sr, we discussed their chemical evolution and origins. This research is of important significance to enrich basic theory such as isotope trace, water-rock reciprocity etc. Also, it’s of practical prominent value to discuss the oilfield brine resources’chemical evolution and origins exactly and to analyze the potential of exploitation better. It may create long-term societal economic benefit.
     Through compared with evapo concentrated seawater and Qinghai Lake water and analyzed on their basic characters of hydrochemistry and the date of 87Sr/86Sr, we discovered that the oilfield brine, the salt rocks and the quaternary salt lake water have the same origin. They all were mixed by two liquid elements.One is of high 87Sr/86Sr but low Sr2+content from the earth's crust, the other is contrarily of low 87Sr/86Sr but high Sr2+content from the earth's mantle. Both the surface water and deep underground water are concerned with the oilfield brine’s formation.The chemical evolution of oilfield brine is mainly controlled by the interaction of water-rock, deep water mix and evaporation ordissolution of salts. The result provides that the oilfield brine resource is of high mineralization and reserves and is flush of source of replenishment, the concentration of resources such as K, B and Li in oilfield waters is much higher than the industrial grade and Sr, Br also up to the lowest industrial grade, which means that oilfield waters have excellent foreground for synthetic utilization.
引文
[1] 张彭熹等,柴达木盆地盐湖[M],科学出版社,1987
    [2]中国科学院盐湖研究所,青海柴达木盆地晚新生代地质环境演化[M],科学出版社,1986
    [3]党玉棋,尹成明,赵东升,柴达木盆地西部地区古近纪与新近纪沉积相[J].古地理学报, 2004,6(3):297-306
    [4] 付建龙,于升松,李世金等, 柴达木盆地西部第三系油田卤水资源可利用性分析. 盐湖研究,2005,13(6):17-22
    [5] 王弭力,杨智琛,刘成林, 柴达木盆地北部盐湖钾矿床及其开发前景[M]. 北京:地质出版社,1996,33-51
    [6] 郑喜玉,青海柴达木盆地晚新生代地质环境演化[M]. 北京:科学出版社,. 1986,133-147
    [7] 瓦良亚什科,钾盐矿床形成的地球化学规律[M],范立等译,中国工业出版社,1965
    [8] TAN Hongbing , Ma Haizhou , Lu Huayu , etc. The paleo-environmental significance of Sr and Ca contained in acid-soluble fraction of high plateau loess deposit in Xining Basin. Chinese[J] Journal of Geochemistry, Vol.22, No.2, 2003:156-163
    [9] 谭红兵,曹成东,李廷伟,樊启顺.柴达木盆地西部油田卤水资源水化学特征及化学演化[J].古地理学报,2007,9(3):313-320.
    [10] 余一欣,汤良杰,马达德等.柴达木盆地断裂特征研究[J].西安石油大学学报,2005,20(3):11-14
    [11] 袁见齐,霍承禹,蔡克勤, 高山深盆的成盐环境——一种新的成盐模式的剖析[J].地质论评,1983,29(2):159-165
    [12] 王饵力等,罗布泊地区钾盐资源开发利用研究(内部资料) ,2000
    [13] 孙大鹏,李秉孝,马育华等, 青海湖湖水的蒸发实验研究[J]. 盐湖研究,1995,3(2):10-19
    [14] 张金来,我国陆相油田水形成的若干水文地球化学作用[J],地球化学, 1981,(2)::163-173
    [15] 郑喜玉. 柴达木盆地盐湖 Li、B 地球化学[J].中国科学院盐湖所编. 1986. 青海柴达木盆地晚新生代地质环境演化.北京:科学出版社,133-147.
    [16] 曾昭华,曾雪萍.地下水中溴的形成及其与人群健康的关系[J]. 吉林地质,2001,20(1):57-60.
    [17] 汪蕴璞,王焕夫, 深层卤水形成问题及其研究方法[M]. 北京:地质出版社,1982,67-74
    [18] 张彭熹,青藏高原盐湖几个有关地质问题的讨论[J]。青海柴达木盆地晚新生代地质环境的演化,科学出版社,1986:p56-58
    [19] 张长华等,青藏高原的构造体系特征与高原的形成演化[M].北京:地质出版社.1990:159-165
    [20] 张彭熹、张保珍、T.K.洛温斯坦、R.J.斯潘塞,1993,古代异常钾盐蒸发岩的成因一以柴达木盆地察尔汗钾盐的形成为例[M],科学出版社
    [21] 同位素地质年龄测定[M],科学出版社
    [22] Magnus Land, Johan Ingri, Per S.Andersson. Ba/Sr, Ca/Sr and 87Sr/86Sr ratios in soil water and groundwater: implications for relative contributions to stream water discharge.[J]. Applied Geochemistry .2000 (15):311-325.
    [23] 韩贵琳,刘丛强,贵州河流河水的锶同位素与喀斯特地区化学风化作用[J].第四纪研究,2000,20(6):570.
    [24] 赵继昌,耿冬青,彭建华,等.长江河源区的河水主要元素与 sr 同位素来源[J].水文地质工程地质,2003,30(2):89-93.
    [25] Siegel D I,Bickford M E,Orrell S E. The use of strontium and lead isotopes to identify sources of water beneath the Fresh Kills landfill,Staten Island,New York,USA[J].Applied Geochemistry,2000(15):493-500.
    [26] Shawan S D,Andrew L H.Strontium and carbon isotope constraints on carbonate solution interactions and inter aquifer mixing in groundwater of the semiarid Murray Basin.Australia[J] Journal of Hydrology,2002(262):50-67.
    [27] Fairchild I J,Andrea B,Tooth A F,et a1.Controls on trace element (Sr—Mg) compositions of carbonate cave waters:Implications for speleothem climatic records[J].Chemical Geology,2000(166):255— 269
    [28] 孙志国,刘宝柱,刘健,西沙珊瑚礁锶同位素特征及其古环境意义[J],科学通报,1996,43(5)
    [29] 蓝先洪,锶同位素的环境指示意义海洋地质动态[J],1997, 8
    [30] 贺秀斌,微量元素 Sr 及其同位素的地球化学研究与应用前景[J],地球科学进展,1997, 12 (1 总 67)
    [31] 韦刚健,海水中 Sr 同位素组成变化的环境意义与 Sr 同位素地层学[J],海洋科学,1995, (1 总 97)
    [32] 卢武长等,石炭纪海相碳酸盐的Sr同位素演化及其意义矿物岩石[J],1992,12 (2 总 48)
    [33] G.福尔,J.L.鲍威尔,锶同位素地质学[M],贵阳地球化学研究所同位素地质研究室译
    [34] 黄思静等,石膏对白云岩溶解影响的实验模拟研究[J],沉积学报,1996,14(1):103-109
    [35] Graf L. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines.[J] Geochimica et Cosmochimica Acta., 1982.,46: 1431-1448
    [36] Kharaka Y.K., Berry F.A., Friedman I. 1973. Isotopic composition of oil-field brines from Kettleman North Dome, California and their geologic implications. [J] Geochim. Cosmochim. Acta, 37:1899-1908
    [37] Wilson T.P. and Long D T. Geochemistry and isotope chemistry of Michigan brines: Devonian formations.[J] Applied Geochemistry, 1993a, 8:81-100
    [38] Wilson T.P. and Long D T. 1993b. Geochemistry and isotope chemistry of Ca-Na-Cl brines in Silurian strata, Michigan Basin, U.S.A.[J] Applied Geochemistry, 8:507-552
    [39] 钱自强,曲一华,刘群. 钾盐矿床[M],地质出版社,1994:1-13.
    [40] 蔡春芳,梅博文,李伟. 塔里木盆地油田水文地球化学[J]. 地球化学,1996, 25(6):614-623.
    [41] 李亚文,韩蔚田. 南海海水 25℃等温蒸发实验研究[J]. 地质科学,30(3),1995:233-239.
    [42] 陈郁华,黄海水 25℃恒温蒸发的析盐序列及某些微量元素的分布规律[J]. 地质学报, 1983(4):379-395
    [43] 谭红兵,马万栋,马海州等. 塔里木盆地西部古盐矿点卤水水化学特征与找钾研究[J]. 地球化学,2004,33(2):152-158.
    [44] 陈军锋,郑秀清,侯燕军.玄中寺地热水化学特征分析[J].太原理工大学学报,2006,37(3):369-371.
    [45] K. Bukowskia, A.R. Galamayb, M. Go′ralskia.Inclusion brine chemistry of the Badenian salt from Wieliczka[J]. Journal of Geochemical Exploration 69–70 (2000) 87–90.
    [46] Fisher J B,Boles J R, Water-rock interaction in Tertiary sandstone, San Jeoquin Basin, Californa, USA: Diagenetic control on water composion[J]. Chemical Geology, 1990, 82: 83-101.
    [47] Hanor J S. Physical and chemical controls on the composition of waters in sedimentary basins.[J] Marine and Petroleum Geology. 1994, 11(1):31-45.
    [48] Hanor J S. Origin of saline fluids in sedimentary basins. In: Parnell ed. Geofluids: origin,migration and evolution of fluids in sedimentary basins. [J] Geological Society Special Publication. 1994,78:151-174.
    [49] Land L S,Macpherson G L, Origin of saline formation waters ,Cenozoic section,Gulf of Mexico sedimentary basin.[J] AAPG Bull, 1992, 76(9):1344-1362.
    [50] Galamay,A.R.,Bukowski,K,Przybylo.J. Chemical composition and origin of brines in the Badenian evaporite basin of the Carpathian Foredeep:fluid inclusion data from Wieliczka(Poland) [J]. Slovak Geal. , 1997, 3(2):165-171.
    [51] James F.Hogan, Joel D.Blum. Boron and lithium isotopes as groundwater tracers: a study at the fresh Kills Landfill, Staten Island, New York, USA [J]. Applied Geochemistry, 2003,18:615-627.
    [52] W.Kloppnam, Ph. Negrel, J.Casanova, H.Klinge, et al. Halite dissolution derived brines in the vicinity of a Permian Salt dome. Evidence from boron, Strontium, oxygen and hydrogen isotopes[J]. Geochimica Cosmochimica Acta, 2001, 65(22):4087-4101.
    [53] Vengosh A,Starinsky A,Kolodny Y et al. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from Dead Sea,Israel. [J] Geochim.Cosmochim. [J]Acta, 1991,55,1689-1695.
    [54] W. T. Holser, I. R. Kaplan. Isotope geochemistry of sedimentary sulfates. [J] Chemical Geology, 1966,1: 93-135.
    [55] 杨谦,吴必豪,王绳祖等,察尔汗盐湖钾盐矿床地质[M]. 北京地质出版社.1993:188-189
    [56] Mohamed El Tabakh, Cherdsak Utha-Aroon, B. Charlotte Schreiber.Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. [J] Sedimentary Geology, 1999, 123:31–62.
    [57] Craig H. Isotopic variations in meteoric waters.[J] Science,1961, 133,1702-1703.
    [58] Tim K.Lowenstein, Ronald J.Spencer, Zhang Pengxi, origin of ancient potash evaporites:Clues from the modern nonmarine Qaidam Basin of western China. [J] Science,1989,Vol 245: 1090-1092
    [59] A. Vengosh, A. R. Chivas, A. Starinsky, Y. Kolodny, Zhang Baozhen and Zhang Pengxi, Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China. [J] Chemical Geology, 1995, Vol 120:135-154
    [60] Makhnach, N. Mikhajlov, I. Kolosov, L. Gulis, V. Shimanovich, O. Demeneva. Comparative analysis of sulfur isotope behavior in the basins with evaporites of chloride and sulfate types. [J] Sedimentary Geology, 2000, 134: 343-360.
    [61] Degens E T, Epstein S. Oxygen and carbon isotope ratios in coexisting calcite and dolomites from recent and ancient sediments. [J] Geochim Cosmochim Acta, 1964,28:23-44.
    [62] Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition.[J] Econ.Geol, 1974, 69, 843-883.
    [63] Knauth L.P, Beeunas M A. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and origin of saline formation waters.[J] Geochimica et Cosmochimica Acta, 1986,50, 419-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700