用户名: 密码: 验证码:
青虾分子标记的开发应用及遗传连锁图谱的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青虾,学名日本沼虾(Macrobrachium nipponense),隶属十足目(Decapoda),长臂虾科(Palaemonidae)、沼虾属(Macrobrachium),广泛分布于全国各地。青虾养殖年产量约20.5万吨,养殖年产值近100亿元,是我国重要的淡水养殖虾类。我国青虾养殖规模大、发展快、潜力大,但近年来普遍出现了品种退化现象,而相应的遗传育种研究工作起步很晚且相对落后,离产业发展需求还有较大距离。因此,加强青虾遗传背景研究,建立起适合于青虾的育种技术,培育青虾优良品种显得尤为重要。为此,本文拟开展如下三个方面的研究:
     1.青虾微卫星标记的开发与筛选
     微卫星标记由于其具有多态性好、共显性遗传等特点,在遗传学和遗传育种研究中备受青睐。已报道的青虾微卫星标记数量很少,不能满足青虾遗传学研究的需要。本文采用FIASCO (fast isolation by AFLP of sequences containing repeats)方法构建了青虾基因组富集文库((GT)n+(AG)n),测序140个克隆,含有重复次数5次以上的微卫星序列克隆123个,阳性率达到87.8%;其中,完美型微卫星序列共有82个,占66.7%;非完美型的25个,占20.3%;复合型的16个,占13.0%。采用Primer Premier5.0共设计出75对微卫星引物,其中共有54对引物能够扩增出目的产物,具有多态性的共有28对引物。将此28个微卫星序列连同本实验室之前开发的12个具有多态性微卫星序列整理编号,共40个位点已登录GenBank (注册号:GU189600-GU189639)。
     采用野生太湖青虾群体(THW)和野生太湖青虾在池塘养殖的第三代(TH3)进行多态性的比较分析,40个位点在两个青虾群体中均呈多态性,等位基因数量为2-10个,多态信息含量PIC值从0.186到0.900不等,其中高度多态位点31个(PIC>0.5),中度多态位点8个(0.25青虾微卫星标记对同属不同种的海南沼虾(Macrobrachium hainanense)基因组DNA进行通用性检测,有24对(60%)能在海南沼虾中稳定扩增,其中19对(47.5%)呈现多态性,每个位点的等位基因数量从2到7个不等,说明在海南沼虾中具有较高的通用性。
     2.长江不同江段青虾遗传多样性研究
     长江是青虾的优良种质资源库,也是我国青虾养殖的重要亲本库,长江野生青虾种质资源状况的研究对于青虾种质资源保护和科学利用均具有重要意义。本文采用20个微卫星分子标记对长江不同江段共6个青虾群体进行了遗传多样性分析,采样点包括重庆、万州、宜昌、武汉、九江和江阴。结果表明:6个青虾群体平均等位基因数(A)为5.25,平均有效等位基因数(Ne)为3.4622;20个位点平均多态信息含量PIC为0.5894;6个群体期望杂合度平均值为0.6296,表明长江青虾遗传多样性丰富;期望杂合度由高到低依次为:江阴群体(0.6308)、九江群体(0.6096)、宜昌群体(0.5945)、武汉群体(0.5934)、万州群体(0.5844)、重庆群体(0.5821).分子方差分析(AMOVA)结果表明长江青虾6群体间遗传变异6.92%来自群体间,93.08%来自群体内部,两两群体间Fst值在0.0253-0.0838之间,表明群体间已明显出现分化(P<0.05),但分化程度中等。Hardy-Weinberg平衡检验表明,6群体均出现杂合子缺失现象,可能是由于稀有等位基因缺失或无效等位基因造成;6群体间遗传距离在0.0620-0.1809之间,UPGMA聚类分析表明,江阴群体单独聚为一类,其余5个群体聚为另一类,其中九江和武汉群体最先聚到一起,其次万州、宜昌和重庆群体聚为一类。
     3.利用微卫星和SRAP标记构建青虾遗传连锁图谱
     遗传连锁图谱是具有重要价值的遗传背景资料,而青虾作为我国重要的淡水养殖品种,尚未见遗传连锁图谱构建方面的报道。本文采用微卫星和SRAP标记构建青虾的遗传连锁图谱。共采用青虾微卫星位点136个,其中40个来自本文第一章,其余均由Genbank下载青虾微卫星序列设计获得。经筛选,有52个位点在亲本中表现分离。共有38个位点在亲本和作图群体中呈现孟德尔分离,其中母本标记有11个,占分离标记总数的28.9%;父本标记有10个,占分离标记总数的26.3%;剩余44.7%的标记为双亲共有标记。100对SRAP引物组合共扩增出2724条片段,平均每个引物组合扩增出27.2个片段。其中有493个条带在父母本中呈现多态,平均每个引物组合产生4.9个多态标记。344个多态标记符合孟德尔分离,其中309个标记符合1:1分离,母本标记132个占多态标记总数的38.4%;父本标记177个,占多态标记总数的51.4%。
     将符合孟德尔分离的38个微卫星标记和符合1:1分离的309个SRAP标记进行连锁分析,构建青虾的遗传连锁图谱。共有175个标记(含25个微卫星、150个SRAP标记)分布在53个连锁群上。每个连锁群含2-8个标记,其中不少于3个标记的连锁群有35个,连锁对18个,平均每个连锁群的标记数为3.3个;连锁群长度在6.7-91.2cM之间,15号连锁群的平均间隔最大,为30.4cM,36号连锁群的平均间隔最小,仅为6.7cM。青虾框架图谱长度为997.2cM;青虾连锁图谱观察总长度为2270.5cM,平均间隔为13.1cM;根据估算,青虾遗传连锁图谱预期长度为4380.6cM,图谱的覆盖率51.83%。
     本文开发了青虾微卫星位点,为青虾遗传学研究提供了新的分子标记;对长江不同江段野生青虾种质状况和遗传多样性进行了研究,积累了青虾遗传背景资料,可为长江青虾资源的保护和科学利用提供指导;构建了第一张青虾遗传连锁图谱,可为青虾QTL定位、基因克隆、分子标记辅助育种等提供参考,并为进一步构建高密度的遗传连锁图谱奠定了基础。
Oriental river prawn, Macrobrachium nipponense, subordinated to Decapoda, Palaemonidae, Macrobrachium, extensively distributed everywhere in China. It is an important speciese for aquaculture in China with an annual cultured production of about205,000tons and an annual cultured output value of near10billions RMB(?). Oriental river prawn farmed in China with the characteristics of large-scale, fast development and great potential. However, its economic characters seriously declined due to genetic retrogression in recent years. Because of the late beginning and very less work in genetic breeding, the relevant research cannot match the demand of production. As a result, it's very important to strengthen the investigation of genetic background, establish the feasible techniques of genetic breeding and develop excellent varieties in Oriental river prawn. In this paper, three aspects of researches were carried out as follows:
     1. Isolation and characterization of polymorphic microsatellite markers
     Microsatellite markers, as a highly polymorphic and codominant marker, were very popular in research of genetics and genetic breeding. However, reported microsatellite loci of oriental river prawn were limited in number. In this paper, a repeat-echriched genomic library ((GT) n (AG) n) was constructed by FIASCO (fast isolation by AFLP of sequences containing repeats) in oriental river prawn. One hundred and forty sequences were obtained, of which123contained microsatellite repeats (n>5), the positive ratio was87.8%; the microsatellite sequences could be categorized structurally as follows:perfect(66.7%), imperfect(20.3%), andcompound(13.0%).Senventy-five pairs of primers were designed successfully by using Primer Premier5.0, and54amplified specific products of the expected size. Finally28microsatellite loci were proved to be polymorphic.These28microsatellite sequences along with other12developed by our lab before have been deposited in GenBank (Accession no GU189600-GU189639).
     Microsatellite polymorphism of forty loci was evaluated using two populations from China with32samples each. One wild population was collected from Taihu Lake (THW) and the other cultured population was the3rd generation captive breeding progenies from Taihu Lake (TH3) from Yixing city in Jiangsu province. Thirty-one loci showed high polymorphism (PIC>0.5), and8had intermediate polymorphism (0.25     2. Studies on genetic diversity of wild populations of oriental river prawn from different segment of the Yangtze River
     The Yangtze River is an excellent gene pool of oriental river prawn as well as an important parent pool for its farming. The investigation on the genetic resources of oriental river prawn in the Yangtze River is essential for its conservation and scientific utilization.
     Twenty polymorphic microsatellite markers were applied to investigate the genetic diversity of6oriental river prawn populations in the Yangtze River. The sampling sites included Chongqing, Wanzhou, Yichang, Wuhan, Jiujiang and Jiangyin. The average number of alleles (A) and effective numbers of alleles (Ne) in6populations were5.25and3.4622respectively. The mean PIC value of20microsatellite loci was0.5894. Expected heterozygosity (He) of6populations was as follows:Jiangyin (0.6308), Jiujiang (0.6096), Yichang (0.5945), Wuhan (0.5934), Wanzhou (0.5844) and Chongqing (0.5821), and their mean value were0.6296. The analysis of molecular variance (AMOVA) indicated that almost majority of the variance in the M. nipponense was within populations (93.08%), and6.92%was among populations. The Fst values between populations was0.0253-0.0838(P<0.05), Which showed the genetic divergence between populations in the Yangtze River was intermedieate but lower than that in the lakes. That was probably because running water promoted the exchanges between populations. Hardy-Weinberg equilibrium analysis indicated that deficiency of heterozygote existed in all6populations, which was probably because of rare allele deficiency or null alleles. The genetic distances among populations ranged from0.0620to0.1809. The UPGMA tree showed that:Jiangyin stock formed an independent clade and resident5populations formed another one in which Jiujiang and Wuhan populations clustered at first.
     3. Construction of genetic linkage map of oriental river prawn using microsatellite and SRAP markers
     Genetic linkage map is a very important data of genetic background with great value. However, oriental river prawn, as one of primary species for freshwater aquaculture in China, no work on genetic linkage map construction was reported so far. In this paper, a first genereation genetic linkage map of oriental river prawn was constructed using microsatellite and SRAP markers and pseudo-testcross mapping strategy. Of136microsatellite markers,52segregated in the parents.Thirty-eight out of52makers,11in the female and10in the male and17in both parents, segregated at1:1or1:1:1:1ratios. A hundred SRAP primer combinations produced2724bands with an average27.2per primer combination, including493polymorphic bands in the parent with an average4.9per primer combination. A total of409SRAP markders segregated according to the expected1:1Mendelian ratio, of which132segregated in the female parent and177segregated in the male parent.
     All these segregating makers were used to construct a genetic linkage map of oriental river prawn. A total of175makers including25microsatellite and150SRAP makers were mapped in53linkage groups with the number of markers per group ranged from2to8. Thirty-five groups included at least three markers.The average number of markers per group was3.3. The length of groups ranged from6.7cM to91.2cM (Kosambi). The maximum average distance of linkage group was30.4cM in LG15and the minimun was6.7cM in LG36. The framework map contained LG1to LG16with the length of997.2cM. The total length of the map was2270.5cM with an average distance of13.1cM. An average estimated genome size for oriental river prawn was4380.6cM. On the basis of the estimated genome lengths, genome coverage of map was51.83%.
     In this paper, microsatellite loci were isolated and characterizated and it provided new molecular tools for genetic research in oriental river prawn. Studies on genetic diversity of wild populations in the Yangtze River accumulated the data of genetic background of oriental river prawn and are helpful for the conservation and scientific utilization of wild resources. The first genetic linkage map of oriental river prawn was constructed and it should be useful for quantitative trait loci (QTL) mapping, molecular marker-assisted breeding (MAS) and construction of a higher density of genetic linkage map.
引文
Agresti J. J., Seki S., Cnaani A., et al. Breeding new strains of tilapia:development of an artificial center of origin and linkage map based on AFLP and microsatellite loci [J]. Aquaculture,2000,185:43-56.
    Baranski M, I oughnan S, Austin C M, et al. A microsatellite linkage map of the black lip abalone, Haliotis rubra [J]. Animal Genetics,2006,37:563-570.
    Botsein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. American Journal of Human Genetics,1980,32(3):314-331.
    Brook A. L., Cook D., Paul B.,.Organization of microsatellites differs between mammals and cold-water teleost fishes[J]. Candian Journal of Fisheries Aquatic Sciences,1994,51:1959-1966.
    Budak H, Shearlnan R C, Parmaksiz 1. Moleeular characterization of Buffalo grass germplasm using sequence related amplified polymorphism markers [J]. Theoretical and Applied Genetics,2004, 108:328-334.
    Budak H, Shearman R C, Parmaksiz 1. Comparative analysis of seeded and vegetative biotype bufalo grasses based on phylogenetic relationship using ISSRs, SSRs, RAPDs and SRAPs[J]. Theoretical and Applied Genetics,2004,109:280-288.
    Budak H, Shearnlall R C, Gaussoin R E. Application of sequence related amplified polymorphism markers for characterization of turf grass species [J]. Hortscience,2004,39(5):955-958.
    Cai Y, Ng P K L. The freshwater palaemonid prawns of Myanmar (Crustacea:Decapoda:Caridea) [J]. Hydrobiologia,2002,487:59-83.
    Cheng L, Liu L, Yu X, et al. A linkage map of common carp (Cyprinus carpio) based on AFLP and microsatellite markers [J]. Animal Genetics,2009,1-8.
    Chistiakov D A, Hellemans B, Haley C S, et al. A microsatellite linkage map of the European sea bass Dicentrarchus labrax L [J]. Genetics,2005,170:1821-1826.
    Chistiakov D. A., Tsigenopoulos C. S, Lagnel J, et al. A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L [J]. Animal Genetics,2008,39:623-634.
    Cho R J, Mindrinos M, Richard D R, Sapolsky R J, Andeson M.. Genome-wide mapping with biallelic markers in Arabidopsis thaliana [J]. Nature Genetic,1999,23:203-207.
    Coimbra M. R. M., Kobayashi K., Koretsugu S. A genetic linkage map of the Japanese flounder, Paralichtys olivaceus [J]. Aquaculture,2003,220:203-218.
    Conner P. J., Brown S. K., Weeden N. F. Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees [J]. Theoretical and Applied Genetics,1998,96:1027-1035.
    Donis-Keller H, Green P, Helms C et al. A genetic linkage map of the human genome [J]. Cell,1987, 51(2):319-337.
    Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of cucurbita pepo using SRAP and AFLP markers[J]. Theoretical and Applied Genetics,2003,107:271-282.
    Fisher D., Bachmann K.. Microsatellite enrichment in organisms with large genomes (Alliumcepa L.) [J]. Biotechniques,1998,5:796-800.
    Gilbey J., Verspoor E., McLay A., et al. A microsatellite linkage map for Atlantic salmon (Salmo salar) [J]. Animimal Genetics,2004,35:98-105.
    Grattapaglia D., Bertolucci F. L. G, Penchel R. R., et al. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers[J]. Genetics,1996,144:1205-1214.
    Grattapaglia D., Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross:mapping strategy and RAPD markers [J]. Genetics,1994,137:1121-1137.
    Hakki E. E., Akkaya, M.S.Microsatellite isolation using amplified fragment length polymorphism markers:no cloning, no screening [J]. Molecular Ecology,2000,9,2149-2145.
    Huang Bx, Peakall R, Hanna P J. et al. Analysis Of genetic structure of blacklip abalone (Haliotis rubrd) populations using RAPD minisatellite and microsatcllite malker [J]. Marine Biotechnology,2000, 136:207-216.
    Hubert S, Hedgecock D. Linkage maps of microsatellite DNA makers for Pacific oyster Crassostrea gigas [J]. Genetics,2004,168(1):351-362.
    Huseyin K., Wang S L, Li P, et al. Construction of Genetic Linkage Maps and Comparative Genome Analysis of Catfish Using Gene-Associated Markers [J]. Genetics,2009,181:1649-1660.
    Imenez R V, Cruz P' Enriquez R P1. Population genetic structure of Pacific white shrimp (Litopenaeus vannamei) from Mexico to Panama:microsatenite DNA variation[J]. Marine Biotechnology,2005, 6(1):475-484
    Jackson T R, Ferguson M M, Danzmann R G, et al. Identification of two QTL influencing upper temperature tolerance in three rainbow trout half-sib families [J]. Heredity,1998,80:143-151.
    Kang J H, Kim W J, Lee W J. Genetic linkage map of olive flounder(Paralichthys olivaceus) [J]. International Journal of Biological Sciences,2008,4(3):143-149.
    Kano S,Satoh N, Sordino P. Primary genetic linkage maps of the ascidian,Ciona intestinalis [J]. Zoological Science,2006,23:31-39.
    Kaya Z., Sewell M. M., Neale, D. B.. Identification of quantitative trait loci influencing annual height and diameter-increment growth in loblolly pine (Pinus taeda L.) [J]. Theoretical and Applied Genetics, 1999,98:586-592.
    Khoo G, Lim M. H., Suresh H., et al. Genetic linkage maps of the guppy:Assignment of RAPD markers to multipoint linkage groups[J]. Marine Biotechnology,2003,5:279-293.
    Kim T S, Judy R G, Raymond L F. Isolation and characterization of novel salmon microsatellite loci:crosss-pecies amplification and population genetic applications[J]. Canadian Journal of Fisheries and Aquatic Sciences,1996,53:833-841.
    Kimura T., Yoshida K., Shimada A., et al. Genetic linkage map of medaka with polymerase chain reaction length polymorphisms [J]. Gene,2005,363:24-31.
    Knapik E. W., Goodman A., Ekker M., et al. A microsatellite genetic linkage map for zebra fish (Danio rerio) [J]. Nature Genetics,1998,18:338-343.
    Kochan K J, Wright D A, Schroeder L J, et al. Genetic linkage maps of the West African clawed frog Xenopus tropicalis [J]. Developmental Dynamics,2003,226(1):99-102.
    Kocher T. D., Lee W. J., Sobolewska H., et al. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus) [J]. Genetics,1998,148:1225-1232.
    Lallias D, Beaumont A R, Haley C S, Boudry P, Heurebise S. A first-generation genetic linkage map of the European flat oyster Ostrea edulis (L.) based on AFLP and microsatellite markers [J]. Animal genetics,2007,38:560-568.
    Lallias D, Lape'gue S, H ecquet C, et al. AFLP based genetic linkage maps of the blue mussel (Mytilus edulis) [J]. Animal Genetics,2007,38:340-349.
    Launey S, Hedgecock D. High genetic load in the Pacific oyster Crassostrea gigas [J]. Genetics,2001, 159:255-265.
    Lee B. Y., Lee W. J., Streelman J. T., et al. A Second-Generation Genetic Linkage Map of Tilapia (Oreochromis spp.) [J]. Genetics,2005,170:37-44.
    Lespinasse D., Grivet L., Troispoux V, et al. Identiflcationof QTLs involved in the resistance to South American leaf blight(Microcyclus ulei)in the rubber tree[J]. Theoretical and Applied Genetics,2000, 100:975-984.
    Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping [J]. Theoretical and Applied Genetics,2003,107:168-180.
    Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica [J]. Theoretical and Applied Genetics,2001,103:455-461.
    Li L, Guo X M. AFLP-based genetic linkage maps of the pacific oyster Crassostrea gigas Thunberg [J]. Marine Biotechnology,2004,6:26-36.
    Li L, Xiang J, Liu X, et al. Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Joneset Preston and mapping of sex-linked markers[J]. Aquaculture,2005,245:63-73.
    Li Q, Park C, Kobayashi T, et al. Inheritance of microsatellite DNA markers in the Pacific abalone Haliotis discus hannai [J]. Marine Biotechnology,2003,5:331-338.
    Li Y. T., Byme K., Miggiano E., et al. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers [J]. Aquaculture,2003,219:143-156.
    Li Y T., Dierens L., Byrne K., et al. QTL detection of production traits for the Kuruma prawn Penaeus japonicus(Bate) using AFLP [J]. Aquaculture,2006,258,198-210.
    Li Z, Li J, Wang Q, et al. AFLP based genetic linkage map of marine shrimp Penaeus (.Fennero penaeus) chinensis[J]. Aquaculture,2006,261:463-472.
    Liao M, Zhang L, Yang G, et al. Development of silver carp(Hypophthalmichthys molitrix) and bighead carp(Aristichthys nobilis) genetic maps using microsatellite and AFLP markers and a pseudo-testcross strategy [J]. Animal Genetics,2007,38:364-370.
    Liu Z J, Dunham R. Genetic linkage and QTL mapping of ictalurid catfish [J]. Alabama Agricultural. Experement. Station. Bulletin,1997,321:1-19.
    Liu Z J. Encyclopedia cDNA libraries of channel catfish and systematic analysis of genes, gene expression, and markers [J]. Plant and Animal Genome X, San Diego,2002, W30.
    Liu Z., Karsi A., Li P., et al. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family [J]. Genetics,2003,165:687-694.
    Li W, Lin Z X, Zhang X L. A novel segregation distortion in intraspecific population of Asian Coaon (Gossypium arboretum L.) detected by molecular markers [J]. Journal of Genetics and Genomics,2007, 34(7):634-640.
    McClelland E. K, Naish K. A. A genetic linkage map for coho salmon(Oncorhynchus kisutch) [J]. Animal Genetics,2008,39:169-179.
    Miles L G, Isberg S R, Glenn T C, et al. A genetic linkage map for the saltwater crocodile (Crocodylus porosus) [J]. BMC Genomics,2009,29(10):339-350.
    Moen T.B., Hoyheim, Munck H. A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes [J]. Animal Genetics,2004, 35:81-92.
    Moore S. S., Whan V., Davis G.P., et al. The development and application of genetic markers for the Kuruma prawn Penaeus japonicus [J]. Aquaculture,1999,173,19-32.
    Morizot D C, Nairn R S, Walter R B, et al. The linkagemap of Xiphophorus fishes. [J], J Comp Gene Map,1998,39:2-3.
    Naruse K., Fukamachi S., MitaniH, et al. A detailed linkage map of medaka, Oryzias latipes: Comparative genomics and genome evolution [J]. Genetics,2000,154:1773-1784.
    Naruse K., Tanaka M., Mita K., et al. A Medaka Gene Map:The Trace of Ancestral Vertebrate Proto-Chromosomes Revealed by Comparative Gene Mapping [J]. Genome Research,2004,14:820-828.
    Naruse, K., Fukamachi, S., Mitani, H., et al. A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genomeevolution [J]. Genetics,1999,154:1773-1784.
    Negi M. S., Devic M., Delseny M. et al. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversation to a SCAR marker for rapid selection [J]. Theoretical and Applied Genetics,2000,101:146-152.
    Nichols K M, Young W P, Danzmann R G, et al. A consolidated linkage map for rainbow trout (Oncorhynchu smykiss) [J]. AnitaGenet,2003,34(2):102-115.
    Nielsen E, Heino M B. Looking for a needle in a Haystack:discovery of indigenous atlantic salmon(Salmosalar L.) in stocked population [J]. Conservation Genetics,2001,2:219-232.
    Ning Y, Liu X, Wang Z Y, et al. A genetic map of the large yellow croaker Pseudosciaena crocea [J]. Aquaculture,2007,264:16-26.
    Ozaki A, Sakamoto T, Khoo S, et al. Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout[J]. Molecular Genetics and Genomics,2000,265:23-31.
    Perez F, Erazo C, Zhinaula M, et al. A sex specific linkage map of the white shrimp Penaeus (Litopenaeus) vanmanici based on AFLP markers [J]. Aquaculture,2004,242:105-118.
    Poompuang S., Na-Nakorn U.. A preliminary genetic map of walking catfish(Clarias macrocephalus) [J]. Aquaculture,2004,232:195-203.
    Primmer C R, Moiler A P, Ellegren H.A. widerange survey of cross-species microsatellite am plification in birds [J]. Molecular Ecology,1996,5:365-378.
    Riaz A, Dan P, Stephen M S. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular marker [J]. J.Amer. Soc. Holt. Sol.,2004,129(2):204-210.
    Rouppe van der Voort J N, Van Zandvoort P van Eck H.J, Folkertsma R.T, et al. Use of allele specificity of comigrating AFLP markers to align geneticmaps from different potato genotypes [J]. Molecular Genetics and Genomics,1997,255:438-447.
    Sakamoto T., Danzmann R.G, Gharbi K., et al. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates[J]. Genetics,2000,155:1331-1345.
    Sammy D G, Ahmad G The establishment of the Oriental River Prawn, Macrobrachium nipponense(de Haan,1849)in Anzali Lagoon, Iran[J]. AquaticInvasions,2006, 1(4):204-208.
    Scalfi M., Troggio M., Piovani P., et al. A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech Fagus sylvatica L[J]. Theoretical and Applied Genetics,2004,108,433-441.
    Shen X Y, Yang G P, Liu Y J, et al. Construction of genetic linkage maps of guppy (Poecilia reticulata) based on AFLP and microsatellite DNA markers [J]. Aquaculture,2007,271:178-187.
    Shi Y H, Kui H, Guo X M, Gu Z F. Genetic linkage map of the pearl oyster, Pinctada martensii (Dunker)[J]. Aquaculture Research,2009,41:35-44.
    Shimoda N., Kmapik E. W., Ziniti J., et al. Zebrafish genetic map with 2000 microsatellite markers[J]. Genomics,1999,58:219-232.
    Shungo Kano, Nori Satoh, Paolo Sordino. Primary Genetic Linkage Maps of the Ascidian, Ciona intestinalis [J]. Zoological Science,2006,23(1):31-39.
    Skinner D D, Denoya C D. Simple DNA polymerase chain reaction method to locate and define orientation of specific sequences in cloned bacterial genomic fragments [J]. Microbioscience,1999, 75:125-129.
    Sun X W, Liang L Q. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance [J]. Aquaculture,2004,238:165-172.
    Sun X., Liang L.. A genetic linkage map of common carp(Cyprinus carpio L.) and mapping of a locus associated with cold tolerance[J]. Aquaculture,2004,238:165-172.
    Tan Y. D., Wan C. Zhu Y. et al. An amplified fragment length polymorphism map of the silkworm [J]. Genetics,2001,157:1277-1284.
    Tao Yuan, Maoxian He, Liangmin Huang et al. Genetic Linkage Maps of the Noble Scallop Chlamys nobilis Reeve Based on Aflp and Microsatellite Markers[J]. Journal of Shellfish Research,2010, 29(1):55-62.
    Vos P, Hodgers R, Bleek M, Reijians M, et al. AFLP, a new technique for DNA fingerprinting[J]. Nucleic Acids Research 1995,23:4407-4414.
    Wada H., Naruse K., Shimada A.. Genetic linkage map of a fish, the Japanese medaka Oryziaolatipes [J]. Molecular Marine Biology and Biotechnology,1995,4:69-274.
    Waldbieser G. C., Bosworth B. G., Nonneman D. J., et al. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus [J]. Genetics,2001,158:727-734.
    Walter R B, Rains J D, Russell J E, et al. A microsatellite genetic linkage map for Xiphophorus fishes. [J], Genetics,2004,168(1):363-372.
    Wang D G. Fan G B, Sian C J.. Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome [J]. Science,1998,280:1077-1082.
    Wang S., Bao Z. M., Pan B., et al. AFLP linkage map of and intraspecific cross in Chlamys farreri[J]. Journal of Shellfish Research,2004,23(2):491-499.
    Wang W N, Wang A L, Liu Yuan, et al. Effects of temperature on growth, adenosine phosphates, ATPase and cellular defense response of juvenile shrimp Macrobrachium nipponense [J]. Aquaculture,2006, 256:624-630.
    Watanabe T., Yoshida M., Nakajima M., et al. Linkage mapping of AFLP and microsatellite DNA markers with the body color and sex-determining loci in the guppy(Poecilia reticulata) [J]. Zoological Science,2005,8:883-892.
    Wataru K., Kiyoshi K., Fujita M.. A Genetic Linkage Map for the Tiger Pufferfish, Takifugu rubripes [J]. Genetics,2005,171:227-238.
    Whan V. A., Wilson K. J., Moore S. S.. Two polymorphic microsatellite markers from novel Penaeus monodon ESTs [J]. Animal Genetics,2000,31:143-144.
    Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeus mondon with amplified fragment length polymorphism [J]. Aquaculture,2002,204:297-300.
    Winans G A. Genetic variability in Chinook salmon stocks from the Columbia river basin [J]. North Am ericanJ Fish Management,1989,1:47-52.
    Woods I. G., Wilson C., Friedlander B., et al. The zebrafish gene map defines ancestral vertebrate chromosomes [J]. Genome Research,2005,151:307-314.
    Wright S. The genetical structure of populations [J]. Animals Eugenics,1951,15:323-324.
    Wu P., Chen L Q, Qi D. Gene discovery from an ovary cDNA library of oriental river prawn Macrobrachium nipponense by ESTs annotation [J]. Comparative Biochemistry and Physiology, Part D. 2009,4:111-120.
    Xu Z, Primavera J H, Pena L D. et al. Genetic diversity of wild and cultured black tiger shrimp (Penaeus monodon) in the Philippines using microsatellites [J]. Aquaculture,2001,199:13-40.
    Yang Y, Xie S Q, Lei W, et al. Effect of replacement of fish meal by meat and bone meal and poultry by-product meal in diets on the growth and immune response of Macrobrachium nipponense [J]. Fish and Shellfish Immunology,2004,17:105-114.
    Shi Y H, Guo X M, Gu Z F. et al. Preliminary genetic linkage map of the abalone Haliotisdiv ersicolorReeve [J]. Chinese Journal of Oceanology and Limnology,2010,28 (3):549-557.
    You E M, Liu K. F, Huang S W, et al. Construction of integrated genetic linkage maps of the tiger shrimp (Penaeus monodon) using microsatellite and AFLP markers [J]. Animal Genetics,2010,1-4.
    Young W. P., Wheeler P. A., Coryell V. H., et al. A detailed linkage map of rainbow trout produced using doubled haploids [J]. Genetics,1998,148:839-850.
    Yu Z N, Guo X M. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin [J]. Biology Bullien,2003,204:327-338.
    Zane L., Bargelloni L., Patarnello T.. Strategies for microsatellite isolation:a review [J]. Molecular Ecologyl,2002,11:1-16.
    Zhang F Y, Chen L Q, Wu P. cDNA cloning and expression of Ubc9 in the developing embryo and ovary of oriental river prawn, Macrobrachium nipponense [J]. Comparative Biochemistry and Physiology, Part B,2010,155:288-293.
    Zunchun Zhou, Zhenmin Bao, Ying Dong, et al. AFLP linkage map of sea urchin constructedusing an interspecific cross between Strongylocentrotus nudus ((?)) and S.intermedius((?)) [J]. Aquaculture,2006, 259(4):56-65.
    安丽,刘萍,李健,等.“黄海1号”中国对虾不同世代间的AFLP分析[J].中国海洋大学学报,2008,38(6):921-926.
    常亚青,陈晓霞,丁君,等.虾夷扇贝(Patinopecten yessoensis)5个群体的遗传多样性[J].生态学报,2007,27(3):1145-1152.
    陈婵娟,张鑫,许志强,等.江苏地区日本沼虾种质资源的RAPD分析[J].江苏农业科学,2008(2):62-65.
    陈淑吟,吉红九,丁亚平,等.吕泅渔场三疣梭子蟹自然群体同工酶与ISSR遗传多样性分析[J].上海水产大学学报.2008,17(4):406-410.
    陈晓汉,曾地刚,李咏梅,等.凡纳滨对虾生长性状的微卫星DNA标记分析[J].武汉大学学报(理学版),2006,52(4):498-502.
    陈晓汉,曾地刚,李咏梅,等.凡纳滨对虾遗传多样性的微卫星DNA分析[J].广西农业科学,2006,37(5):579-583.
    初冠囡,金迪,马驰原,等.中间球海胆性别性状的微卫星分析[J].大连水产学院学报,2009,24:35-39初冠囡,秦艳杰,李霞,等.中间球海胆生长分化相关的AFLP标记[J].中国水产科学,2010,17(3):448-455.
    丁淑燕,黄亚红,柏如发,等.江苏及安徽地区十个中华绒螯蟹成蟹群体的RAPD分析[J],水产科学,2008,27(8):417-420.
    丁淑燕,黄亚红,柏如发,等.中华绒螯蟹幼蟹群体遗传多样性的RAPD分析[J].江苏农业科学,2010,2(1):233-235.
    丁炜东,曹丽萍,曹哲明,草鱼种质相关SRAP及SCAR的分子标记[J].动物学报,2008,54(3):475-481.
    董秋芬,刘楚吾,郭昱嵩,等.青石斑鱼微卫星标记的筛选及群体多态性分析[J].水产学报,2007,31(6):841-847.
    董颖,周遵春,宋伦,等.中华绒螯蟹、日本绒螯蟹及其杂交F1代群体的遗传多样性AFLP分析[J].水产科学,2008,27(3):135-138.
    冯冰冰,李家乐,牛东红,等.我国四大海域三疣梭子蟹线粒体控制区基因片段序列比较分析[J].上海水产大学学报,2008,17(2):134-159.
    冯冰冰,李家乐,牛东红,等.我国沿海三疣梭子蟹9个野生群体线粒体CR和COI片段比较分析[J].Chinese Journal of Zoology,2008,43(2):28-36.
    冯建彬,孙悦娜,程熙,等.我国五大淡水湖日本沼虾线粒体COI基因部分片段序列比较[J].水产学报,2008,32(4):517-525.
    冯建彬,吴春林,丁怀宇,等.洪泽湖日本沼虾9个野生群体遗传多样性微卫星分析[J].中国水产科学,2009,17(2):218-227.
    傅洪拓,龚永生,吴滟,等.日本沼虾与海南沼虾的人工种间杂交及其同工酶分析[J].水生生物学报,2004,28(3):327-329.
    傅洪拓,乔慧,姚建华,等.基于SRAP分子标记的海南沼虾种群遗传多样性[J].生物多样性,2010,18(2):150-154.
    耿慧君,周遵春,董颖,等.中间球海胆野生和养殖群体遗传结构的微卫星分析[J].水产学报,2009,33(4):549-556.
    何绪刚,龚世园.日本沼虾(Macrobrachium nipponense)规模化育苗试验[J].内陆水产,2003,28(11):36-38.
    胡波,周新,2000.微卫星DNA的研究[J].国外医学临床生物化学与检验学分册,21(2),88-90.
    黄磊一,王义权.扬子鳄种群的微卫星DNA多态及其遗传多样性保护对策分析[J].遗传学报,2004,31(2):143-150.
    贾元印,赵瀚年,姚乾元,等.青虾中微量元素和氨基酸的含量测定[J].山东中医药杂志,1991,10(6):35-36.
    姜永杰,周发林,黄建华,等.深圳海域斑节对虾野生种群线粒体控制区序列的多态性分析[J].南方水产,2006,2(1):55-57.
    蒋速飞,傅洪拓,龚永生,等.海南沼虾(♀)×日本沼虾(♂)的人工种间杂交及其RAPD分析[J].上海水产大学学报,2006,15(4):409-413.
    蒋速飞,傅洪拓,熊贻伟,等.日本沼虾4个地理群体遗传变异的RAPD分析[J].长江大学学报(自科版),2006,3(2):179-182.
    蒋鹏,史建全,张妍等.应用微卫星多态分析青海湖裸鲤(Gymnocypris przewalski (Kessler))六个野生群体的遗传多样性[J].生态学报,2009 29(2):939-945
    颉晓勇,苏天凤,陈文,等.凡纳滨对虾6个养殖群体遗传多样性的比较分析[J].南方水产,2008,4(6):42-49.
    金梦阳,刘列钊,付福友,等.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建[J].分子植物育种,2006,4(4):520-526.
    李朝霞,李健,何玉英,等.中国对虾人工选育快速生长群体不同世代间的AFLP分析[J].高技术通讯,2006,16(4):435-440.
    李锋,林继辉,刘楚吾.凡纳滨对虾引进亲虾及其子一代的遗传多样性研究[J].海洋科学2006,30(4):64-68.
    李家乐,聂式忠,冯建彬,等.长江中下游五个日本沼虾群体网箱生长和养殖性能比较[J].上海水产大学学报,2005,9(14):258-260.
    李武,倪薇,林忠旭,等.海岛棉遗传多样性的SRAP标记分析[J].作物学报,2008,34(5):893-898.
    李晓晖,许志强,潘建林,等.朱清顺中华绒螯蟹人工选育群体的遗传多样性[J].中国水产科学2010,17(2):236-242.
    李新正,刘瑞玉,梁象秋.中国长臂虾总科的动物地理学特点[J].生物多样性,2003,11(5):393-406.
    李长春,李云,谢饮铭.鄱阳湖虾类资源最大持续产量及其开发利用的研究[J].江西科学,1990,8(4):28-33.
    林凯东,罗琛.鲤的微卫星引物对草鱼基因组分析适用性的初步研究[J].激光生物学报,2003,12(2):121-127.
    林忠旭,张献龙,聂以春.棉花SRAP遗传连锁图构建[J].科学通讯,2003,48(15):1676-1679.
    林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中和适用性分析[J].遗传学报,2004,31(6):622-626.
    刘萍,何玉英,孙昭宁,等.中国对虾生长性状相关遗传标记的筛选与克隆[J].海洋水产研究,2007,28(2):1-6.
    刘萍,孟宪红,何玉英,等.中国对虾黄、渤海3个野生地理群遗传多样性的微卫星DNA分析[J].海洋与湖沼,2004,35(3):252-257.
    刘萍,孟宪红,李健,等.中国对虾部分基因组文库的构建和微卫星DNA的筛选[J].高技术通 讯,2004,14(2):87-90.
    刘爽,薛淑霞,孙金生,黄海和东海三疣梭子蟹(Portunus triuberbuculatus)的AFLP分析[J].海洋与湖沼,2008,39(2):152-156.
    刘雅辉,闫红飞,杨文香,等.23个小麦抗叶锈病近等基因系SRAP多态性[J].中国农业科学,2008,41(5):1333-1340.
    鲁翠云,孙效文,曹洁,等.磁珠富集法筛选白鲢的微卫星分子标记[J].农业生物技术学报,2005,13(6):772-776.
    鲁翠云,孙效文,梁利群.鳙鱼微卫星分子标记筛选[J].中国水产科学,2005,12(2):192-196.
    马春艳,陈亚瞿,张凤英,中国太湖和荷兰的中华绒螯蟹随机扩增多态性DNA分析[J].海洋渔业,2005,27(4):276-280.
    马春艳,孔杰,孟宪红,等.中国对虾5个地理群体的RAPD分析[J].水产学报,2004,28(3):245-249.
    马海涛,常玉梅,于冬梅,等.利用微卫星分子标记分析四个中华绒螯蟹群体的遗传多样性[J].动物学研究,2007,28(2):126-130.
    孟鹏,刘晓敏,王伟继,等.中国对虾家系水平遗传多样性的AFLP分析[J].海洋水产研究,2008,29(3):21-26.
    孟宪红,孔杰,刘萍,等.中国明对虾抗白斑综合症病毒分子标记的筛选[J].中国水产科学,2005,12(1):14-19.
    孟宪红,马春燕,刘萍,等.黄渤海中国对虾6个地理群的遗传结构及其遗传分化[J].高技术通讯,2004,4:97-102.
    倪娟,赵晓勤,陈立侨,等.日本沼虾4种群肌肉营养品质的比较[J].中国水产科学,2003,10(3):212-215.
    秦艳杰.海湾扇贝遗传图谱构建及壳色基因、生长相关QTL的定位研究[J].中国科学院海洋研究所毕业论文,2006.
    邱高峰,堵南山,赖伟.日本沼虾染色体及核型的研究[J].海洋与湖沼,1994,25(5):493-498.
    邱涛,陆任后,项超美,等RAPD方法对中华绒螯蟹长江、辽河、瓯江三群体的遗传多样性分析[J].淡水渔业,1997,27(5):3-6.
    萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南:第二版[M].北京:科学出版社,1992,1-1062.
    宋林生,李俊强,李红蕾,等.用RAPD技术对我国栉孔扇贝野生种群与养殖群体的遗传结构及其遗传分化的研究[J].高技术通讯,2002,12(7):2-7.
    孙效文,贾智英,魏东旺,等.磁珠富集法与小片段克隆法筛选鲤微卫星的比较研究[J].中国水产科学,2005,12(2):126-132.
    孙效文,梁利群.鲤鱼的遗传连锁图谱(初报)[J].中国水产科学,2000,7(1):1-5.
    孙效文,鲁翠云,梁利群.磁珠富集法分离草鱼微卫星分子标记[J].水产学报,2005,29(4):482-486.
    谭树华,王桂忠,艾春香,等.斑节对虾养殖群体遗传多样性的同工酶和RAPD分析[J].中国水产科学,2005,12(6):703-707.
    田燚,孔杰,王伟继.中国对虾遗传连锁图谱的构建.[J].科学通报,2008,53(5):544-555.
    童馨,龚世圆,喻达辉,等.凡纳滨对虾(Litopenaeus vannamei)世代养殖群体的遗传多样性分析[J].海洋与湖沼,2009,40(2):215-220.
    王军,王成辉,刘豪,等鲤正、反交F2群体的AFLP遗传图谱构建及其QTL定位[J].中国农业科技导报,2010,12(1):92-99.
    王志勇,王艺磊,林利民,等.福建官井大黄鱼AFLP指纹多态性的研究[J].中国水产科学,2002,9(3):198-201.
    魏东旺,楼允东,孙效文,等.鲤微卫星分子标记的筛选[J].动物学研究,2001,22(3):238-241.
    文雁成,王汉中,沈金雄,等SRAP和SSR标记构建的甘蓝型油菜品种指纹图谱比较[J].中国油料作物学报,2006,28(3):233-236.
    吴惠仙,薛俊增.日本沼虾黑鳃病几种同工酶的变化与病理分析[J].海洋湖沼通报,2002,1:32-37.
    吴滟,傅洪拓,李家乐,等.太湖日本沼虾的遗传多样性分析[J].上海水产大学报,2008,17(5):620-624.
    肖调义,张学文,章怀云,等.洞庭湖四种黄颡鱼基因组DNA遗传多样性的RAPD分析[J].中国生物工程杂志,2004,24(3):85-89.
    谢丽,陈国良,叶富良,等.凡纳滨对虾4个选育群体遗传多样性SSR分析[J].广东海洋大学学报,2009,29(4):5-9.
    熊小飞,江世贵,夏军红,等.中国南海海域斑节对虾群体与西印度洋、西太平洋群体种群遗传结构的比较分析[J].水产学报,2008,32(6):856-863.
    徐建荣,韩晓磊,李宁,等.福寿螺3个地理群体遗传多样性的AFLP分析[J].生态学报,2009,29(8):4119-4125.
    严骏骢,赵金良,李思发,等.鲢中国土著群体与海外移居群体遗传多样性的AFLP分析[J].水产学报,2010,34(5):673-679.
    杨频,张浩,陈立侨,等.利用COI基因序列分析长江与澜沧江水系日本沼虾群体的遗传结构[J].动物学研究,2007,28(2):113-118.
    岳志芹,王伟继,孔杰,等AFLP分子标记构建中国对虾遗传连锁图谱的初步研究[J].高技术通讯,2004,5:88-93.
    岳志芹,王伟继,孔杰,等.用AFLP方法分析中国对虾抗病选育群体的遗传变异[J].水产学报,2005,29(1):13-19.
    战爱斌,胡景杰,胡晓丽,等.富集文库—菌落原位杂交法筛选栉孔扇贝(Chlamys farreri)的微卫星标记[J].水产学报,2007,3:12-16.
    张海琪,丁雪燕,薛辉利,等.南美白对虾两养殖群体遗传多样性的比较分析[J].宁波大学学报(理工版),2006,29(1):44-48.
    张海琪,何中央,徐晓林,等.罗氏沼虾缅甸野生群体和浙江养殖群体的遗传多样性比较[J].中国水产科学,2004,11(9):506-512.
    张红玉,何毛贤,管云雁.马氏珠母贝红色壳家系不同世代遗传变异的SRAP分析[J].水产学报,2009,33(5):727-733.
    张红玉,何毛贤SRAP标记在马氏珠母贝家系F1代中的分离[J].海洋通报,2009,28(2)50-56.
    张建森,孙小异.长江中下游淡水虾的初步调查[J].动物学杂志,1981,4:2-6.
    张凌燕,叶金云,王友慧,等.配合饲料中不同蛋白质水平对日本沼虾生长的影响[J].上海水产大学学报,2008,17(6):668-673.
    张留所.凡纳对虾分子标记筛选、遗传图谱构建和QTL定位[J].中国科学院海洋研究所博十论文,2006.
    张四明,邓怀,汪登强等.长江水系钱草鱼遗传结构及变异性的RAPD研究[J].水生生物学报,2010,25(4):324-330
    张天时,刘萍,李健,等.用微卫星DNA技术对中国对虾人工选育群体遗传多样性的研究[J].水产学报,2005,29(1):6-12.
    张天时,刘萍,李健,等.中国对虾与生长性状相关微卫星DNA分子标记的初步研究[J].海洋水产研究,2006,27(5):34-38.
    张天时,刘萍,孟宪红,等.不同对虾种间共用微卫星DNA引物的研究[J].高技术通讯,2003,(2):80-85.
    张天时,王清印,刘萍,等.中国对虾人工选育群体不同世代的微卫星分析[J].海洋与湖 沼,2005,36(1):72-79.
    张研,梁利群,常玉梅,等.鲤鱼体长性状的QTL定位及其遗传效应分析[J].遗传,2007,29(10):1243-1248.
    张于光,李迪强,饶力群,等.东北虎微卫星DNA遗传标记的筛选及在亲子鉴定中的应用[J].动物学报,2003,49(1):118-123.
    张志伟,韩曜平,仲霞铭,等.草鱼野生群体和人工繁殖群体遗传结构的比较研究[J].中国水产科学,2007,14(5):720-726.
    钟立强,张成锋,周凯,等.四个鲤鱼种群遗传多样性的AFLP分析[J]基因组学与应用生物学,2010,29(2):259-265.
    周劲松,曹哲明,杨国梁,等.罗氏沼虾缅甸引进种和浙江本地种及其杂交种的生长性能与SRAP分析[J].中国水产科学,2006,13(4):667-673.
    朱新平,杜合军,周莉,等.乌龟遗传多样性的RAPD分析[J].水生生物学报,2005,29(2):167-171.
    朱银安,单红,王庆,等.长江、高邮湖、太湖日本沼虾遗传多样性的RAPD分析[J].水产养殖,2008,(1):5-7.
    朱泽远,王亚菊,施用晖,等.荧光标记微卫星分析人工饲养中华绒螯蟹的遗传多样性[J].中国海洋大学学报,2007,37(4):591-596.
    庄平,宋超,章龙珍.长江口安氏白虾与日本沼虾营养成分比较[J].动物学报,2008,54(5):822-829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700