柴达木盆地那棱格勒河流域水文情况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会对资源的需求量日益增大,对柴达木盆地的开发正在一步步的加大,如何解决在开发柴达木盆地时所需要的水资源问题成为开发的首要问题。那棱格勒河是柴达木盆地最大的河流,在解决柴达木盆地水资源的问题中扮演着重要的角色,因此了解和掌握那棱格勒河的水文情况对于解决柴达木盆地的水资源问题来说很重要。但是在以前人们对于那棱格勒河的水文情况了解的很少,资料几乎没有,因此我们应该寻找新的办法来了解有关那棱格勒河的水文情况。
     在水文界研究水文的方法中出现了利用计算机和遥感软件来模拟流域水文情况的分布式流域水文模型,尤其是近些年来,随着计算机的高速发展以及人们对水文系统物理过程的深入研究,加之遥感技术和地理信息系统的广泛应用,促使分布式水文模型的飞速发展。本人在研究分析了那棱格勒河的大致基本情况和各个分布式流域水文模型的优缺点后,选择适合那棱格勒河流域的水文模型——TOPKAPI模型,来对该流域的水文情况进行模拟。首先尽可能多地收集有关那棱格勒河的气象和水文等自然资料,搜集到那棱格勒和流域的DEM资料、土地利用栅格资料、土壤类型资料、植被资料等等,对遥感资料进行处理,应用ArcView软件里边的模块输入气象资料和TOPKAPI模型里边的公式,建立各子模块,然后对模块进行综合,建立模型。在建立了初步的模型以后,要对模型进行调试,对其中的参数进行调整,经过反复的调试,最终达到比较满意的模拟效果。
     在模型建立的过程中,将流域划分为几个子流域,先对每个子流域中的产流进行计算,通过河道进行汇流。每个子流域中需要计算的量有:降雨、蒸发、地表径流、壤中流、土壤湿度。子流域的降水和气象资料通过插值法插入到每个子流域中,首先对子流域的产流进行计算,然后再通过汇流流入干流,通过汇流计算出出山口断面的流量。
     那棱格勒河流域是一个类型比较特殊的流域,在中上游和其他河流没有太大的差别,都是经过坡面产流汇入支流,支流再汇入干流。在下游的出山口,由于出山口的冲积扇厚度比较大,多为冲积物堆积而成,孔隙度大,因此那棱格勒河在出山口时,就基本上全部转为地下流,在扇缘区域又以泉的形式露出地面。这样复杂的水文情况,目前的水文模拟技术还不能很好的进行模拟,因此在本研究中,暂时先就那棱格勒河中上游的水文情况进行模拟,即出山口以上的流域水文情况。
     经过对遥感资料的分析、处理,数据的输入和解析,模块的建立,参数的反复率定,最后建成了模型。建成模型后得到结果,从模拟的数据图来看,流域的流量年度分布很不均匀,夏秋季流量占全年总流量的80%还多,尤其是7、8、9三个月的流量更是占了全年的60%多。由于那棱格勒河的水文资料缺乏,故不能进行具体的对比,只能根据年平均流量来和模拟的水量进行对比。
Water resource becomes the prime problem during the rapid development of Caidam basin. As the largest river in the basin, Nalenggele river plays an important role in solving the water resource among this area. So it is important to study the hydrological situation of the river. Unfortunately, there is little understanding to this river till far, so it is urgent to seek a new method to study the hydrological situation of the river.
     In the study of hydrology, computers and remote sensing software are introduced to simulate hydrological model of the distributed basin area. This model develops rapidly in recent times especially as the quick development of computers and further researches conducted on the physical process of the hydrological system and the broad application of remote sensing technology and geology information system as well. By analyzing the general situation of Nalenggele river and the merits and demerits of each model, the most opportune hydrological model that suits the river, namely TOPKAPT Model is adopted to conduct the simulation of the hydrological situation of the drainage area.
     Firstly, the meteorology and hydrology data such as the DEM data of the basin, the soil utility grid data, soil type data and vegetation data are collected as completely as possible. After treatment of the remotesensing data, the sub modules are built by the treatment of module in the ArcView software when the meteorology data and formulas in the TOPKAPI models are input, then the model is established by integration of the sub modules. Parameters contained in the model are regulated in order to get the most satisfactory effect in the simulation.
     In the process of model establishment, the drainage area is divided into several sub basins. The flow in each sub basin is calculated and then added together to get the runoff concentration of the main river. Parameters needed to be calculated in each sub basin are precipitation, evaporation, surface runoff, flow in the ground and soil mosture. The data of the precipitation and meteorology of the sub basins is interpolated into each basin. The flow in the cross-section of the mountain is calculated by the runoff flow of the sub basins.
     The drainage basin of Nalenggele river is special, in that in the middle and upper area of the river it is quite the same as other rivers in which runoff from slope into the sub-river and then to the main river, the difference is in the lower area. In the mouth of the lower river flows out of the mountain, Nalenggele river becomes to ground water completely as the thickness of the flushing and piling fan is great and comes out of the earth in the form of springs at the edge of the fan area. As the present hydrological model is not so advanced to simulate it, in this study hydrological simulation only to the middle and upper area of the river is conducted.
     The model is established finally after the analyzing and treatment of the remote sensing data, imputing and parsing of data, building of modules and rating of parameters. By analyzing the chart get from the model, the result shows: the flow of the river changes annually, the flow during summer and autumn occupies more than 87% of annual flow,especially the flow during July to September which occupies more than 60% of annual flow. With the shortage of the hydrological data of the river, it is impossible to compare in detail except the comparison and annual flow and simulated flow.
引文
1. 赵人俊. 流域水文模拟[M]. 水利水电出版社. 1984
    2.郭生练,刘春蓁. 大尺度水文模型及其与气候模型的联结耦合研究[J]. 水利学报, 1997,7, 37-41
    3.郭生练,等. 水库调度综合自动化系统[M]. 武汉水利水电大学出版社. 2000
    4.芮孝芳. 产汇流理论[M]. 水利水电出版社. 1995
    5.袁作新. 流域水文模型[M]. 水利水电出版社. 1988
    6. Kachroo R K. River Flow Forecasting(Special issue)[J]. Journal of Hydrology. 1992. Vol.133
    7. Singh V P(editor). Computer model of watershed hydrology[M]. Water Resource Publications, USA. 1995
    8.熊立华, 郭生练. 分布式流域水文模型[M]. 中国水利水电出版社. 2004
    9. 芮孝芳.流域水文模型研究中若干问题[J].水科学进展,1997,(1):94-98.
    10. Beven K J .Distributed Hydrological Modeling: Application of the TOPMODEL Concept [C]. John Wiley & Sons Ltd 1997
    11. Refsgaard J C, Storm B. MIKE SHE [A] In: V P Singh, Computer Model of Watershed Hydrology, 809-846. Water Resource Publications, 1995
    12. Beven K J, Lamb R, Quinn P, Romanowicz R, Freer J. TOPMODEL[A] . In:V P Singh, Computer Models of Watershed Hydrology, 627-668, Water Resource Publication.
    13. Liu Z, Todini E. Towards a comprehensive physically–based rainfall-runoff model [J]. Hydrology and Earth System Science, 2002, 6(5): 859-881
    14.夏军. 水文非线性系统理论与方法[M]. 武汉大学出版社,2002
    15.王中根,刘昌明,黄友波. SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,1,22(1):79-86
    16.黄平,赵吉国.流域分布式水文数学模型的研究及应用前景展望[[Jl.水文,1997, (5): 5-10
    17. Beven K J, Kirkby M J. A physically based variable contributing model of basin hydrology [J]. Hydrological Sciences Bulletin,1979, 241): 43-69
    18. Famiglietti J S, Wood E F, Sivapalan M, et al. A Catchment scale water balance model for FIFE [J]. Journal of Geophysics Research, 1992, 97(D17): 18997-19007
    19. Abbort M B, Bathurst J C, Cunge J A, et al. An introduction to the European hydrological system-Systeme Hydrological Europeen, SHE, 2. Structure of a physically-based distributed modeling system [J]. Journal of Hydrology, 1986, 87: 61-77
    20. Beven K J, Calver A, Morris E. The Institute of Hydrology distributed model [R]. Wallingford, England: Institute of Hydrology Report No. 1998, 987
    21. Neitsch S L, Arnold J q Kiniry J凡et al. Soil and water assessment tool theoretical documentation Version 2000 [R].http://www.brc.tamus.edu/swat
    22. Huaxia YAO, Michio Hashino. A completely-formed distributed rainfall-runoff model for catchment scale [J]. IAHS Publ.,2001, (270): 183-190
    23. Dawen YANQ Srikantha Herath, Katumi Musiake. Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation [J]. Hydrological Processes, 2001,(11):2085-2099
    24.郭生练,熊立华,等.分布式流域水文物理模型的应用和检验.武汉大学学报(工学版)[J].2001,34(1):1-5.
    25.夏军,王纲胜,吕爱锋,谈戈.分布式时变增益流域水循环模拟[J].地理科学进展.2002,21(6):573-582.
    26.张珂、李致家,等.GTOPMODEL 模型与 TOPMODEL 模型比较[J].河海大学学报.2005,33(5):509-512.
    27.刘志宇,谢正辉.TOPKAPI 模型的改进及其在淮河流域洪水模拟中的应用研究[J].水文.2003,23(6):1-7.
    28.朱求安,张万昌.新安江模型在汉江江口流域的应用及适应性分析[J].水资源与水工程学报.2004,15(3):19-23.
    29.熊立华,郭生练,胡彩虹.TOPMODEL 在流域径流模拟中的应用研究[J].水文.2002,22(5):5-8.
    30.黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文.1997,17(5):5-10.
    31.李兰,等.流域水文数学物理耦合模型[D].朱尔明.中国水利学会优秀论文集[C]. 北京:中国三峡出版社,2000,322-329.
    32.王中根,穆宏强,胡宇惠. 分布式流域水文模型的一般结构[J]. 水文水资源.2001.22(1): 12-15
    33.董传胜. 青海省柴达木盆地“89.7”暴雨洪水分析[J]. 青海水利. 1995.A01:13-15
    34.杨贵林,张静娴.柴达木盆地水文特征[J].干旱区研究.1996,13(1):7-15.
    35.李明明,李本亮,魏过齐,李景明.柴达木盆地东部第四纪水文地质条件与生物气成藏[J].石油与天然气地质.2003,24(4):341-345。
    36.薛建军.浅谈 21 世纪柴达木盆地水资源可持续利用与生态环境保护策略[J].西北水资源与水工程.2003年,14(4):58-60.
    37.周长进,董锁成.柴达木盆地主要河流的水质研究及水环境保护,资源科学[J].2002,24(2):37-41.
    38.陈建耀,墨至阻,成立.柴达木盆地水资源信息系统研究[J].水科学进展.2000,11(1):54-58.
    39.韩永荣.合理开发利用水资源实现柴达木盆地可持续发展[J]. 水利发展研究. 2004,12. 11-13
    40.朱允铸,李文生,吴必豪,刘成林. 青海省柴达木盆地一里坪和东、西台吉乃尔湖地质新认识[J].地质评论,1989,35(6):598-564
    41. Todini E, Ciarapica L. The TOPKAPI model[A]. In: Singh V P, Frevert D K, Mathematical Models of Large Watershed Hydrology[M],Water resources Publications, LLC, Highlands Ranch, Colorado, USA,2002, 471-506
    42. Monteith J L. Evaporation and surface temperature[J]. Q. J. R. Meteorol. Soc, 1981.107: 1-27
    43. Thornthwaite C W, Mather J R. The water balance[J]. Publ. in Climatology. 1955, 8(1)
    44.刘志雨,谢正辉.TOPKAPI模型的改进及其在淮河流域洪水模拟中的应用研究[J]. 水文.2003,23(6):1-7.
    45.杨贵林,张静娴.柴达木盆地水文特征[J].干旱区研究.1996,13(1):7-13.
    46. USGS GTOPO30 [EB/OL].http://edewww.cr.usgs.gov/landdaac/gtopo30/gtopo30.htm1.
    47. UMD lkm Global land cover[EB/OL].http://www.geog.umd.edu/landcover/1km-map/meta—data.htm1.
    48. GLDAS global soils dataset of Reynolds [EB/OL].http://www.dc.noaa.gov/seg/eeo/edroms/Reynolds/reynolds/reynolds.htm.
    49. Martz L W, Garbrecht J. An outlet breaching algorithm for the treatment of closed depressions in a raster DEM Computer & Geosciences, 1999,25(6):835-8440
    50.邬伦,刘瑜,张晶,马修军,韦中亚,田原.地理信息系统-原理、方法和应用[M].科学出版社,2001.
    51.黄杏元,马劲松,汤勤.地理信息系统概论[M].高等教育出版社,2001.
    52. 杨针娘,刘新仁等,中国寒区水文〔M]。科学出版社,2000, 30.
    53.苏凤阁,郝振纯.水文模型中雨量资料的解集分析及应用.气候与环境研究 [J]. 2001.
    54. Todini E. The ARNO rainfall-runoff model[J]. J. Hydrology. 1996,175:339-382.
    55. 关志成,段元胜.寒区流域水文模拟研究[J].冰川冻土,2003(增刊),25 (2 ): 265-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700