增强UV-B辐射下南方红豆杉形态、结构及代谢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平流层臭氧的减少会导致到达地球表面的紫外线-B (UV-B)辐射显著增强,增强UV-B辐射对生物体有明显的生物学效应。本文在温室的条件下,研究增补3.25μw·cm-2.nm-1(低剂量)和9.76μw·cm-2·nm-1(高剂量)UV-B辐射剂量,分别处理10d(短期)、30d(过渡期)和60d(长期)时对南方红豆杉形态、叶片超微结构、初生与次生代谢的影响,以此在不同层次探讨南方红豆杉对增强UV-B辐射的生态适应机制,同时筛选有利于南方红豆杉生长及紫杉醇合成积累的最佳UV-B辐射处理条件。
     主要结果如下:
     1、增强UV-B辐射对南方红豆杉的形态和生物量有显著影响,不同UV-B辐射剂量和处理时间也具有显著性差异。长期低剂量UV-B辐射处理南方红豆杉叶面积、二级分枝长和二级分枝数增加、生物量增多,而根冠比降低;长期高剂量UV-B辐射处理南方红豆杉比叶重增加、叶面积和二级分枝长减小、生物量和根冠比显著降低,说明低剂量UV-B辐射有利于南方红豆杉生长,而高剂量抑制南方红豆杉生长。
     2、增强UV-B辐射对南方红豆杉叶片超微结构有显著影响,不同UV-B辐射剂量和处理时间也具有显著性差异。长期低剂量UV-B辐射处理南方红豆杉叶片开启气孔密度和气孔开度增加、表皮细胞壁增厚、表皮附属物增加(如蜡质),而高剂量UV-B辐射处理叶片开启气孔密度降低、气孔下室较多颗粒物;UV-B辐射处理南方红豆杉叶片叶绿体数量减少,形态扭曲、变形,基粒片层少、排列紊乱,基粒和基质片层膨胀、产生空泡,嗜锇滴体积变大、数量增多。
     3、增强UV-B辐射对南方红豆杉的氧化胁迫及其抗氧化响应。增强UV-B辐射短期处理,导致南方红豆杉叶片羟基自由基含量增加、MDA含量升高,抗氧化酶和UV-B吸收化合物含量增加;但长期低剂量UV-B辐射处理南方红豆杉自由基和抗氧化物质与对照无显著差异,而高剂量处理伤害仍较重。
     4、增强UV-B辐射对南方红豆杉光合特征和初生代谢有显著影响,不同UV-B辐射剂量和处理时间也具有显著性差异。长期低剂量UV-B辐射处理南方红豆杉净光合速率、Fv/Fm和Fv/Fo以及可溶性糖含量显著增加;而长期高剂量UV-B辐射处理南方红豆杉净光合速率、Fv/Fm和Fv/Fo以及可溶性糖含量显著降低,但蛋白质显著增加。
     5、增强的UV-B辐射对南方红豆杉叶片紫杉烷类含量均有显著的影响,结合3种紫杉烷类含量的相关性分析,我们发现短期UV-B辐射处理时南方红豆杉叶片中紫杉醇含量的提高可能主要是由糖基化7-木糖基-10-去乙酰基紫杉醇生物转化而来,长期UV-B辐射处理时南方红豆杉叶片中紫杉醇含量的提高可能主要是紫杉醇的合成前体物10-去乙酰基巴卡亭Ⅲ生物转化而来。
     综合以上分析,我们得出如下结论:(1)UV-B辐射处理对南方红豆杉表型、生理生化以及超显微结构均有显著影响,而南方红豆杉通过调整形态学结构、增加抗氧化酶活性以及增加UV-B吸收化合物和蜡质的含量以抵御增强的UV-B辐射胁迫。(2)长期低剂量UV-B辐射处理促进南方红豆杉叶片开启气孔密度、气孔孔径,净光合速率、荧光参数(Fv/Fm和Fv/Fo)等显著增加,进而促使南方红豆杉生物量显著增加;而长期高剂量UV-B辐射处理则严重破坏南方红豆杉叶片叶绿体结构、降低净光合速率和荧光参数(Fv/Fm和Fv/Fo),进而导致南方红豆杉生物量显著减少。(3) UV-B辐射处理显著的促进南方红豆杉叶片中紫杉醇的结合态以及其合成前体向紫杉醇生物转化和积累。(4)长期低剂量UV-B辐射处理是有利于南方红豆杉的生长发育,尤其能显著促进南方红豆杉叶片中紫杉醇的合成积累的最佳UV-B辐射条件。
The principal ultraviolet radiation absorbance occurs in the stratospheric ozone layer in earth's atmosphere. The destruction of this layer, which is caused by ozone depletion, has lead to an increase in solar UV-B radiation (280-320 nm) reaching the Earth's surface and produced potentially biological effect for plants in the earth.
     In this thesis, the effects of different dose and treatment time of supplementary UV-B radiation on the Taxus chinensis var. marei grown in the greenhouse were studied. The dose of supplementary UV-B radiation were 3.25μw·cm-2·nm-1(low dose) and 9.76μw·cm-2·nm-1(high dose), and the radiation time were 10d (short term),30d (transition period) and 60d (long term), individually. Then, the responses of morphous, physiology, biochemical and ultrastructural of T. chinensis var. marei responses to supplementary UV-B radiation were investigated. We revealed the adapted mechanism of this plant to UV-B radiation in the cell and subcellular level and optimized the best UV-B radiation conditions to promote the growth of T. chinensis var. marei and the accumulation of taxol.
     The main results are as follows:
     1. There were noticeable effects of supplementary UV-B radiation in morphous and biomass of T. chinensis var. marei. Meanwhile, a noticeable distinction among different UV-B radiation dose and different time were also observed. After the long and low dose UV-B radiation treatment, the leaf area, secondary branch length, secondary branch numbers and biomass were increased; the root:shoot was decreased. However, the leaf area, secondary branch length and biomass were all reduced in long and high dose UV-B radiation. The low dose UV-B radiation was better to the growth of T.chinensis var. marei, but the high dose UV-B radiation was adverse.
     2. There were noticeable effects of supplementary UV-B radiation to the leaf ultrastructure of T. chinensis var. marei, and also noticeable distinction among different UV-B radiation dose and different time. The stomata density and aperture, cell wall of epidermic cell and appendages of the leaf of T. chinensis var. marei under long and low dose UV-B radiation were markedly increased. However, the stomata density under long and high dose UV-B radiation was reduced, and there were more particulate matter in substomatic chambers. Besides, the chloroplasts were twisting, distorted, the arrangement in the lamellae of the grana and stroma was loose, disordered, bulged and produced cavity, the volume and numbers (high dose) of osmiophilic grain were increased apparently by supplementary UV-B radiation.
     3. The hydroxyl free radicals and MDA content were notably increased under short UV-B radiation; and the active of anti-oxidant enzymes and UV-B absorbing substances were improved to resist to oxidation stress. There were no remarked changes between low dose UV-B radiation and CK, but there were still seriously damage under high dose UV-B radiation.
     4. There were noticeable effects of supplementary UV-B radiation to photosynthesis, physiology and metabolism of T. chinensis var. marei, and noticeable distinction among different UV-B radiation dose and different time. The net photosynthetic rate, Fv/Fm, Fv/Fo and soluble sugar were raised markedly. However, the net photosynthetic rate, Fv/Fm, Fv/Fo and soluble sugar were descended remarkably, but the protein content was increased remarkably.
     5. There were noticeable effects of supplementary UV-B radiation to the taxanes content in the leaves of T. chinensis var. marei, and based on the correlative analysis of three taxanes content, we found that the increase of taxol content maybe mainly come from the bioconversion of 7-xyl-10-DAT in short term UV-B radiation, but which maybe mainly come from the bioconversion of 7-xyl-10-DAT and 10-DAB long term UV-B radiation.
     The main conclusions are as follow:(1) There are observably effects of supplementary UV-B radiation to the morphology, physiology, biochemical and ultrastructural of T. chinensis var. marei. However, the plant could adapt to the UV-B radiation by changes of morphous architecture, increase of actives of anti-oxidant enzymes, UV-B absorbing substances and waxes content to resist to the UV-B stress. (2) Long term and low dose UV-B radiation could promote the stomata density and aperture, net photosynthetic rate, fluorescence parameters (Fv/Fm and Fv/Fo) to increase remarkably, and then the biomass is raised markedly. But the Long term and high dose UV-B radiation could injure the chloroplast configuration, inhibit net photosynthetic rate and fluorescence parameters(Fv/Fm and Fv/Fo), and then the biomass is reduced markedly (3) Supplementary UV-B radiation could promote notably the bioconversion of the combined taxol (7-xyl-10-DAT) and the precursor of taxol (10-DAB) to taxol. (4) The long term and low dose UV-B radiation are the best conditions to promote the growth and the accumulation of taxol.
引文
[1]郑万钧,傅立国.中国植物志(第七卷).北京:科学出版社,1978,438.
    [2]曹基武,陈湘运,唐文东.南方红豆杉营林技术的研究.林业科学,1999,24(5):8-10.
    [3]谢志慧,杜玲玲,李效贤,等.南方红豆杉研究新进展.中国药业,2009,18(15):3-5.
    [4]Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents:The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society,1971,95(9):23-25.
    [5]李存芳,刘勇,董玫,等.南方红豆杉化学成分的研究进展.中草药,2007,38(8):1121-1132.
    [6]张薇,熊耀康.南方红豆杉多糖的测定.浙江中医杂志,2009,44(9):686-687.
    [7]吴绵斌郑宝华.南方红豆杉叶中活性多糖的分离与纯化浙江大学学报,2007,27(4):696-699.
    [8]李俊,牙启康,苏小建,等.人工栽培南方红豆杉紫杉醇的含量分析.广西师范大学学报(自然科学版),2005,23(2):68-70.
    [9]洪伟,王新功,吴承祯,等.濒危植物南方红豆杉种群生命表及谱分析.应用生态学报,2004,15(6):1109-1112.
    [10]李先琨,向悟生,苏宗明.南方红豆杉无性系种群结构和动态研究.应用生态学报,2004,15(2):177-180.
    [11]廖文波,张志权,陈志明,等.粤北南方红豆杉的群落类型及物候与繁殖生物学特性.应用生态学报,2002,3(7):795-801.
    [12]陈雪英,梁敬钰.人工栽培的南方红豆杉化学成分研究.中国天然药物,2006,4(1):52-57.
    [13]苏应鹃,王艇,李雪雁,等.人工栽培南方红豆杉紫杉醇的含量分析.天然产物研究与开发,2001,13(2):19-20.
    [14]王达明,李莲芳,周云,等.云南红豆杉人工药用原料林的经营技术.西部林业科学,2004,33(1):8-14.
    [15]李先琨,黄玉清,苏宗明.南方红豆杉群落主要树木种群间联结关系初步研究.生态学杂志,1999,18(3):10-14.
    [16]Frohnmeyer H, Staiger D, Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiology,2003,133(4):1420-1428.
    [17]Maria V. UV Effects on Aquatic and Coastal Ecosystems Introduction:Enhanced UV-B Radiation in Natural Ecosystems as an Added Perturbation Due to Ozone Depletion. Photochemistry and Photobiology,2006,82(4):831-833.
    [18]Russel JM, Lue MZ, Cicerone RJ, et al. Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget. Nature,1996,379:526-529.
    [19]Caldwell MM, Bjorn LO, Bornman JF, et al. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology,1998,46(1):40-52.
    [20]Taalas P, Kaurola J, Lindfors A. Long-term ozone and UV estimates. In:Kayhko J, Talve L. (Eds.), Understanding the Global System-The Finnish Perspective. Finnish Global Change Programme FIGARE. University of Turku, Finland 2002, pp.137-145.
    [21]Haapala JK, Morsky SK, Saarnio S, et al. Carbon dioxide balance of a fen ecosystem in northern Finland under elevated UV-B radiation. Global Change Biology,2009,15(4):943-954.
    [22]Bornman JF. Target site of UV-B radiation in photosynthesis of higher plants. Journal of Photochemistry and Photobiology.1989,4(2):145-158.
    [23]Carletti P, Masi A, Wonisch A, et al. Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environmental and Experimental Botany,2003,50(2):149-157.
    [24]Flint SD, Ryel RJ.Caldwell MM, et al. Ecosystem UV-B experiments in terrestrial communities:a review of recent findings and methodologies. Agricultural and Forest Meteorology,2003,120(1):177-189.
    [25]Teramura AH. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiology Plant.1983,58:415-427.
    [26]Jansen MAK, Gaba V, Greenberg BM. Higher plants and UV-B radiation:balancing damage, repair and acclimation. Trends in Plant Science,1998,3(4):543-549.
    [27]Moorthy P, Kathiresan K. Effects of UV-B radiation on photosynthetic reactions in Rhizophora apiculata. Plant Growth Regulation,1999,28(1):49-54.
    [28]Christiane AK, Martin AK, Kopechy J. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet sreening and photosynthesis in grape leaves. Plant Physiology,2001,127(3):863-875.
    [29]An LZ, Feng FY, Wang XL. Effects of enhanced UV-B radiation on the growth of some crops, Acta Ecologica Sinica,2001,21(2):249-253.
    [30]Li Y, Wang XL. The effect of enhanced UV-B radiation on the physiological indicator, yield and quality of wheat, Acta Gsientiae Circumstantiae,1998,18 (5):504-509.
    [31]Kakani VG, Reddy KR, Zhao D, et al. Field crop responses to ultraviolet-B radiation. Agricultural and Forest Meteorology,2003,120(1):191-218.
    [32]Singh S, Kumari R, Agrawal S B. Impact of enhanced UV-B radiation on growth and yield of plants. Banaras Hindu University details research in science,2008,52:107-123.
    [33]Teramura AH, Murali NS. Intraspecific differences in growth and yield of soybean exposes to ultraviolet-B radiation under greenhouse and field conditions. Environmental and Experimental Botany,1986,26(1):89-95.
    [34]Murphy A, Peer WA, Taiz L. Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta,2000,211(3):315-324.
    [35]Schwalm K, Aloni R, Langhans M, et al. Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Planta,2003,218(2):163-178.
    [36]Huang S, Dai Q, Peng S, et al. Influence of supplemental ultraviolet-B on indoleacetic acid and calmodulin in the leaves of rice (Oryza sativa L.). Plant Growth Regul.1997, 21(1):59-64.
    [37]Staxen I, Bornmna JF. A morphological and cytological study of Petunia hybrid exposed to UV-B radiation. Plant Physiology,1994,91(4):735-740.
    [38]Hofmann RW. Campbell BD. Fountain DW, et al. Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.). Plant Cell Environment, 2001,24:917-927.
    [39]刘清华.紫外线-B (UV-B)辐射增强下银杏(Ginkgo biloba)叶的生理生态机理研究.西南师范大学硕士学位论文,2004,9-15.
    [40]祭美菊,冯虎元,安黎哲,等.增强的UV-B辐射对植物影响的研究.应用生态学报,2002,13(3):359-364.
    [41]Teramura AH, Ziska LH, Sztein AE. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiology Plant,1991,83(3):373-380.
    [42]Nithia SMJ, Shanthi N, Kulandaivelu G. Different responses to UV-B enhanced solarradiation in radish and carrot. Photosynthetica,2005,43(2):307-311.
    [43]Caldwell MM, Teramnura AH, Tevini M, et al. Effects of increased solar ultraviolet radiation on terrestrial Plants. Anlbio,1995,24:166-173.
    [44]Teramura AH, Sullivan JH, Ziksa LH. Interaction of elevated ultraviolet B radiation and CO2 on produetivity and photosynthetic characteristics in wheat, rice, and soybean. Plant Physiology,1990,94(2):470-475.
    [45]Zheng YF, Gao W, Slusser J, et al. Response of different crop growth and yield to enhanced UV-B radiation under field conditions. In:Ultraviolet ground-and space-based measurements, models, and effects IV, Slusser, J.R., Hemrna, J.R., Gao, W., Bernhard, G.(eds.)Por. of SP I E Vol.5545, SPIE, Bellingham, WA,2004,102-110.
    [46]Meijkamp, BB, Doodemna G., Rozema J. The response of Vicia faba to enhanced UV-B radiation under low and near ambient PAR levels. Plant Ecology,2001,154(1):137-146.
    [47]Ziskaetal LH, Terammura AH, Sullivan JH. Physiological sensitivity of plant along an elevated gradient to UV-B radiation. American Journal of Botany,1992,79(8):863-871.
    [48]侯扶江,责桂英.紫外线-B辐射对植物的影响研究进展.植物学通报,1997,3:1418-1423.
    [49]Lingakumar K, Kulandaivelu G. Changes induced by ultraviolet-B radiation in.vegetative growth, foliar characteristics and photosynthetic activities in Vigna.ungiculata. Australian Journal of Plant Physiology,1993,20(3):299-308.
    [50]Sullivan JH, Teramura AH. Effects of ultraviolet-B irradiation on seedling growth in the Pinaceae. American Journal of Botany,1988,75(2):225-230.
    [51]吴杏春,林文雄,黄忠良.UV-B辐射增强对两种不同抗性水稻叶片光合生理及超显 微结构的影响[J].生态学报,2007,27(2):554-565.
    [52]唐莉娜.水稻对UV-B辐射增强的生理响应及其抗性动态遗传的研究.福建农林大学博士学位论文,2003,30-36.
    [53]朱素琴,徐向明,陈章和,等.UV-B辐射对几种木本植物幼苗生长和叶绿体超微结构的影响.热带亚热带植物学报,2002,10(3):235-244.
    [54]Santos I, Fidalgo F, Almeida JM, et al. Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Science,2004,167(4):925-935.
    [55]Allen DJ, Mckee IF, Farage PK, et al. Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant cell and environment, 1997,20(5):633-640.
    [56]Kakani VG, Reddya KR, Zhao D, et al. Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide. Physiology Plant,2004, 121(2):250-257.
    [57]Nedunchezhian N, Kulandaivelu G Effects of UV-B enhanced radiation on ribulose 1.5-bisphophate carboxylase in leaves of Vigna sinensis L. Photosynthetica,1991,25(1):431-435.
    [58]Hideg E, Rosenqvist E, Varadi G, et al. A comparison of UV-B induced stress responses in three barley cultivars. Functional Plant Biology,2006,33(1):77-90.
    [59]Smith JL, Burritt DJ, Bannister P. Shoot dry weight, chlorophyll and UV-B absorbing compounds as indicators of a plant's sensitivity to UV-B radiation. Annals of Botany,2000, 86(6):1057-1063.
    [60]Alexieva V, Sergiev I, Mapelli S, et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant cell and environment,2001, 24(12):1337-1344.
    [61]Ambasht NK, Agrawal M. Effects of enhanced UV-B radiation and tropospheric ozone on physiological and biochemical characteristics of field grown wheat. Brief communication. Biology Plant,2003,47(4):625-628.
    [62]Bassman JH, Edwards GE, Robberecht R. Long-term exposure to enhanced UV-B radiation is not detrimental to growth and photosynthesis in Douglas-fir. New Phytologist, 2002,154(1):107-120.
    [63]Trost-Sedej T, Gaberscik A. The effects of enhanced UV-B radiation on physiological activity and growth of Norway spruce planted outdoors over 5 years. Trees,2008,22(4):423-435.
    [64]Rozema J, Boelen P, Blokker P. Depletion of stratospheric ozone over the Antarctic and Arctic:Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environmental Pollution,2005,137(3):428-442.
    [65]Caldwell MM, Robberecht R, Flint SD. Internal filters:prospects for UV-acclimatation in higher plants. Physiology Plant,1983,58(3):445-450.
    [66]Sullivan JH, Teramura AH, Dillenburg LR. Growth and photosynthetic responses of field-grown sweetgum(Liquidambar styraciflua) seedlings to UV-B radiation. America Journal Botany,1994,81(7):826-832.
    [67]Sisson WB, Caldwell MM. Photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to ultraviolet irradiance (280-315 nanometers) simulating a reduced atmospheric ozone column. Plant Physiology,1976,58:563-568.
    [68]Liu Y, Zhong ZC, Long Y, et al. Effects of a-NAA and UV-B radiation on the growth and transpiration of Trichosanthes kirilowii Maxim leaves. Acta Phytoecologica Sinica,2003, 27(4):454-458.
    [69]周党卫,韩发,滕中华,等.UV-B辐射增强对植物光合作用的影响及植物的相关适应性研究.西北植物学报,2002,22(4):1004-1010.
    [70]Wang GH, Hao ZJ, Anken RH, et al. Effects of UV-B radiation on photosynthesis activity of Wolffia arrhiza as probed by chlorophyll fluorescence transients. Advances in Space Research,2010,45(7):839-845.
    [71]Cuadra P, Herrera R, Fajardo V. Effects of UV-B radiation on the Patagonian Jaborosa magellanica Brisben. Journal of Photochemistry and Photobiology B:Biology,2004,76(1):61-68.
    [72]Feng HY, Li SW, Xue LG, et al. The interactive effects of enhanced UV-B radiation and soil drought on spring wheat. South African Journal of Botany,2007,73:429-434.
    [73]孟朝妮,余小平.增强UV-B辐射对高等植物的作用以及植物的适应.陕西师范大学学报(自然科学版),2004,32:123-128.
    [74]Gwynn-Jones D, Lee JA, Callaghan TV. Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-aretic forest heath ecosystem. Plant Ecology,1997, 128(1):242-249.
    [75]Barnes PW, Flint SD, Caldwell MM. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. American Journal of Botany,1990, 77(10):1354-1362.
    [76]Bornman JF, Vogelmann TC. Effect of UV-B radiation on leaf optical properties measured with fibre optics. Journal of Experimental Botany,1991,42(4):547-554.
    [77]王传海,郑有飞,万长健,等.紫外线UV-B增加对小麦开花及结实率的影响.农业环境保护,2000,19(4):221-223.
    [78]冯虎元,徐世健,安黎哲,等.UV-B辐射对8个大豆品种种子萌发率和幼苗生长的影响.西北植物学报,2001,21(1):14-20.
    [79]Foyer CH, Lopez-Delgado H, Dat JF, et al. Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiology plant,1997,100:241-254.
    [80]Lee DH, Kim YS, Lee CB. The individual response of the antioxidant enzymes by salt stress in rice(Oryza sativa L.). Journal of Plant Physiology,2001,158:737-745.
    [81]Hideg E, Vass I. UV-B induced free radical production in plant leaves and isolated thylacoid membranes. Plant Science,1996,115:251-260.
    [82]Dai Q, Yan B, Huang S, et al. Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation. Physiology Plant,1997,101(2):301-308.
    [83]Hideg E, Barta C, Kalai, et al. Detection of singlet oxygen and superoxide with fluorescent sensor in leaves under stress by photoinhibition or UV radiation. Plant and Cell Physiology, 2002,43(10):1154-1164.
    [84]Mackerness SAH, John CF, Jordan B, et al. Early signaling components in ultraviolet-B responses:distinct roles for different reactive oxygen species and nitric oxide. FEBS Letters,2001,489:237-242.
    [85]Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology,1996,110(1):125-136.
    [86]Kubo A, Aono M, Nakajima N, et al. Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. Journal of Plant Research,1999,112:279-290.
    [87]Corpas FJ, Palmas JM, Sandalio LM, et al. Purification of catalase from pea leaf peroxisomes: identification of five different isoforms. Free Radical Research,1999,31(1):235-241.
    [88]Asada K. Ascorbate peroxidase:a hydrogen peroxide-scavenging enzyme in plants. Physiology Plant,1992,85(2):235-241.
    [89]Kumari R, Singh S, Agrawal SB. Combined effects of Psoralens and ultraviolet-B on growth, pigmentation and biochemical parameters of Abelmoschus esculentus L. Ecotoxicology and Environmental Safety,2009,72:1129-1136.
    [90]古今,陈宗瑜,訾先能,等.植物酶系统对UV-B辐射的响应机制.生态学杂志,2006,25(10):1269-1274.
    [91]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002, 7(9):405-410.
    [92]Prasad SM, Srivastava G, Mishra V, et al. Active oxygen species generation, oxidative damage and antioxidative defense system in Pisum sativum exposed to UV-B irradiation. Physiology and Molecular Biology of Plants,2005, 11(2):303-311.
    [92]Singh A. Growth, physiological and biochemical responses of three tropical legumes to enhanced UV-B radiation. Canadian Journal of Botany,1996,74(11):135-139.
    [93]Jansen MAK, Gaba V, Greenberg BM. Higher plants and UV-B radiation:balancing damage, repair and acclimation. Trends in Plant Science,1998,3(4):131-135.
    [94]Palmer H, Ohta M, Watanabe M, et al. Oxidative stress-induced cellular damage caused by UV and methyl viologen in Euglena gracilis and its suppression with rutin. Journal of Photochemistry and Photobiology B:Biology,2002,67:116-129.
    [95]Landry LG, Chapple CSS, Last RL. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiology,1995, 109(14):1159-1166.
    [96]Ryan KG, Swinny EE, Markham KR, et al. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry,2002,59(1):23-32.
    [97]Caldwell MM. Plant response to solar ultraviolet radiation. In:Lange OL, Nobel PS, Osmond CB, et al. Physiological Plant Ecology I. Springer, Berlin,1981,169-197.
    [98]Landry LG, Stapleton AE, Lim J, et al. An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proceedings of the National Academy of Sciences,1997, 94(1)328-332.
    [99]Murai Y, Takemura S, Takeda K, et al. Altitudinal variation of UV-absorbing compounds in Plantago asiatica. Biochemical Systematics and Ecology,2009,37(4):378-384.
    [100]Surney DSJ, Tschaplinski TJ, Edwards NT, et al. Biological responses of two soybean cultivars exposed to enhanced UVB radiation. Environmental and Experimental Botany, 1993,33(3):347-356.
    [101]Song YX, Guo SH, Ma HA. Observation of leaf epidermis of 15 species shrubsin Helanshan moutain by SEM, Acta Bot. Boreal. Occident. Sin.2003,23:1283-1287.
    [102]Wand SJE. Concentration of ultraviolet-B radiation absorbing compounds in leaves of a range of fynbos species, Vegetatio.1995,116(1):51-61.
    [103]Gerelchimeg B, Liu LQ, Zheng Z, et al. Effect of chilling on porcine germinal vesicle stage oocytes at the subcellular level. Cryobiology,2009,59(1):54-58.
    [104]Bhaduri PN, Ghosh M. Excised embryo culturing:the study of inheritance of root types in rice. Botanical Magazine,1965,78:348-352.
    [105]高俊凤.植物生理学实验指导.北京:高等教育出版社,2006.
    [106]程春龙.额济纳绿洲胡杨体内酚类物质分布及其对环境变化的响应研究.北京林业大学硕士论文,2007,1-11.
    [107]李兰芳,张魁,吴树勋等.不同生长期白羊草中总黄酮的含量测定.中国野生植物资源,1996,23(4):37-39.
    [108]Jiang MY, Zhang JH, Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany,2002,53(379):2401-2410.
    [109]周小云,陈信波,徐向丽,等.稻叶表皮蜡质的提取方法及含量的比较,湖南农业大学学报(自然科学版),2007,33(3):273-276.
    [110]Chapelle EW, Kim MS. Ratio analysis of reflectance spectra (RARS):an algorithm for the remote estimation of the concentration of chlorophyll a, Chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment,1992,39:239-247.
    [111]Wellburn AR. The spectral determination of chlorophylls a and b, As well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology,1994,144:307-313.
    [112]王晓鹏.外源性可溶性糖对长春花响应盐胁迫的影响.东北林业大学硕士论文,2009,11-14.
    [113]Marion M, Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72(1):248-254.
    [114]Zu YG, Wang Y, Fu YJ, et al. Enzyme-assisted extraction of paclitaxel and related taxanes from needles of Taxus chinensis. Separation and Purification Technology,2009, 68(2):238-243.
    [115]Agrawal SB, Mishra S. Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicology and Environmental Safety,2009, 72(2):610-618.
    [116]Chen T, Qiang W, An L, et al. Effects of cadmium combined with ultraviolet-B radiation on growth, gas exchange and stable carbon isotope value (&13C) in soybean (Glycine max L.). In:Gao W, Herman JR., Shi G, et al. Ultraviolet Ground-and Space-based Measurements, Models, and Effects Ⅱ. Proceedings of the SPIE,2003,4896:210-218.
    [117]Pal M, Sharma A, Abrol YP, et al. Exclusion of solar UV-B radiation from normal spectrum on growth of mung bean and maize. Agriculture, Ecosystems & Environment, 1997,61(1):29-34.
    [118]Li Y, Yue M, Wang XL. Effects of enhanced ultraviolet-B radiation on crop structure, growth and yield components of spring wheat under field conditions. Field Crops Research, 1998,57:253-263.
    [119]Ros J, Tevini M. Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. Journal of Plant Physiology,1995,146:295-302.
    [120]Mark U, Tevini M. Combination effects of UV-B radiation and temperature on sunflower (Helianthus annuus L., cv. Polstar) and maize (Zea mays L., cv. Zenit 2000) seedlings. Journal of Plant Physiology,1996,148(1):49-56.
    [121]Mateja G, Vekoslava S, Samo K, et al. Flavonoid, tannin and hypericin concentrations in the leaves of St. John's wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chemistry,2010,03:008.
    [121]Ibanez S, Rosa M, Hilal M, et al. Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production. Journal of Photochemistry and Photobiology B:Biology,2008,90:163-169.
    [122]Tevini M, Mark U, Fieser G et al. Effects of enhanced solar UV-B radiation on growth and function of crop plant seedlings. In:Riklis E. (Ed.), Proceedings of the 10th International Congress of Photobiology, Jerusalem,1989.
    [123]Suruchi Singh, Rima Kumari, Madhoolika Agrawal, et al. Modification of growth and yield responses of Amaranthus tricolor L. to UV-B under varying mineral nutrient supply. Scientia Horticulturae,2009,120:173-80.
    [124]Reddy KR, Kakani VG, Zhao D, et al. Cotton responses to ultraviolet-B radiation: experimentation and algorithm development. Agricultural and Forest Meteorology,2003, 120(1):249-265.
    [125]Liu LX, Xu SM, Woo KC. Solar UV-B radiation on growth, photosynthesis and the xanthophyll cycle in tropical acacias and eucalyptus Environmental and Experimental Botany,2005,54(2):121-130.
    [126]王海霞,丛鹏,刘汉柱,等.植物对增强UV-B辐射的防御机制研究进展.西北植物学报,2007,27(7):1491-1497.
    [127]Lu YW, Duan BL, Zhang XL. Differences in growth and physiological traits of Populus cathayana populations as affected by enhanced UV-B radiation and exogenous ABA. Environmental and experimental botany,2009,66(1):100-109.
    [128]An YY, Qun ZY, Yuan L. Effects of quercetin and enhanced UV-B radiation on the soybean (Glycine max) leaves. Acta physiologiae plantarum,2006,28(1):49-57.
    [129]Coleman RS, Day TA. Response of cotton and sorghum to several levels of sub-ambient solar UV-B radiation:a test of the saturation hypothesis. Physiology Plant,2004, 122(3):362-372.
    [130]Day TA, Ruhland CT, Xiong FS. Influence of solar ultraviolet-B radiation on Antarctic terrestrial plant:results from a 4 year field study. Journal of Photochemistry and Photobiology B:Biology,2001,62(1):78-87.
    [131]Ren J, Dai W, Xuan ZY, et al. The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. Forest Ecology and Management,2007,239(1):112-119.
    [132]Deckmyn G, Impens I. Effects of solar UV-B irradiation on vegetative and generative growth of Bromus catharticus. Environmental and Experimental Botany,1998,40(2):179-185.
    [133]Laposi R, Veres S, Lakatos G, et al. Responses of leaf traits of European beech (Fagus sylvatica L.) saplings to supplemental UV-B radiation and UV-B exclusion. Agricultural and Forest Meteorology,2009,149(5):745-755.
    [134]Lingakumar K, Amudha P, Kulandaivelu G. Exclusion of solar UV-B (280-315 nm) radiation on vegetative growth and photosynthetic activities in Vigna unguiculata L. Plant Science,1999,148 (2):97-103.
    [135]Nagel LM, Bassman JH, Edwards GE, et al. Franceshi, Leaf anatomical changes in Populus trichocarpa, Quercus rubra, Pseudotsuga menziesii and Pinus ponderosa exposed to enhanced ultraviolet-B radiation. Physiology Plant,1998,104(3):385-396.
    [136]Bidel LPR, Meyer S, Goulas Y, et al. Responses of epidermal phenolic compounds to light acclimation:In vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species. Journal of Photochemistry and Photobiology B:Biology,2007,88:163-179.
    [137]Poorter H, Niinemets U, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA):a meta-analysis. New Phytologist,2009,182(33):565-588.
    [138]Krizek DT, Mirecki RM, Britz SJ. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber. Physiol. Plant,1997,100(4):886-893.
    [139]Correia CM, Torres-Pereira MS, Torres-Pereira JMG. Growth, photosynthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation. Environmental Pollution,1999,104(3):383-388.
    [140]Turunen M, Latola K. UV-B radiation and acclimation in timberline plants, Environ. Pollut,2005,137(3):390-403.
    [141]Xu K, Qiu BS. Responses of superhigh-yield hybrid rice Liangyoupeijiu to enhancement of ultraviolet-B radiation. Plant Science,2007,172(1):139-149.
    [142]Agrawal SB, Rathore D. Changes in oxidative stress defense system in wheat(Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with and without mineral nutrients and irradiated by supplemental ultraviolet-B. Environmental and Experimental Botany,2007,59(1):21-33.
    [143]Correia CM, Coutinho JF, Bjorn LO, et al. Ultraviolet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions. European Journal of Agronomy,2000,12(2):117-125.
    [144]Hao X, Hale B A, Ormrod DP, et al. Effects of pre-exposure to ultraviolet-B radiation on responses of tomato (Lycopersicon esculentum cv. New Yorker) to ozone in ambient and elevated carbon dioxide. Environmental Pollution,2000,110(2):217-224.
    [145]Deckmyn G, Impens I. Seasonal responses of six Poaceae to differential levels of solar UV-B radiation. Environmental and Experimental Botany,1999,41(2):177-184.
    [146]姚晓芹.青藏高原东缘几种树苗对增强紫外线-B和氮供应的响应.中国科学院研究生院博士学位论文,2002,39-50.
    [147]王传海,郑有飞,何都良,等.小麦不同指标对紫外辐射UV-B增加反应敏感性差异的比较.中国农学通报,2003,19(6):43-45.
    [148]Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta,1981,153(4):388-394.
    [149]周青,黄晓华,马育国,等.紫外辐射胁迫对小麦生长的影响.农业环境保护,2001,20(2):94-96.
    [150]Evans LS, Sullivan JH, Lim M. Initial effects of UV-B radiation on stem surfaces of Stenocereus thurberi (organ pipe cacti). Environmental and Experimental Botany,2001,46, (2):181-187.
    [151]张君玮,周青.Ce(Ⅲ)对UV-B辐射下大豆幼苗水分代谢影响的机理.中国生态农业学报,2009,17(3):570-573.
    [152]Gitz DC, Liu GL, Britz SJ, et al. Ultraviolet-B effectson stomatal density, water-use efficiency, and stable carbonisotope discrimination in four glasshouse-grown soybean (Glyicine max)cultivars. Environmental and Experimental Botany,2005,53(3):343-355.
    [153]郑玉龙,姜春玲,冯玉龙.植物的气孔发生.植物生理学通讯,2005,41(6):847-850.
    [154]Dai QJ, Coronel VP, Vergara BS, et al. Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Crop Science Society of America,1992,32(5):1269-1274.
    [155]杨志敏,颜景义,郑有飞.紫外线辐射增加对大豆光合作用和生长的影响.生态学报,1996,16(2):154-159.
    [156]徐华,贺军民,黄辰,等.UV-B辐射对蚕豆叶片气孔运动的间接效应与NO和H2O2有关.西北植物学报,2006,26(1):78-85.
    [157]Vass I. Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In Handbook of Photosynthesis (Edited by Pessarakli M), Marcel Dekker Inc, NewYork,1996, pp.931-950.
    [158]周新明.UV-B辐射增强对葡萄叶片光合生理及总酚含量的影响.西北农林科技大学硕士学位论文,2007,32-34.
    [159]Friso G, Vass Ⅰ, Spete C, et al. UV-B-induced degradation of the D1 protein in isolated reaction centres of Photosystem Ⅱ. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1995,1231(1):41-46.
    [160]Prasad SM, Zeeshan M. UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cynobacterium Plectonema boryanum. Biol. Plant,2005,49:229-236.
    [161]Prasad SM, Kumar D, Zeeshan M. Growth, photosynthesis, active oxygen species and antioxidants responses of paddy field cyanobacterium Plectonema boryanum to endosulfan stress. J. Gen. Appl. Microbiol,2005,51(2):115-123.
    [162]Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants. Physiol. Plant,1994, 92(24):696-717.
    [163]Mackerness SAH, Jordan BR, Thomas B. Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B:280-320 nm) in green and etiolated buds (Pisum sativum L.), J. Photochem. Photobiol. B:Biol,1999,48:180-188.
    [164]吴鲁阳,王美丽,张振文.紫外线(UV)-B增强对植物的影响研究.中国农学通报,2005,21(9):222-227.
    [165]Irihimovitch V, Shapira M. Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J. Biol. Chem, 2000,275(21):16289-16295.
    [166]段咏新.钙对延缓杂交水稻叶片衰老的作用机理.杂交水稻,1997,12(6):23-25.
    [167]Elstner EF. Der Sauerstoff-Biochemie Biologie Medizin, BI-Wissens chafts Verlag, Mannheim,1990,405-411.
    [168]王艳,张玉光,王兰兰,等.短期紫外线(UV-C)辐射对早熟禾生理特性的影响.草业科学,2007,24(2):35-39.
    [169]任红玉,李东,吴志光,等.在紫外辐射B胁迫下钙对大豆幼苗若干生物学特性的影响.东北农业大学学报,2009,40(7):5-9.
    [170]缪锦来.南极冰藻对UV-B辐射增强的适应性及其抗紫外线辐射活性物质的研究.中国海洋大学.博士学位论文,2003,88-89.
    [171]Wang SW, Duan LS. Eneji NE, et al. Ariations in growth, photosynthesis and defense system among four weed species under increased UV-B radiation. Journal of Integrative Plant Biology,2007,49 (5):621-627.
    [172]Liang CJ, Huang XH, Tao WY, et al. Effect of Rare Earths on Plants under Supplementary Ultraviolet-B Radiation:Ⅱ. Effect of Cerium on Antioxidant Defense System in Rape Seedlings under Supplementary Ultraviolet-B Radiation Journal of Rare Earths,2006,24(3):364-368.
    [173]李名迪,魏冬,颜满莲,等.水稻叶片的活性氧代谢及衰老调控.江西农业学报,2005,17(4):112-116.
    [174]Mishra V, Srivastava G, Prasad SM. Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Scientia Horticulturae, 2009,120(3):373-378.
    [175]Yan SR, Huang XH, Zhou Q.Effect of Lanthanum (Ⅲ) on Reactive Oxigen Metabolism of Soybean Seedlings under Supplemental UV-B Irradiation. Journal of Rare Earths,2007, 25(3):352-358.
    [176]李东波,王晓敏,张东凯,等.UV-B胁迫下NaHSO3对红芸豆叶片的保护作用.植物学通报,2008,25(5):543-551.
    [177]方兴,钟章成,闫明,等.增强UV-B辐射与不同水平氮素对谷子(Setaria italica L.) Beauv.叶片保护物质及保护酶的影响.生态学报,2008,28(1):284-291.
    [178]李雪梅,张利红,何兴元,等.增强UV-C辐射作用下小麦和豌豆幼苗光合响应及其相对抗性,应用生态学报,2007,18(3):641-645.
    [179]董新纯.UV胁迫下苦荞类黄酮代谢及其防御机制研究.山东农业大学博士学位论 文,2006,75-77.
    [180]Hatcher PE, Paul ND. The effect of elevated UV-B radiation on herbivory of pea by Autographa gamma. Entomologia Experimentalis ET Applicata,1994,71(3):227-233.
    [181]Appel HM. Phenolics in ecological interactions:The importance of oxidation. Journal of Chemical Ecology,1993,19(7):1521-1552.
    [182]Lavola A. Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiology,1998,18(1):53-58.
    [183]Rozema J, Lenssen GM, Staaij JWM, et al. Effects of UV-B radiation on terrestrial plants and ecosystems:interaction with CO2 enrichment. Plant Ecology,1997,128(1-2):183-191.
    [184]蒋磊.UV-B诱导植物DNA损伤和紫外吸收化合物形成的研究.湖南师范大学硕士学位论文.2007,35-37.
    [185]Steinmuller D, Tevini M. Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta,1985,164(4):557-564.
    [186]Qaderi MM, Reid DM. Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiologia Plantarum,2005, 125(2):247-259.
    [187]Holmes MG. Action spectra for UV-B effects on plants:monochromatic and approaches for analyzing plant responses. Cambridge University Press, Cambridge,1997,31-50.
    [188]Pilon JJ, Lambersa H, Baasa W, et al. Leaf waxes of slow-growing alpine and fast-growing lowland Poa species:inherent differences and responses to UV-B radiation. Phytochemistry,1999,50(4):571-580.
    [189]Krause GH. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiologia Plantarum,1988,74(3):566-574.
    [190]Yang SH, Wang LJ, Li SH.Ultraviolet-B irradiation-induced freezing tolerance in relation to antioxidant system in winter wheat (Triticum aestivum L.) leaves. Environmental and Experimental Botany,2007,60(3):300-307.
    [191]尚兴甲,王梅芳.运用同位素15N研究冬小麦不同时期追施尿素的效果及氮肥的利用率[J].土壤肥料,2001,6(20):9-11.
    [192]Monk LS, Fagerstedt KV, Crawford RMM. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiological Plantarum,1989,76(3):456-459.
    [1931吴杏春,林文雄,郭玉春,等.UV-B辐射增强对水稻叶片抗氧化系统的影响.福建农业学报,2001,16(3):51-55.
    [194]Zeeshan M, Prasad SM. Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. South African Journal of Botany,2009,75(3):466-474.
    [195]Xie ZM, Wang YX, Liu YD, et al. Ultraviolet-B exposure induces photo-oxidative damage and subsequent repair strategies in a desert cyanobacterium Microcoleus vaginatus Gom. European Journal of Soil Biology,2009,45(4):377-382.
    [196]Foyer CH, Lopez-Delgado H, Dat JF, et al. Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol. Plant,1997, 100(2):241-254.
    [197]Strid A, Porra RJ. Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant and Cell Physiology,1992,33(7):1015-1023.
    [198]Olsson L C, Veit M, Weissonbock G, et al. Differential flavonoid response to enhanced uv-b radiation in brassica napus. Phytochemistry,1998,49(4):1021-1028.
    [199]Cen YP, Bornman JF. The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus. Physiologia Plantarum,1993,87(3):249-255.
    [200]Jiang HB, Qiu BS. Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae) to prolonged UV-B exposure. Journal of phycology,2005,41(5):983-992.
    [201]Barbieri ES, Villafafane VE, Helbling EW. Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes, Limnol.Oceanogr,2002,47(6):1648-1655.
    [202]孙令强,李召虎,段留生,等.UV-B辐射对黄瓜幼苗生长和光合作用的影响.华北农学报,2006,21(6):79-82.
    [203]刘芸,罗南书,钟章成,等.增加UV-B辐射对栝楼光合及蒸腾日变化的影响.西南农业大学学报,2003,25(5):377-381.
    [204]罗南书,刘芸,钟章成,等.田间增加UV-B辐射对丝瓜光合作用日变化及水分利用效率的影响.西南师范大学学报:自然科学版,2003,28(3):436-439.
    [205]岳向国,韩发,师生波,等.不同强度的UV-B辐射对高山植物麻花艽光合作用及暗呼吸的影响.西北植物学报,2005,25(2):231-235.
    [206]侯扶江,贲桂英.紫外线-B辐射对3种植物幼苗光合作用和呼吸作用的影响研究初报.草业学报,1998,7(3):77-79.
    [207]Heraud P, Beardall J. Ultraviolet radiation has no effect on respiratory oxygen consumption or enhanced post-illumination respiration in three species of microalgae. Journal of Photochemistry and Photobiology B:Biology,2002,68(2):109-116.
    [208]赵晓莉,张容刚,郑有飞,等.UV-B增强对菠菜生长发育和生理特性的影响.农业环境科学学报,2004,23(1):26-28.
    [209]杨景宏,陈拓,王勋陵.增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响.生态学报,2000,20(1):39-42.
    [210]An LZ, Wang JH, Liu YH, et al. The effects of enhanced UV-B radiation on growth, stomata, flavonoid and ABA content in cucumber leaves. Proceedings of SPIE-The International Society for Optical Engineering,2002,4896:223-231.
    [211]冯虎元,安黎哲,等.大豆作物响应增强UV-B辐射的品种差异.西北植物学报,2002,22(4):845-850.
    [212]赵广琦.增强UV-B辐射和CO2倍增的复合作用对蚕豆、小麦生长和生理生态的影响.西北大学博士学位论文,2003,32-34.
    [213]Daum. Molecular mechanisms and quantitative models of variable photosystem Ⅱ fluore-scence. Photochem Photobiol,1994,60:1-23.
    [214]Hanelt D, Uhrmacher S, Nultsch W. The effect of Photoinhibition on Photosynthetic oxygen production in the brown alga Dictyota dichotoma, Bot. Aeta,1995,108:99-105.
    [215]Bjorkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence at 77K among vascular plants of diverse origins. Planta,1987,170(4):489-504.
    [216]Lud D, Moerdijk TCW, Poll WHVD, et al. DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiation. Plant, Cell and Environment,2002,25(12):1579-1589.
    [217]He J, Huang LK, Chow WS, et al. Effects of supplementary ultraviolet-B radiation on rice and pea plants. Australian Journal of Plant Physiology,1993,20(2):129-142.
    [218]Zhao DL, Reddy KR, Kakani VG, et al. Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. Plant Physiol,2004,161(5):581-590.
    [219]师生波,贲桂英,等.增强UV-B辐射对高山植物麻花艽净光合速率的影响.植物生态学报,2001,25(5):520-524.
    [220]Gonzalez JA, Rosa M, Parrado MF, et al. Morphological and physiological responses of two varieties of a highland species (Chenopodium quinoa Willd.) growing under near-ambient and strongly reduced solar UV-B in a lowland location. Journal of Photochemistry and Photobiology B:Biology,2009(2-3),96:144-151.
    [221]Hilal M, Parrado MF, Rosa M, et al. Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiations. Photochem Photobiol,2004,79(2):205-210.
    [222]李元,岳明.紫外辐射生态学.北京:中国环境科学出版社,2002.
    [223]Fang WS, Liu Y, Liu HY, et al. Synthesis and cytotoxicity of 2a-amido docetaxel analogues. Bioorganic & Medicinal Chemistry Letters,2002,12 (11):1543-1546.
    [224]Fang WS, Liu Y, Fang QC. First Synthesis of 2a-Thiol Ether Analog of Docetaxel. Chinese Chemical Letters,2002,13(8):708-710.
    [225]Kingston DGI, Samaranayake G, Ivey CA. The chemistry of taxol, a clinically useful anticancer agent. Nat. Prod,1990,53(1):1-12.
    [226]Srinivasan V, Ciddi V, Bringi B, et al. Metabolic inhibitors, elicitors, and precursors as tools for probing yield limitation in taxane production by Taxuschinensis cell cultures. Biotechnology Progress,1996,12(4):457-465.
    [227]赵春芳,余龙江,刘智.中国红豆杉中主要紫杉烷类物质的分布研究.林产化学与工业,2005,1(25):89-93.
    [228]Kingston DGI, Hawkins DR, Ovington L. New taxanes from Taxus brevifolia. Nat. Prod, 1982,45(4):466-474.
    [229]杨逢建,庞海河,张学科,等.光胁迫对南方红豆杉叶片中叶绿体色素和紫杉醇含量的影响.植物研究,2007,27(5):556-558.
    [230]李双明,孙蕊,骆浩,等.紫外辐射对东北红豆杉鲜叶中紫杉醇及三尖杉宁碱含量的影响.植物研究,2007,27(4):500-503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700