铜及青铜合金在静态和动态薄液膜下的腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜及其合金青铜具有优良的机械性能,导电导热性能和腐蚀防护性能。自古以来就常常被用于大型雕塑、房屋屋顶,古器皿或者艺术品的构建材料。当暴露在湿润的大气或轻微的腐蚀环境时,铜及青铜表面会钝化形成一层保护性的氧化膜。但是当它们暴露在强腐蚀性环境中,特别是含氯的腐蚀环境中,青铜将遭受严重的腐蚀过程,这种腐蚀叫“青铜病”或“青铜癌症”。到目前为止,“青铜病”仍然是文物保护过程中最难以解决的问题,其根本原因在于腐蚀机制的复杂性。金属的大气腐蚀是发生在薄液膜下的电化学过程。在过去,对铜和青铜大气腐蚀机制的研究主要集中在腐蚀产物膜的物理表征,但物理表征得到的并不是直接的电化学信息,导致铜和青铜在含氯大气环境下的腐蚀机制仍然不清楚。本文在改进的薄液膜装置上,成功实现了电化学方法对铜及青铜在静态和动态薄液膜条件下的大气腐蚀行为研究。本文的主要研究工作包括:
     1.采用电化学阻抗谱(EIS),阴极极化曲线(Cathodic polarization curve)等电化学手段并结合SEM/EDS和XRD考察了纯铜在不同厚度的含氯静态薄液膜下的腐蚀行为。结果表明在最初的2h内,铜的腐蚀行为受氧的扩散控制,腐蚀速率随着薄液膜的厚度减薄而加速,但是当浸泡时间增加至192h后,由于在300μm以上薄液膜下铜的腐蚀过程受阴极控制,300μm以下腐蚀过程受阳极控制,腐蚀速率的排序变为:300μm>402μm>199μm>本体溶液>101μm。铜在静态含氯薄液膜条件下的腐蚀行为和在本体溶液中的腐蚀行为有很大的差异。在薄液膜条件下,主要发生均匀腐蚀过程,而在本体溶液中为点蚀过程。最初所形成的腐蚀产物主要为Cu2O,且腐蚀产物量随着薄液膜的厚度减薄而增加;长时间浸泡后,表面一层Cu2O在氯离子的作用下转化成了Cu2(OH)3Cl和Cu2(OH)2CO3,形成双层腐蚀结构。内层靠近金属基底为Cu2O,外层为Cu2(OH)3Cl和Cu2(OH)2CO3的混合层
     2.应用电化学方法如OCP、EIS和阴极极化技术考察了单相α-青铜在不同厚度的静态含氯薄液膜下的腐蚀行为,发现单相α-青铜和纯铜的电化学腐蚀行为类似,但是并不完全等同,单相α-青铜发生铜的优先溶解和含锡腐蚀产物富聚的过程,主要为局部腐蚀过程,而非均匀腐蚀。采用阳极极化曲线考察了单相α-青铜经过腐蚀后产生的含锡腐蚀产物膜对基底溶解行为影响。实验表明含锡腐蚀产物膜对基底有一定的保护作用。
     3.考察了微观相结构和组成对青铜在不同液膜下的初期腐蚀行为的影响。结果表明阴极过程和电化学腐蚀速率和微观相结构有关。在同样厚度的薄液膜条件下,三相青铜76Cu在初期的腐蚀速率比两相青铜86Cu,85Cu的腐蚀速率小,含铅相的两相青铜86Cu的腐蚀速率比同样是两相但不含铅相的85Cu青铜的腐蚀速率小。而在本体溶液中,其腐蚀速率排序为76Cu>86Cu>85Cu。采用扫描开尔文探针显微镜(SKPFM)考察了具有不同微观相结构的青铜表面伏打电位分布,明晰了其腐蚀行为。
     4.采用EIS和线性极化考察了Na2SO4和NaCl对青铜大气腐蚀行为的协同效应,并利用XRD、Raman光谱和SEM/EDS对腐蚀产物进行表征。在腐蚀初期,少量Na2SO4的加入能降低青铜在含NaCl的动态薄液膜下的腐蚀速率,表现为逆协同效应。而在中后期,青铜在只含NaCl的动态薄液膜下的腐蚀速率小于其暴露在含Na2SO4和NaCl的动态薄液膜下的腐蚀速率,表现为协同效应。协同效应归因为Na2SO4的加入使Pb相在NaCl的动态薄液膜下发生优先溶解过程,而在只含NaCl的动态薄液膜下Pb腐蚀生成一层具有保护性能的PbCl(OH)钝化膜。
Copper and bronze alloys, due to their good mechanic properties, electronic and heat conductivity, and good anti-corrosion resistance property, have long been used as constructive materials such as sculptures, building roof, household utensils and work of art. Copper and bronze alloys tend to be passivated in humid atmospheres or in light corrosive environments. However, in aggressive environments, especially in chloride containing environments, they suffered severe corrosion, which is called "bronze disease" or "bronze cancer". Up to now, bronze disease is still a challenge for the protection of cultural relic, due to the complication of the corrosion mechanism in chloride containing environment. Atmospheric corrosion can be regarded as wet corrosion of material under the thin electrolyte layer (TEL) formed on the surface of the material. This kind of corrosion is usually considered to be of an electrochemical nature. The past studies dealt with atmospheric corrosion of copper and bronze alloys were focused on the characterization of the patina, which caused much debate for the corrosion mechanisms because the physical characterization is unable to get the direct electrochemical information. In this dissertation, the copper and bronze corrosion behavior under TELs was successfully in-situ monitored via electrochemical methods with the aid of modified equipment. The main contents are listed as follows:
     1. The corrosion behavior of pure copper under chloride-containing TEL with various thicknesses was investigated using cathodic polarization and EIS. The results show that at the initial immersion stage (in2h), copper corrosion rate under TEL increases with the thinning of the thickness of TEL because the corrosion is under the control of O2diffusion process during the first2h. As the immersion time increases to192h, the corrosion rate ranks as300μm>402μm>199μm> bulk solution>101μm due to the fact that the corrosion is under the control of cathodic process when the thickness of TEL is larger than300μm, while less than300μm, the corrosion is under the control of anodic process. The morphology study performed by SEM reveals that uniform corrosion is the main corrosion behavior for the copper under chloride-containing TEL. This corrosion behavior was significantly different from that of copper in bulk solution. In the bulk solution, pitting was the main corrosion behavior. At initial immersion time (in2h), the corrosion product on the copper surface was mainly Cu2O, and its amount increases with the decreasing of the covered electrolyte layers. After long time immersion the protective layer Cu2O suffers destruction and transferred into Cu2(OH)3Cl and Cu2(OH)2CO3in the presence of chloride ions. The formed corrosion layer can be defined with a duplex structure, i.e., an inner layer adhere to the substrate corresponding to cuprite (Cu2O) and an outer layer a mixture of atacamite (Cu2(OH)3Cl) and malachite (Cu2(OH)2CO3).
     2. The corrosion behavior of single-phase α-bronze under chloride-containing static TEL with various thicknesses was investigated using electrochemical methods including OCP, EIS and cathodic polarization. The results indicate that the corrosion behavior of a-bronze is similar, but not identical to that of copper. The corrosion behavior of a-bronze proceeds through a preferential dissolution of Cu and a concentration of corrosion products containing Sn, further, a localized corrosion process is occurred on its surface. Anodic polarization curve shows that the corrosion products of Sn present protection to the substrate.
     3. The effect of microstructure and composition of bronze alloys on the bronze corrosion behavior under TEL was also investigated. The results indicate that the cathodic polarization behavior and corrosion rate are dependent on the phase microstruture. The corrosion rate of76Cu with three phases is higher than that of86Cu and85Cu with two phases at the same thickness of TEL during the initial stage, and the corrosion rate of two-phase86Cu containing Pb is higher than that of two-phase85Cu without Pb. However, in the bulk solution, the corrosion rates rank as76Cu>86Cu>85Cu。 The potential maps of bronze alloys with different phase structures was investigated by SKPFM, and the corrosion behavior was further determined.
     4. The synthetic effect of Na2SO4and NaCl on the bronze atmospheric corrosion was investigated during the initial stage and corrosion products were characterized using XRD、Raman spectroscopy and SEM/EDS. The results indicate that the addition of a small amount of Na2SO4into NaCl solution reduces the corrosion rate of bronze under chloride-containing dynamic TEL, representing a inverse synthetic effect during the initial stage, whereas, after long time of exposure, the corrosion rate of bronze under NaCl containing TEL is lower than that of under NaCl and Na2SO4TEL, which is manifested as synthetic effect. The synthetic effect can be ascribed to the preferential dissolution of Pb caused by the NaaSO4, while in the only NaCl-containing dynamic TEL, a passivative film PbCl(OH) is formed on the bronze surface.
引文
[1]大卫·斯考特(马清林,潘路)。艺术品中的铜和青铜:颜料,保护。科学出版社。
    [2]Brunoro G, Frignani A, Colledan A, Chiavari C. Organic films for protection of copper and bronze against acid rain corrosion. Corrosion Science,2003,45(10): 2219-2231.
    [3]Graedel T E, Nassau K, Franey J P. Copper patinas formed in the atmosphere--I. Introduction. Corrosion Science,1987,27(7):639-657.
    [4]Nassau K, Mille A E, Graedel T E. The reaction of simulated rain with copper, copper patina, and some copper compounds. Corrosion Science,1987,27(7): 703-719.
    [5]Arroyave C, Morcillo M. The effect of nitrogen oxides in atmospheric corrosion of metals. Corrosion Science,1995,37(2):293-305.
    [6]Tomashov N D. Development of electrochemical theory of metallic corrosion. Corrosion,1964,20:7-14.
    [7]Watanabe M, Higashi Y, Tanaka T. Differences between corrosion products formed on copper exposed in Tokyo in summer and winter. Corrosion Science, 2003,45(7):1439-1453.
    [8]Graedel T E. Copper patinas formed in the atmosphere—Ⅱ. A qualitative assessment of mechanisms. Corrosion Science,1987,27(7):721-740.
    [9]Scott D A. Bronze Disease:A Review of Some Chemical Problems and the Role of Relative Humidity. Journal of the American Institute for Conservation,1990, 29(2):193-206.
    [10]Huang H, Dong Z, Chen Z, Guo X. The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer. Corrosion Science,2011,53(4):1230-1236.
    [11]Aastrup T, Wadsak M, Schreiner M, Leygraf C. Experimental in situ studies of copper exposed to humidified air. Corrosion Science,2000,42(6):957-967.
    [12]范崇正,吴佑实,王昌隧,王胜君,胡克良,赵化章。青铜器粉状锈生长过程的动力学研究。中国科学B辑,1992,22(5):470-477.
    [13]Bernardi E, Chiavari C, Lenza B, Martini C, Morselli L, Ospitali F, Robbiola L. The atmospheric corrosion of quaternary bronzes:The leaching action of acid rain. Corrosion Science,2009,51(1):159-170.
    [14]Odnevall Wallinder I, Leygraf C. Seasonal variations in corrosion rate and runoff rate of copper roofs in an urban and a rural atmospheric environment. Corrosion Science,2001,43(12):2379-2396.
    [15]Ling H, Qingrong Z, Min G Characterization of corroded bronze Ding from the Yin Ruins of China. Corrosion Science,2007,49(6):2534-2546.
    [16]Sandberg J, Odnevall Wallinder I, Leygraf C, Le Bozec N. Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment. Corrosion Science,2006,48(12):4316-4338.
    [17]Hernandez R P B, Paszti Z, de Melo H G, Aoki IV. Chemical characterization and anticorrosion properties of corrosion products formed on pure copper in synthetic rainwater of Rio de Janeiro and Sao Paulo. Corrosion Science,2010,52(3): 826-837.
    [18]Sinclair J D, Psota-Kelty L A, Weschler C J. Indoor/outdoor concentrations and indoor surface accumulations of ionic substances. Atmospheric Environment (1967),1985,19(2):315-323.
    [19]Bernardi E, Bowden D J, Brimblecombe P, Kenneally H, Morselli L. The effect of uric acid on outdoor copper and bronze. Science of the Total Environment, 2009,407(7):2383-2389.
    [20]Lobnig R E, Frankenthal R P, Siconolfi D J, Sinclair J D. The Effect of Submicron Ammonium Sulfate Particles on the Corrosion of Copper. Journal of the Electrochemcial Society,1993,140(7):1902-1907.
    [21]Lobnig R E, Frankenthal R P, Siconolfi D J, Sinclair J D, Stratmann M. Mechanism of Atmospheric Corrosion of Copper in the Presence of Submicron Ammonium Sulfate Particles at 300 and 373 K. Journal of the Electrochemcial Society,1994,141(11):2935-2941.
    [22]Lobnig R E, Jankoski C A. Atmospheric Corrosion of Copper in the Presence of Acid Ammonium Sulfate Particles. Journal of the Electrochemcial Society,1998, 145(3):946-956.
    [23]Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media--a critical review. Corrosion Science,2004,46(1):109-135.
    [24]Morcillo M, Chico B, Mariaca L, Otero E. Salinity in marine atmospheric corrosion:its dependence on the wind regime existing in the site. Corrosion Science,2000,42(1):91-104.
    [25]He W, Odnevall Wallinder I, Leygraf C. A laboratory study of copper and zinc runoff during first flush and steady-state conditions. Corrosion Science,2001, 43(1):127-146.
    [26]Robbiola L, Blengino J M, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corrosion Science,1998, 40(12):2083-2111.
    [27]Van Ingelgem Y, Hubin A, Vereecken J. Investigation of the first stages of the localized corrosion of pure copper combining EIS, FE-SEM and FE-AES. Electrochimica Acta,2007,52(27):7642-7650.
    [28]Strandberg H, Johansson L-G. Some Aspects of the Atmospheric Corrosion of Copper in the Presence of Sodium Chloride. Journal of the Electrochemcial Society,1998,145(4):1093-1100.
    [29]de Oliveira F J R, Lago D C B, Senna L F, de Miranda L R M, D'Elia E. Study of patina formation on bronze specimens. Materials Chemistry and Physics,2009, 115(2-3):761-770.
    [30]范崇正,胡克良,王昌燧,王胜君,吴佑实。红外反射及红外-光声光谱法对青铜生锈过程的研究。高等化学学报,1992,13(1):31-34.
    [31]傅丽英,陈中兴,蔡兰坤,祝鸿范,周浩。溶液pH值与氯离子对青铜腐蚀的影响。腐蚀与防护,2000,21(7):294-296.
    [32]Souissi N, Sidot E, Bousselmi L, Triki E, Robbiola L. Corrosion behaviour of Cu-lOSn bronze in aerated NaCl aqueous media-Electrochemical investigation. Corrosion Science,2007,49(8):3333-3347.
    [33]Chawla S K, Payer J H. The Early Stage of Atmospheric Corrosion of Copper by Sulfur Dioxide. Journal of the Electrochemical Society,1990,137(1):60-64.
    [34]Aastrup T, Wadsak M, Leygraf C, Schreiner M. In Situ Studies of the Initial Atmospheric Corrosion of Copper Influence of Humidity, Sulfur Dioxide, Ozone, and Nitrogen Dioxide. Journal of the Electrochemical Society,2000,147(7): 2543-2551.
    [35]Itoh J, Sasaki T, Ohtsuka T. The influence of oxide layers on initial corrosion behavior of copper in air containing water vapor and sulfur dioxide. Corrosion Science,2000,42(9):1539-1551.
    [36]Eriksson P, Johansson L G, Gullman J. A laboratory study of corrosion reactions on statue bronze. Corrosion Science,1993,34(7):1083-1097.
    [37]Bastidas J M, Lopez-Delgado A, Lopez F A, Alonso M P. Characterization of artificially patinated layers on artistic bronze exposed to laboratory SO2 contamination. Journal of Materials Science,1997,32(1):129-133.
    [38]Schreiner M, Woisetschlager G, Schmitz I, Wadsak M. Characterisation of surface layers formed under natural environmental conditions on medieval stained glass and ancient copper alloys using SEM, SIMS and atomic force microscopy. Journal of Analytical Atomic Spectrometry,1999,14 (3):395-403.
    [39]Persson D, Leygraf C. Initial Interaction of Sulfur Dioxide with Water Covered Metal Surfaces:An In Situ IRAS Study. Journal of the Electrochemical Society, 1995,142(5):1459-1468.
    [40]Mabille I, Bertrand A, Sutter E M M, Fiaud C. Mechanism of dissolution of a Cu-13Sn alloy in low aggressive conditions. Corrosion Science,2003,45(5): 855-866.
    [41]Sidot E, Souissi N, Bousselmi L, Triki E, Robbiola L. Study of the corrosion behaviour of Cu-lOSn bronze in aerated Na2SO4 aqueous solution. Corrosion Science,2006,48(8):2241-2257.
    [42]Picciochi R, Ramos A C, Mendonca M H, Fonseca I T E. Influence of the environment on the atmospheric corrosion of bronze. Journal of Applied Electrochemistry,2004,34(10):989-995.
    [43]Samie F, Tidblad J, Kucera V, Leygraf C. Atmospheric corrosion effects of HNO3—Comparison of laboratory-exposed copper, zinc and carbon steel. Atmospheric Environment,2007,41(23):4888-4896.
    [44]Screpanti A, De Marco A. Corrosion on cultural heritage buildings in Italy:A role for ozone? Environmental Pollution,2009,157(5):1513-1520.
    [45]LopezDelgado A, Bastidas J M, Alonso M P, Lopez F A. Influence of acetic and formic vapours on patinated artistic bronze. Journal of Materials Science Letters, 1997,16(9):776-779.
    [46]Gibson L T, Watt C M. Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corrosion Science, 2010,52(1):172-178.
    [47]Herring G, Goidanich S, Wallinder I O, Leygraf C. Corrosion-induced release of Cu and Zn into rainwater from brass, bronze and their pure metals. A 2-year field study. Environmental Monitoring and Assessment,2008,144(1-3):455-461.
    [48]Gerasimenko A A, Matyusha G V. Bacterial corrosion of metals. Ⅱ. Gravimetric investigations of the corrosion of nonferrous metals. Protection of Metals,2000, 36(3):279-284.
    [49]Wan D, Yuan S, Neoh K G, Kang E T. Surface functionalization of copper via oxidative graft polymerization of 2,2'-bithiophene and immobilization of silver nanoparticles for combating biocorrosion. ACS Applied Materials & Interfaces, 2010,2(6):1653-1662.
    [50]Strandberg H, Johansson L G, Lindqvist O. The atmospheric corrosion of statue bronzes exposed to SO2 and NO2. Materials and Corrosion,1997,48(11): 721-730.
    [51]Duthil J P, Mankowski G, Giusti A. The synergetic effect of chloride and sulphate on pitting corrosion of copper. Corrosion Science,1996,38(10):1839-1849.
    [52]Chen Z Y, Persson D, Leygraf C. In Situ Studies of the Effect of SO2 on the Initial NaCl-Induced Atmospheric Corrosion of Copper. Journal of the Electrochemical Society,2005,152(12):B526-B533.
    [53]Rahmouni K, Keddam M, Srhiri A, Takenouti H. Corrosion of copper in 3% NaCl solution polluted by sulphide ions. Corrosion Science,2005,47(12):3249-3266.
    [54]Cao X, Xu C. Synergistic effect of chloride and sulfite ions on the atmospheric corrosion of bronze. Materials and Corrosion,2006,57(5):400-406.
    [55]Ingo G M, Angelini E, Bultrini G, Calliari I, Dabala M, De Caro T. Study of long-term corrosion layers grown on high-tin leaded bronzes by means of the combined use of GDOES and SEM plus EDS. Surface and Interface Analysis, 2002,34(1):337-342.
    [56]Selwyn L S, Binnie N E, Poitras J, Laver M E, Downham D A. Outdoor Bronze Statues:Analysis of Metal and Surface Samples. Studies in Conservation,1996, 41(4):205-228.
    [57]Vittiglio G, Janssens K, Vekemans B, Adams F, Oost A. A compact small-beam XRF instrument for in-situ analysis of objects of historical and/or artistic value. Spectrochimica Acta Part B:Atomic Spectroscopy,1999,54(12):1697-1710.
    [58]Figueiredo E, Valerio P, Araujo M F, Senna-Martinez J C. Micro-EDXRF surface analyses of a bronze spear head:Lead content in metal and corrosion layers. Nuclear Instruments & Methods in Physics Research Section A,2007,580(1): 725-727.
    [59]Spoto G. Secondary ion mass spectrometry in art and archaeology. Thermochimica Acta,2000,365(1-2):157-166.
    [60]Schlesinger R, Klewe-Nebenius H, Bruns M. Characterization of artificially produced copper and bronze patina by XPS. Surface and Interface Analysis,2000, 30(1):135-139.
    [61]Squarcialupi M C, Bernardini G P, Faso V, Atrei A, Rovida G. Characterisation by XPS of the corrosion patina formed on bronze surfaces. Journal of Cultural Heritage,2002,3(3):199-204.
    [62]Noli F, Misaelides P, Hatzidimitriou A, Pavlidou E, Kokkoris M. Investigation of artificially produced and natural copper patina layers. Journal of Materials Chemistry,2003,13(1):114-120.
    [63]Hayez V, Franquet A, Hubin A, Terryn H. XPS study of the atmospheric corrosion of copper alloys of archaeological interest. Surface and Interface Analysis,2004, 36(8):876-879.
    [64]Glowacka M, Hucinska J. Corrosion of historical objects made of copper alloys in an urban atmosphere in the city of Gdansk. Corrosion Reviews,1999,17(1): 67-75.
    [65]Monticelli C, Fonsati M, Meszaros G, Trabanelli G. Copper Corrosion in Industrial Waters. A Multimethod Analysis. Journal of the Electrochemical Society,1999,146(4):1386-1391.
    [66]Rosales B, Vera R, Moriena G. Evaluation of the protective properties of natural and artificial patinas on copper. Part I. Patinas formed by immersion. Corrosion Science,1999,41(4):625-651.
    [67]Trentelman K, Stodulski L, Lints R, Kim C M. A comparative study of the composition and corrosion of branches from eastern Han Dynasty money trees. Studies in Conservation,1999,44(3):170-183.
    [68]Wadsak M, Constantinides I, Vittiglio G, Adriaens A, Janssens K, Schreiner M, Adams F C, Brunella P, Wuttmann M. Multianalytical study of patina formed on archaeological metal objects from Bliesbruck-Reinheim. Mikrochimica Acta, 2000,133(1-4):159-164.
    [69]Constantinides I, Adriaens A, Adams F. Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science, 2002,189(1-2):90-101.
    [70]Mata A L, Carneiro A, Neto M M M,Proenca L A, Salta M M L, Mendonca M H, Fonseca I T E. Characterisation of five coins from the archaeological heritage of Portugal. Journal of Solid State Electrochemistry,2010,14(3):495-503.
    [71]Ingo G, Riccucci C, Faraldi F, Casaletto M, Guida G. Micro-chemical and micro-structural investigation of the corrosion products on "The Dancing Satyr" (Mazara del Vallo, Sicily, Italy). Applied Physics A:Materials Science & Processing,2010,100(3):785-792.
    [72]张瑛,蔡兰坤,顾小兰,祝鸿范,周浩。青铜文物锈体的组织结构分析。腐蚀科学与防护技术,2005,17(4):262-264.
    [73]Ingo G M, Angelini E, De Caro T, Bultrini G, Calliari I. Combined use of GDOES, SEM plus EDS, XRD and OM for the microchemical study of the corrosion products on archaeological bronzes. Applied Physics A:Materials Science & Processing,2004,79(2):199-203.
    [74]Ingo G M, Angelini E, De Caro T, Bultrini G, Mezzi A. Combined use of XPS and SEM plus EDS for the study of surface microchemical structure of archaeological bronze Roman mirrors. Surface and Interface Analysis,2004, 36(8):871-875.
    [75]De Ryck I, Adriaens A, Pantos E, Adams F. A comparison of microbeam techniques for the analysis of corroded ancient bronze objects. Analyst,2003, 128(8):1104-1109.
    [76]Kleber C, Schreiner M. In situ TM-AFM investigations of the influence of zinc and tin as alloy constituents of copper to the early stages of corrosion. Applied Surface Science,2003,217(1-4):294-301.
    [77]Persson D, Leygraf C. In Situ Infrared Reflection Absorption Spectroscopy for Studies of Atmospheric Corrosion. Journal of the Electrochemical Society,1993, 140(5):1256-1260.
    [78]Kasperek J, Lefez B, Beucher E. Corroded surface roughness of copper analyzed by Fourier transform infrared mapping microscopy and optical profilometric study. Applied Spectroscopy,2004,58(2):179-183.
    [79]Nevin A, Melia J L, Osticioli I, Gautier G, Colombini M P. The identification of copper oxalates in a 16th century Cypriot exterior wall painting using micro FTIR, micro Raman spectroscopy and Gas Chromatography-Mass Spectrometry. Journal of Cultural Heritage,2008,9(2),154-161.
    [80]Prati S, Joseph E, Sciutto G, Mazzeo R. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Accounts of Chemical Research,2009,43(3):792-801.
    [81]McCann L I, Trentelman K, Possley T, Golding B. Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. Journal of Raman Spectroscopy,1999,30(2):121-132.
    [82]Zuo J, Xu C, Wang C, Yushi Z. Identification of the pigment in painted pottery from the Xishan site by Raman microscopy. Journal of Raman Spectroscopy, 1999,30(12):1053-1055.
    [83]Frost R L, Martens W, Kloprogge J T, Williams P A. Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite:implications for the study of copper, brass and bronze objects of archaeological significance. Journal of Raman Spectroscopy,2002,33(10):801-806.
    [84]Frost R L, Williams P A, Martens W, Kloprogge J T. Raman spectroscopy of the polyanionic copper(II) minerals buttgenbachite and connellite:implications for studies of ancient copper objects and bronzes. Journal of Raman Spectroscopy, 2002,33(9):752-757.
    [85]Wang Y L, Yang Q, Zhang P X, Li C Z. Study on the corrosion of Yuan Dynasty bronze mirror by Raman spectrum. Spectroscopy and Spectral Analysis,2002, 22(1):48-50.
    [86]Martens W, Frost R L, Kloprogge J T, Williams P A. Raman spectroscopic study of the basic copper sulphates-implications for copper corrosion and bronze disease1. Journal of Raman Spectroscopy,2003,34(2):145-151.
    [87]Hayez V, Guillaume J, Hubin A, Terryn H. Micro-Raman spectroscopy for the study of corrosion products on copper alloys:setting up of a reference database and studying works of art. Journal of Raman Spectroscopy,2004,35(8-9): 732-738.
    [88]Chiavari C, Bernardi E, Martini C, Passarini F, Ospitali F, Robbiola L. The atmospheric corrosion of quaternary bronzes:The action of stagnant rain water. Corrosion Science,2010,52(9):3002-3010.
    [89]Satovid D, Zulj L V, Desnica V, Fazinic S, Martinez S. Corrosion evaluation and surface characterization of the corrosion product layer formed on Cu-6Sn bronze in aqueous Na2SO4 solution. Corrosion Science,2009,51(8):1596-1603.
    [90]Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L. Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochimica Acta,2007,52(27):7760-7769.
    [91]Cotte M, Susini J, Dik J, Janssens K. Synchrotron-Based X-ray Absorption Spectroscopy for Art Conservation:Looking Back and Looking Forward. Accounts of Chemical Research,2010,43(6):705-714.
    [92]Salvado N, Buti S, Tobin M J, Pantos E, Prag A J N W, Pradell T. Advantages of the use of SR-FT-IR microspectroscopy:Applications to cultural heritage. Analytical Chemistry,2005,77(11):3444-3451.
    [93]Komorsky-Lovric S, Horvat A J M, Ivankovic D. Characterization of bronzes by abrasive stripping voltammetry and thin layer chromatography. Croatica Chemica Acta,2006,79(1):33-39.
    [94]Sasaki T, Itoh J, Horigucbi Y, Ohtsuka T. Quantitative determination of corrosion products and adsorbed water on copper in humid air containing SO2 by IR-RAS measurements. Corrosion Science,2006,48(12):4339-4351.
    [95]Deslouis C, Tribollet B, Mengoli G, Musiani M M, electrochemical behavior of copper in neutral aereated chloride solution.1. steady-state investigation. Journal of Applied Electrochemistry,1988,18(3):374-383.
    [96]Serghini-Idrissi M, Bernard M C, Harrif F Z, Joiret S, Rahmouni K, Srhiri A, Takenouti H, Vivier V, Ziani M. Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta,2005,50(24):4699-4709.
    [97]Souissi N, Bousselmi L, Khosrof S, Triki E. Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 2004,55(4):284-291.
    [98]Souissi N, Triki E. Characterization of ethnographic copper corrosion. Materials and Corrosion,2009,60(4):262-268.
    [99]Domenech-Carbo A, Domenech-Carbo M, Martinez-Lazaro I. Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta,2008,162(3):351-359.
    [100]Lovric M, Scholz F. A model for the propagation of a redox reaction through microcrystals. Journal of Solid State Electrochemistry,1997,1(1):108-113.
    [101]Lovric M, Scholz F. A model for the coupled transport of ions and electrons in redox conductive microcrystals. Journal of Solid State Electrochemistry,1999, 3(3):172-175.
    [102]Alonso Sedano A B, Tascon Garcia M L, Vazquez Barbado M D, Sanchez Batanero P. Electrochemical study of copper and iron compounds in the solid state by using voltammetry of immobilized microparticles:application to copper ferrite characterization. Journal of Electroanalytical Chemistry,2004,566(2): 433-441.
    [103]Domenech A, Domenech-Carbo M T, Martinez-Lazaro I. Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta,2010,680(1-2):1-9.
    [104]Satovic D, Martinez S, Bobrowski A. Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 2010,81(4-5):1760-1765.
    [105]Wallinder I O, Leygraf C. A study of copper runoff in an urban atmosphere. Corrosion Science,1997,39(12):2039-2052.
    [106]Kratschmer A, Odnevall Wallinder I, Leygraf C. The evolution of outdoor copper patina. Corrosion Science,2002,44(3):425-450.
    [107]Faller M, Reiss D. Runoff behaviour of metallic materials used for roofs and facades-a 5-year field exposure study in Switzerland. Materials and Corrosion, 2005,56 (4):244-249.
    [108]Fonseca I T E, Picciochi R, Mendonca M H, Ramos A C. The atmospheric corrosion of copper at two sites in Portugal:a comparative study. Corrosion Science,2004,46(3):547-561.
    [109]安百钢,张学元,韩恩厚。沈阳大气环境下纯铜的初期腐蚀行为。金属学报,2007,43(1):77-81。
    [110]Morselli L, Bernardi E, Chiavari C, Brunoro G Corrosion of 85-5-5-5 bronze in natural and synthetic acid rain. Applied Physics a-Materials Science & Processing,2004,79(2):363-367.
    [111]Gallese F, Laguzzi G, Luvidi L, Ferrari V, Takacs S, Venturi Pagani Cesa G. Comparative investigation into the corrosion of different bronze alloys suitable for outdoor sculptures. Corrosion Science,2008,50(4):954-961.
    [112]Chen Z Y, Persson D, Leygraf C. Initial NaCl-particle induced atmospheric corrosion of zinc—Effect of CO2 and SO2. Corrosion Science,2008,50(1): 111-123.
    [113]Soldo Y, Sibert E, Tourillon G, Hazemann J L, Levy J P, Aberdam D, Faure R, Durand R. In situ X-ray absorption spectroscopy study of copper under potential deposition on Pt(111):role of the anions on the Cu structural arrangement. Electrochimica Acta,2002,47(19):3081-3091.
    [114]Leyssens K, Adriaens A, Dowsett M G, Schotte B, Oloff I, Pantos E, Bell A M T, Thompson S P. Simultaneous in situ time resolved SR-XRD and corrosion potential analyses to monitor the corrosion on copper. Electrochemistry Communications,2005,7(12):1265-1270.
    [115]Jiang P, Chen J-L, Borondics F, Glans P-A, West M W, Chang C-L, Salmeron M, Guo J. In situ soft X-ray absorption spectroscopy investigation of electrochemical corrosion of copper in aqueous NaHCO3 solution. Electrochemistry Communications,2010,12(6):820-822.
    [116]Aastrup T, Leygraf C. Simultaneous Infrared Reflection Absorption Spectroscopy and Quartz Crystal Microbalance Measurements for In Situ Studies of the Metal/Atmosphere Interface. Journal of the Electrochemical Society,1997, 144(9):2986-2990.
    [117]Wadsak M, Aastrup T, Odnevall Wallinder I, Leygraf C, Schreiner M. Multianalytical in situ investigation of the initial atmospheric corrosion of bronze. Corrosion Science,2002,44(4):791-802.
    [118]Itoh J, Sasaki T, Seo M, Ishikawa T. In situ simultaneous measurement with ir-ras and qcm for investigation of corrosion of copper in a gaseous environment. Corrosion Science,1997,39(1):193-197.
    [119]严川伟,何毓番,林海潮,曹楚南。铜在含sO2大气中的腐蚀初期规律和机理。中国有色金属学报。2000,10(5):645-648
    [120]Mansfeld F, Tsai S. Laboratory studies of atmospheric corrosion—I. Weight loss and electrochemical measurements. Corrosion Science,1980,20(7): 853-872.
    [121]Stratmann M, Streckel H. On the Atmospheric Corrosion of Metals Which Are Covered with Thin Electrolyte Layers.1. Verification of the Experimental-Technique. Corrosion Science,1990,30(6-7):681-696.
    [122]Stratmann, M.; Streckel, H., On the atmospheric corrosion of metals which are covered with thin electrolyte layers.2. Experimental results. Corrosion Science,1990,30(6-7):697-714.
    [123]Stratmann M, Streckel H, Kim K T, Crockett S. On the atmospheric corrosion of metals which are covered with thin electrolyte layers.3. The measurement of polarization curves on metal-surfaces which are covered by thin electrolyte layers. Corrosion Science,1990,30(6-7):715-734.
    [124]Stratmann M, Streckel H. The Investigation of the corrosion of metal-surfaces, covered with thin electrolyte layers—a new experimental technique. Berichte Der Bunsen-Gesellschaft-Physical Chemistry,1988,92(11), 1244-1250.
    [125]Zhang S H, Lyon S B. The electrochemistry of iron, zinc and copper in thin layer electrolytes. Corrosion Science,1993,35(1-4):713-718.
    [126]Nishikata A, Ichihara Y, Tsuru T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study. Corrosion Science,1995, 37(6):897-911.
    [127]Nishikata A, Ichihara Y, Tsuru T. Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer. Electrochimica Acta,1995,41(7-8): 1057-1062.
    [128]Nishikata A, Yamashita Y, Katayama H, Tsuru T, Usami A, Tanabe K, Mabuchi H, An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition. Corrosion Science,1995,37(12):2059-2069.
    [129]Stratmann M. The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers—A new experimental technique. Corrosion Science,1987,27(8):869-872.
    [130]王佳,水流彻。使用Kelvin探头参比电极技术进行薄液层下电化学测量。中国腐蚀与防护学报,1995,15(3):173-179.
    [131]王佳,水流彻。使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响。中国腐蚀与防护学报,1995,15(3):180-188.
    [132]Frankel G S, Stratmann M, Rohwerder M, Michalik A, Maier B, Dora J, Wicinski M. Potential control under thin aqueous layers using a Kelvin Probe. Corrosion Science,2007,49(4):2021-36.
    [133]Fu A Q; Cheng Y F. Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC. Corrosion Science,2010,52(7):2511-2518.
    [134]El-Mahdy G A. Advanced laboratory study on the atmospheric corrosion of zinc under thin electrolyte layers. Corrosion,2003,59(6):505-510.
    [135]El-Mahdy G A, Nishikata A, Tsuru T. AC impedance study on corrosion of 55%A1-Zn alloy-coated steel under thin electrolyte layers. Corrosion Science, 2000,42(9):1509-1521.
    [136]Cheng Y L, Zhang Z, Cao F H, Li J F, Zhang J Q, Wang J M, Cao C N. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corrosion Science,2004,46(7),1649-1667.
    [137]Yadav A P, Katayama H, Noda K, Masuda H, Nishikata A, Tsuru T. Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte. Electrochimica Acta,2007,52(7):2411-2422.
    [138]Zhou H R, Li X G, Ma J, Dong C F, Huang Y Z. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers. Materials Science and Engineering B,2009,162(1):1-8.
    [139]Tsutsumi Y, Nishikata A, Tsuru T. Initial stage of pitting corrosion of type 304 stainless steel under thin electrolyte layers containing chloride ions. Journal of the Electrochemical Society,2005,152(9):B358-B363.
    [140]Fu A Q, Tang X, Cheng Y F. Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe. Corrosion Science,2009,51(1):186-190.
    [141]Zhang T, Chen C M, Shao Y W, Meng G Z, Wang F H, Li X G, Dong C F. Corrosion of pure magnesium under thin electrolyte layers. Electrochimica Acta, 2008,53(27):7921-7931.
    [142]Liu W, Cao F, Chen A, Chang L, Zhang J, Cao C. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour. Corrosion Science,2010,52(2):627-638.
    [143]Liu W, Cao F, Jia B, Zheng L, Zhang J, Cao C, Li X. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 2: Corrosion product and characterization. Corrosion Science,2010,52(2):639-650.
    [1]Hernandez R P B, Paszti Z, de Melo H G, Aoki I V. Chemical characterization and anticorrosion properties of corrosion products formed on pure copper in synthetic rainwater of Rio de Janeiro and Sao Paulo. Corrosion Science,2010,52(3): 826-837.
    [2]McCann L I, Trentelman K, Possley T, Golding B. Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. Journal of Raman Spectroscopy,1999,30(2):121-132.
    [3]Frost R L, Martens W, Kloprogge J T, Williams P A. Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite:implications for the study of copper, brass and bronze objects of archaeological significance. Journal of Raman Spectroscopy,2002,33(9):801-806.
    [4]Rahmouni K, Keddam M, Srhiri A, Takenouti H. Corrosion of copper in 3% NaCl solution polluted by sulphide ions. Corrosion Science,2005,47(12):3249-3266.
    [5]Lee H P, Nobe K. Kinetics and Mechanisms of Cu Electrodissolution in Chloride Media. Journal of the Electrochemical Society,1986,133(10):2035-2043.
    [6]D'Elia E, Barcia O E, Mattos O R, Pebere N, Tribollet B. High-Rate Copper Dissolution in Hydrochloric Acid Solution. Journal of the Electrochemical Society, 1996,143(3):961-967.
    [7]Amin M A, Khaled K F. Copper corrosion inhibition in 02-saturated H2SO4 solutions. Corrosion Science,2010,52(4):1194-1024.
    [8]Nunez L, Reguera E, Corvo F, Gonzalez E, Vazquez C, Corrosion of copper in seawater and its aerosols in a tropical island. Corrosion Science,2005,47(2): 461-484.
    [9]Strandberg H, Johansson L G. Some Aspects of the Atmospheric Corrosion of Copper in the Presence of Sodium Chloride. Journal of the Electrochemical Society,1998,145(4):1093-1100.
    [10]Deslouis C, Tribollet B, Mengoli G, Musiani M M. Electrochemical behaviour of copper in neutral aerated chloride solution. I. Steady-state investigation. Journal of Appllied Electrochemistry,1988,18(3):374-383.
    [11]Deslouis C, Tribollet B, Mengoli G, Musiani M M. Electrochemical behaviour of copper in neutral aerated chloride solution. II. Impedace investigation. Journal of Appllied Electrochemistry,1988,18(3):384-393.
    [12]King F, Quinn M J, Litke C D. Oxygen reduction on copper in neutral NaCl solution. Journal of Electroanalysis Chemistry,1995,385(1):45-55.
    [13]J. P. Diard, J. M. Le Canut, B. Le Gorrec, C. Montella, Copper electrodissolution in 1 M HC1 at low current densities. II. Electrochemical impedance spectroscopy study. Electrochimica Acta,1998,43(16-17):2485-2501.
    [14]Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media--a critical review. Corrosion Science,2004,46(1):109-135.
    [15]Faita G, Fiori G, Salvadore D. opper behaviour in acid and alkaline brines—I kinetics of anodic dissolution in 0.5 M NaCl and free-corrosion rates in the presence of oxygen. Corrosion Science,1975,15(6-12):383-392.
    [16]Braun M, Nobe K, Electrodissolution Kinetics of Copper in Acidic Chloride Solutions. Journal of the Electrochemical Society,1979,126(10):1666-1671.
    [17]Persson D, Leygraf C. Metal Carboxylate Formation during Indoor Atmospheric Corrosion of Cu, Zn, and Ni. Journal of the Electrochemical Society,1995,142(5): 1468-1477.
    [18]Sandberg J, Odnevall Wallinder I, Leygraf C, Le Bozec N. Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment. Corrosion Science,2006,48(12):4316-4338.
    [19]Nassau K, Miller A E, Graedel T E. The reaction of simulated rain with copper, copper patina, and some copper compounds. Corrosion Science,1987,27(7): 703-709.
    [20]Arroyave C, Morcillo M. The effect of nitrogen oxides in atmospheric corrosion of metals. Corrosion Science,1995,37(2):293-305.
    [21]Neufeld A K, Cole I S, Bond A M, Furman S A. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition. Corrosion Science,2002, 44(3):555-572.
    [22]Cole I S, Ganther W D, Sinclair J D, Lau D, Paterson D A. Study of the Wetting of Metal Surfaces in Order to Understand the Processes Controlling Atmospheric Corrosion. Journal of the Electrochemical Society,2004,151(12):B627-B635.
    [23]Stratmann M, Streckel H. The Investigation of the Corrosion of Metal-Surfaces, Covered with Thin Electrolyte Layers—A new experimental technique. Berichte Der Bunsen-Gesellschaft-Physical Chemistry,1988,92(11):1244-1250.
    [24]Stratmann M, Streckel H. On the Atmospheric Corrosion of Metals Which Are Covered with Thin Electrolyte Layers.1. Verification of the Experimental Technique. Corrosion Science,1990,30(6-7):681-696.
    [25]Stratmann M, Streckel H. On the Atmospheric Corrosion of Metals Which Are Covered with Thin Electrolyte Layers.2. Experimental Results. Corrosion Science, 1990,30(6-7):697-714.
    [26]Stratmann M, Streckel H, Kim K T, Crockett S. On the Atmospheric Corrosion of Metals Which Are Covered with Thin Electrolyte Layers.3. The Measurement of Polarization Curves on Metal-Surfaces Which Are Covered by Thin Electrolyte Layers. Corrosion Science,1990,30(6-7):715-734.
    [27]Nishikata A, Ichihara Y, Tsuru T. Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer. Electrochimica Acta,1996, 41(7-8):1057-1062.
    [28]El-Mahdy G A, Nishikata A, Tsuru T. AC impedance study on corrosion of 55%A1-Zn alloy-coated steel under thin electrolyte layers. Corrosion Science, 2000,42(9):1509-1521.
    [29]El-Mahdy G A. Advanced laboratory study on the atmospheric corrosion of zinc under thin electrolyte layers. Corrosion,2003,59(6):505-510.
    [30]Cheng Y L, Zhang Z, Cao F H, Li J F, Zhang J Q, Wang J M, Cao C N. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corrosion Science,2004,46(7):1649-1667.
    [31]Tsutsumi Y, Nishikata A, Tsuru T. Initial stage of pitting corrosion of type 304 stainless steel under thin electrolyte layers containing chloride ions. Journal of the Electrochemical Society,2005,152(9):B358-B363.
    [32]Yadav A P, Katayama H, Noda K, Masuda H, Nishikata A, Tsuru T. Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte. Electrochimica Acta,2007,52(7),2411-2422.
    [33]Zhang T5 Chen C M, Shao Y W, Meng G Z, Wang F H, Li X Q Dong C F. Effect of KI on Improving Copper Corrosion Inhibition Efficiency of Benzotriazole in Sulfuric Acid Electrolytes. Electrochimica Acta,2008,53(27):7921-7931.
    [34]Fu A Q, Tang X, Cheng Y F. Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe. Corrosion Science,2009,51(1):186-190.
    [35]Aastrup T, Wadsak M, Schreiner M, Leygraf C. Experimental in situ studies of copper exposed to humidified air. Corrosion Science,2000,42(6):957-967.
    [36]Huang H, Dong Z, Chen Z, Guo X. The effects of Cl" ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer. Corrosion Science,2011,53(4):1230-1236,
    [37]Frankel G S, Stratmann M, Rohwerder M, Michalik A, Maier B, Dora J, Wicinski M. Potential control under thin aqueous layers using a Kelvin Probe. Corrosion Science,2007,49(4):2021-2036.
    [38]Liu W, Cao F, Chen A, Chang L, Zhang J, Cao C. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour. Corrosion Science,2010,52(2):627-638.
    [39]Morselli L, Bernardi E, Chiavari C, Brunoro G. Corrosion of 85-5-5-5 bronze in natural and synthetic acid rain. Applied Physics A:Materials Science& Processing,2004,79(2):363-367.
    [40]Bernardi E, Chiavari C, Martini C, Morselli L. The atmospheric corrosion of quaternary bronzes:An evaluation of the dissolution rate of the alloying elements. Applied Physics A-Materials Science & Processing,2008,92(1):83-89.
    [41]Balakrishnan K, Venkatesan V K. Cathodic reduction of oxygen on copper and brass. Electrochimica Acta,1979,24(2):131-138.
    [42]Zhang S H, Lyon S B. The electrochemistry of iron, zinc and copper in thin layer electrolytes. Corrosion Science,1993,35(1-4):713-738.
    [43]Liu W, Cao F, Jia B, Zheng L, Zhang J, Cao C, Li X. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 2: Corrosion product and characterization. Corrosion Science,2010,52(2):639-650.
    [44]Zhou H R, Li X G, Ma J, Dong C F, Huang Y Z. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers. Materials Science and Engineering B.2009,162(1):1-8.
    [45]Lorenz W J, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods. Corrosion Science,1981,21(9-10):647-672.
    [46]Van Ingelgem Y, Tourwe E, Vereecken J, Hubin A. Application of multisine impedance spectroscopy, FE-AES and FE-SEM to study the early stages of copper corrosion. Electrochimica Acta,2008,53(25):7523-7530.
    [47]Cruz R P V, Nishikata A, Tsuru T. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment. Corrosion Science,1996,38(8):1397-1406.
    [48]Epelboin I, Keddam M, Takenouti H. Use of impedance measurements for the determination of the instant rate of metal corrosion. Journal of Appllied Electrochemistry,1972,2(1):71-79.
    [49]Tomashov N D. Development of electrochemical theory of metallic corrosion. Corrosion,1964,20:7-14.
    [50]Kratschmer A, Odnevall Wallinder I, Leygraf C. The evolution of outdoor copper patina. Corrosion Science,2002,44(3):425-450.
    [51]Mansfeld F, Liu G, Xiao H, Tsai C H, Little B J. The corrosion behavior of copper alloys, stainless steels and titanium in seawater. Corrosion Science,1994, 36(12):2063-2095.
    [52]Zhang X, He W, Odnevall Wallinder I, Pan J, Leygraf C. Determination of instantaneous corrosion rates and runoff rates of copper from naturally patinated copper during continuous rain events. Corrosion Science,2002,44(9):2131-2151.
    [53]Wallinder I O, C. Leygraf C. A study of copper runoff in an urban atmosphere. Corrosion Science,1997,39(12):2039-2052.
    [54]Van Ingelgem Y, Hubin A, Vereecken J. Investigation of the first stages of the localized corrosion of pure copper combining EIS, FE-SEM and FE-AES. Electrochimica Acta,2007,52(27):7642-7650.
    [55]Druska P, Strehblow H H, Golledge S. A surface analytical examination of passive layers on Cu/Ni alloys:Part I. Alkaline solution. Corrosion Science,1996, 38(6):835-851.
    [56]Lytle D A, Nadagouda M N. A comprehensive investigation of copper pitting corrosion in a drinking water distribution system. Corrosion Science,2010,52: 1927-1938.
    [57]Cong H, Michels H T, Scully J R. Passivity and Pit Stability Behavior of Copper as a Function of Selected Water Chemistry Variables. Journal of the Electrochemical Society,2009,156(1):C16-C27.
    [58]Drogowska M, Brossard L, Menard H. Copper Dissolution in NaHCO3 and NaHCO3+ NaCl Aqueous Solutions at pH 8. Journal of the Electrochemical Society,1992,139(1):39-47.
    [1]Gallese F, Laguzzi G, Luvidi L, Ferrari V, Takacs S, Venturi Pagani Cesa G Comparative investigation into the corrosion of different bronze alloys suitable for outdoor sculptures. Corrosion Science,2008,50(4):954-961.
    [2]Robbiola L, Rahmouni K, Chiavari C, Martini C, Prandstraller D, Texier A, Takenouti H, Vermaut P. New insight into the nature and properties of pale green surfaces of outdoor bronze monuments. Applied Physics A:Materials Science & Processing,2008,92 (1):161-169.
    [3]Wadsak M, Aastrup T, Odnevall Wallinder I, Leygraf C, Schreiner M. Multianalytical in situ investigation of the initial atmospheric corrosion of bronze. Corrosion Science,2002,44 (4):791-802.
    [4]Kleber C. Multianalytical in-situ investigations of the early stages of corrosion of copper, zinc and binary copper/zinc alloys. Corrosion Science,2003,45(12): 2851-2866.
    [5]Picciochi R, Ramos A C, Mendonca M H, Fonseca I T E. Influence of the environment on the atmospheric corrosion of bronze. Journal of Appllied Electrochemistry,2004,34(10):989-995.
    [6]Morselli L, Bernardi E, Chiavari C, Brunoro G Corrosion of 85-5-5-5 bronze in natural and synthetic acid rain. Applled Physical A-Materials & processing, 2004,79(2):363-367.
    [7]Sidot E, Souissi N, Bousselmi L, Triki E, Robbiola L. Study of the corrosion behaviour of Cu-lOSn bronze in aerated Na2SO4 aqueous solution. Corrosion Science,2006,48(8):2241-2257.
    [8]Souissi N, Sidot E, Bousselmi L, Triki E, Robbiola L. Corrosion behaviour of Cu-lOSn bronze in aerated NaCl aqueous media-Electrochemical investigation. Corrosion Science,2007,49(8):3333-3347.
    [9]Leyssens K, Adriaens A, Dowsett M G, Schotte B, Oloff I, Pantos E, Bell A M T, Thompson S P. Simultaneous in situ time resolved SR-XRD and corrosion potential analyses to monitor the corrosion on copper. Electrochemical Communication,2005,7(12):1265-1270.
    [10]Zhang X G, Stimming U. Scanning tunneling microscopy of copper corrosion in aqueous perchloric acid. Corrosion Science,1990,30(8-9):951-954.
    [11]Kleber C, Schreiner M. In situ TM-AFM investigations of the influence of zinc and tin as alloy constituents of copper to the early stages of corrosion. Appllied Surface Science,2003,217(1-4):294-301.
    [12]Vittiglio G, Janssens K, Vekemans B, Adams F, Oost A. A compact small-beam XRF instrument for in-situ analysis of objects of historical and/or artistic value. Spectrochimica Acta Part B:Atomic Spectroscopy,1999,54(12):1697-1710.
    [13]Persson D, Leygraf C. In Situ Infrared Reflection Absorption Spectroscopy for Studies of Atmospheric Corrosion. Journal of the Electrochemmical Society,1993, 140 (5):1256-1260.
    [14]Aastrup T, Leygraf C. Simultaneous Infrared Reflection Absorption Spectroscopy and Quartz Crystal Microbalance Measurements for In Situ Studies of the Metal/Atmosphere Interface. Journal of the Electrochemical Society,1997, 144(9):2986-2990.
    [15]Hayez V, Guillaume J, Hubin A, Terryn H. Micro-Raman spectroscopy for the study of corrosion products on copper alloys:setting up of a reference database and studying works of art. Journal of Raman Spectroscopy,2004,35(8-9): 732-738.
    [16]Cicileo G P, Crespo M A, Rosales B M. Comparative study of patinas formed on statuary alloys by means of electrochemical and surface analysis techniques. Corrosion Science,2004,46(4):929-953.
    [17]Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochimica Acta 2007,52 (27),7760-7769.
    [18]Bernardi E, Chiavari C, Martini C, Morselli L. The atmospheric corrosion of quaternary bronzes:An evaluation of the dissolution rate of the alloying elements. Applied Physical A-Materials & processing,2008,92 (1):83-89.
    [19]Chiavari C, Bernardi E, Martini C, Passarini F, Ospitali F, Robbiola L. The atmospheric corrosion of quaternary bronzes:The action of stagnant rain water. Corrosion Science,2010,52(9):3002-3010.
    [20]Laguzzi G, Luvidi L, Brunoro G Atmospheric corrosion of B6 bronze evaluated by the thin layer activation technique. Corrosion Science,2001,43(4):747-753.
    [21]Chiavari C, Colledan A, Frignani A, Brunoro G. Corrosion evaluation of traditional and new bronzes for artistic castings. Materials Chemistry and Physics, 2006,95(2-3):252-259.
    [22]Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review. Corrosion Science,2004,46(1):109-135.
    [23]Zhang S H, Lyon S B. The electrochemistry of iron, zinc and copper in thin layer electrolytes. Corrosion Science,1993,35(1-4):713-718.
    [24]Liao X, Cao F, Zheng L, Liu W, Chen A, Zhang J, Cao C. Corrosion behaviour of copper under chloride-containing thin electrolyte layer. Corrosion Science,2011, 53(10):3289-3298.
    [25]E1-Naggar, M. M., Bis-triazole as a new corrosion inhibitor for copper in sulfate solution. A model for synergistic inhibition action. Journal of Material and Science,2000,35(24):6189-6195.
    [26]Van Ingelgem Y, Tourwe E, Vereecken J, Hubin A. Application of multisine impedance spectroscopy, FE-AES and FE-SEM to study the early stages of copper corrosion. Electrochimica Acta,2008,53 (25):7523-7530.
    [27]Satovic D, Zulj L V, Desnica V, Fazinic S, Martinez S. Corrosion evaluation and surface characterization of the corrosion product layer formed on Cu-6Sn bronze in aqueous Na2SO4 solution. Corrosion Science 2009,51(8):1596-1603.
    [28]Muresan L, Varvara S, Stupnisek-Lisac E, Otmacic H, Marusic K, Horvat-Kurbegovic S, Robbiola L, Rahmouni K. Takenouti, H., Protection of bronze covered with patina by innoxious organic substances. Electrochimica Acta, 2007,52(27):7770-7779.
    [29]Bernardi E, Chiavari C, Lenza B, Martini C, Morselli L, Ospitali F, Robbiola L. The atmospheric corrosion of quaternary bronzes:The leaching action of acid rain. Corrosion Science,2009,51(1):159-170.
    [30]Robbiola L, Blengino J M, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corrosion Science,1998, 40(12):2083-2111.
    [31]Bernard M C, Joiret S. Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochimica Acta,2009,54(22):5199-5205.
    [32]Robbiola L, Tran T T M, Dubot P, Majerus O, Rahmouni K. Characterisation of anodic layers on Cu-lOSn bronze (RDE) in aerated NaCl solution. Corrosion Science,2008,50 (8):2205-2215.
    [33]Brunoro G, rignani A, ColledanA, Chiavari C. rganic films for protection of copper and bronze against acid rain corrosion. Corrosion Science,2003,45(10): 2219-2231.
    [1]de Oliveira F J R, Lago D C B, Senna L F, de Miranda L R M, D'Elia E. Study of patina formation on bronze specimens. Materials Chemistry and Physics,2009, 115(2-3):761-770.
    [2]Martens W, Frost R L, Williams P A. Raman spectroscopic study of the basic copper sulphates-implications for copper corrosion and 'bronze disease'. Journal of Raman Spectroscopy,2003,34(2):145-151.
    [3]Scott D A. A review of copper chlorides and related salts in bronze corrosion and as painting pigments (Painting conservation, restoration). Studies in Conservation, 2000,45(1):39-53.
    [4]Scott D A. Bronze Disease:A Review of Some Chemical Problems and the Role of Relative Humidity. Journal of the American Institute for Conservation,1990, 29(2):193-206.
    [5]Mennucci M, Sanchez-Moreno M, Aoki I, Bernard M C, de Melo H, Joiret S, Vivier V. Local electrochemical investigation of copper patina. Journal of Solid State Electrochemistry,2012,16(1):109-116.
    [6]Robbiola L, Blengino J M, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corrosion Science,1998, 40(12):2083-2111.
    [7]Strandberg H. Reactions of copper patina compounds-Ⅰ. Influence of some air pollutants. Atmospheric Environment,1998,32(20):3511-3520.
    [8]Strandberg H. Reactions of copper patina compounds-Ⅱ. Influence of sodium chloride in the presence of some air pollutants. Atmospheric Environment,1998, 32(20):3521-3526.
    [9]Schussler A, Exner H E. The Corrosion of Nickel-Aluminum Bronzes in Seawater.1. Protective Layer Formation and the Passivation Mechanism. Corrosion Science,1993,34(11):1793-1802.
    [10]Schussler A, Exner H E. The Corrosion of Nickel-Aluminum Bronzes in Seawater.2. The Corrosion Mechanism in the Presence of Sulfide Pollution. Corrosion Science,1993,34(11):1803-1815.
    [11]Strandberg H, Johansson L G, Lindqvist O. The atmospheric corrosion of statue bronzes exposed to SO2 and NO2. Materials and Corrosion,1997,48(11): 721-730.
    [12]Laguzzi G, Luvidi L, Brunoro G. Atmospheric corrosion of B6 bronze evaluated by the thin layer activation technique. Corrosion Science,2001,43(4):747-753.
    [13]Kear G, Barker B D, Stokes K, Walsh F C. Flow influenced electrochemical corrosion of nickel aluminium bronze-Part Ⅱ. Anodic polarisation and derivation of the mixed potential. Journal of Applied Electrochemistry,2004, 34(12):1241-1248.
    [14]Wharton J, Barik R, Kear G, Wood R, Stokes K, Walsh F. The corrosion of nickel-aluminium bronze in seawater. Corrosion Science,2005,47(12): 3336-3367.
    [15]Rahmouni K, Takenouti H, Hajjaji N, Srhiri A, Robbiola L. Protection of ancient and historic bronzes by triazole derivatives. Electrochimica Acta,2009 54(22):5206-5215.
    [16]Robbiola L, Tran T T M, Dubot P, Majerus O, Rahmouni K. Characterisation of anodic layers on Cu-lOSn bronze (RDE) in aerated NaCl solution. Corrosion Science,2008,50(8):2205-2215.
    [17]Arroyave C, Morcillo M. The effect of nitrogen oxides in atmospheric corrosion of metals. Corrosion Science,1995,37(2):293-305.
    [18]Cheng Y L, Zhang Z, Cao F H, Li J F, Zhang J Q, Wang J M, Cao C N. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corrosion Science,2004,46(7):1649-1667.
    [19]Zhang T, Chen C M, Shao Y W, Meng G Z, Wang F H, Li X G, Dong C F. Corrosion of pure magnesium under thin electrolyte layers. Electrochimica Acta, 2008,53(27):7921-7931.
    [20]Liao X, Cao F, Zheng L, Liu W, Chen A, Zhang J, Cao C. Corrosion behaviour of copper under chloride-containing thin electrolyte layer. Corrosion Science,2011, 53(10):3289-3298.
    [21]Cicileo G P, Crespo M A, Rosales B M. Comparative study of patinas formed on statuary alloys by means of electrochemical and surface analysis techniques. Corrosion Science,2004,46(4):929-953.
    [22]Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L. Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochimica Acta,2007,52(27):7760-7769.
    [23]Robbiola L, Rahmouni K, Chiavari C, Martini C, Prandstraller D, Texier A. New insight into the nature and properties of pale green surfaces of outdoor bronze monuments. Applied Physics A:Materials Science & Processing,2008,92(1): 161-169.
    [24]Bernardi E, Lenza B, Martini C, Morselli L, Ospitali F, Robbiola L. The atmospheric corrosion of quaternary bronzes:The leaching action of acid rain. Corrosion Science,2009,51(1):159-170.
    [25]Chiavari C, Bernardi E, Martini C, Passarini F, Ospitali F, Robbiola L. The atmospheric corrosion of quaternary bronzes:The action of stagnant rain water. Corrosion Science,2010,52(9):3002-3010.
    [26]Satovic D, Martinez S, Bobrowski A. Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta,2010.81(4-5): 1760-1765.
    [27]Muresan L, Varvara S, Stupnisek-Lisac E, Otmacic H, Marusic K, Horvat-Kurbegovic S, Robbiola L, Rahmouni K, Takenouti H. Protection of bronze covered with patina by innoxious organic substances. Electrochimica Acta, 2007,52(27):7770-7779.
    [28]Morselli L, Bernardi E, Chiavari C, Brunoro G. Corrosion of 85-5-5-5 bronze in natural and synthetic acid rain. Applied Physics A:Materials Science & Processing,2004,79(2):363-367.
    [29]Wadsak M, Aastrup T, Odnevall Wallinder I, Leygraf C, Schreiner M. Multianalytical in situ investigation of the initial atmospheric corrosion of bronze. Corrosion Science,2002,44(4):791-802.
    [30]Sidot E, Souissi N, Bousselmi L, Triki E, Robbiola L. Study of the corrosion behaviour of Cu-10Sn bronze in aerated Na2SO4 aqueous solution. Corrosion Science,2006,48(8):2241-2257.
    [31]Gallese F, Laguzzi G, Luvidi L, Ferrari V, Takacs S, Venturi Pagani Cesa G. Comparative investigation into the corrosion of different bronze alloys suitable for outdoor sculptures. Corrosion Science,2008,50(4):954-961.
    [32]Hayez V, Guillaume J, Hubin A, Terryn H. Micro-Raman spectroscopy for the study of corrosion products on copper alloys:setting up of a reference database and studying works of art. Journal of Raman Spectroscopy,2004.35(8-9): 732-738.
    [33]Wadsak M, Guillaume J, Hubin A, Terryn H. Multianalytical study of patina formed on archaeological metal objects from Bliesbruck-Reinheim. Mikrochimica Acta,2000,133(1-4):159-164.
    [34]Picciochi R, Ramos A C, Mendonca M H, Fonseca I T E. Influence of the environment on the atmospheric corrosion of bronze. Journal of Applied Electrochemistry,2004,34(10):989-995.
    [35]McCann L I, Trentelman K, Possley T, Golding B. Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. Journal of Raman Spectroscopy,1999,30(2):121-132.
    [36]Balakrishnan K, Venkatesan V K. Cathodic reduction of copper and brass. Electrochimica Acta,1979,24(2):131-138.
    [37]Deslouis C, Tribollet B, Mengoli G, Musiani M M, electrochemical behavior of copper in neutral aereated chloride solution.1. steady-state investigation. Journal of Applied Electrochemistry,1988,18(3):374-383.
    [38]Zhang S H, Lyon S B. The electrochemistry of iron, zinc and copper in thin layer electrolytes. Corrosion Science,1993,35(1-4):p.713-718.
    [39]Van Ingelgem Y, Hubin A, Vereecken J. Application of multisine impedance spectroscopy, FE-AES and FE-SEM to study the early stages of copper corrosion. Electrochimica Acta,2008,53(25):7523-7530.
    [40]V an Ingelgem Y, Hubin A, Vereecken J. Investigation of the first stages of the localized corrosion of pure copper combining EIS, FE-SEM and FE-AES. Electrochimica Acta,2007,52(27):7642-7650.
    [41]Bernard M C, Joiret S. Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochimica Acta,2009,54(22):5199-5205.
    [42]Marusic K, Otmacic-Curkovic H, Horvat-Kurbegovic S, Takenouti H, Stupnisek-Lisac E. Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor. Electrochimica Acta,2009,54(27):7106-7113.
    [43]Huang H, Dong Z, Chen Z, Guo X. The effects of Cl* ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer. Corrosion Science,2011.53(4):1230-1236.
    [44]Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media--a critical review. Corrosion Science,2004,46(1):109-135.
    [45]范崇正,吴佑实,王昌燧,王胜君。粉状锈的电化学腐蚀及价电子结构分析。化学物理学报,1992,5(6):479-484。
    [1]Cox A, Lyon S B. An electrochemical study of the atmospheric corrosion of mild steel-I. Experimental method. Corrosion Science,1994,36(7):1167-1176.
    [2]屈庆,严川伟,张蕾,万晔,曹楚南。NaCl和SO2在A3钢初期大气腐蚀中的协同效应。金属学报,2002,38(10):1062-1066
    [3]Cole I S, Ganther W D, Sinclair J D, Lau D, Paterson D A. A Study of the Wetting of Metal Surfaces in Order to Understand the Processes Controlling Atmospheric Corrosion. Journal of the Electrochemical Society,2004,151(12):B627-B635.
    [4]Eriksson P, Johansson L-G, Strandberg H. Initial Stages of Copper Corrosion in Humid Air Containing SO2 and NO2. Journal of the Electrochemical Society, 1993,140(1):53-59.
    [5]Wallinder I O, Leygraf C. A study of copper runoff in an urban atmosphere. Corrosion Science,1997,39(12):2039-2052.
    [6]Nunez L, Reguera E, Corvo F, Gonzalez E, Vazquez C. Corrosion of copper in seawater and its aerosols in a tropical island. Corrosion Science,2005,47(2): 461-484.
    [7]Svensson J E, Johansson L G. A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl:Influence of SO2 and NO2. Corrosion Science,1993,34(5):721-740.
    [8]林翠,李小刚。NaCl沉积和SO2污染对镁合金初期大气腐蚀行为的影响。北京科技大学学报,2004,26(5):525-528.
    [9]Strandberg H, Johansson L-G. Some Aspects of the Atmospheric Corrosion of Copper in the Presence of Sodium Chloride. Journal of the Electrochemical Society,1998,145(4),1093-1100.
    [10]Chen Z Y, Persson D, Leygraf C. In Situ Studies of the Effect of SO2 on the Initial NaCl-Induced Atmospheric Corrosion of Copper. Journal of the Electrochemical Society,2005,152(12):B526-B533.
    [11]Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L. Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochimica Acta,2007,52(27):7760-7769.
    [12]Bernardi E, Chiavari C, Lenza B, Martini C, Morselli L, Ospitali F, Robbiola L. The atmospheric corrosion of quaternary bronzes:The leaching action of acid rain. Corrosion Science,2009,51(1):159-170.
    [13]Bernardi E, Chiavari C, Martini C, Morselli L. The atmospheric corrosion of quaternary bronzes:An evaluation of the dissolution rate of the alloying elements. Applied Physics A:Materials Science & Processing,2008,92(1):83-89.
    [14]Cao X, Xu C. Synergistic effect of chloride and sulfite ions on the atmospheric corrosion of bronze. Materials and Corrosion,2006,57(5):400-406.
    [15]E1-Naggar M M. Bis-triazole as a new corrosion inhibitor for copper in sulfate solution. A model for synergistic inhibition action. Journal of Materials Science, 2000,35(24):6189-6195.
    [16]Degrigny C, Guibert G, Ramseyer S, Rapp G, Tarchini A. Use of Ecorr vs time plots for the qualitative analysis of metallic elements from scientific and technical objects:the SPAMT Test Project. Journal of Solid State Electrochemistry,2010, 14(3):425-435.
    [17]Degrigny C. Use of electrochemical techniques for the conservation of metal artefacts:a review. Journal of Solid State Electrochemistry,2010,14(3):53-361.
    [18]Marusic K, Otmacic-Curkovic H, Horvat-Kurbegovic S, Takenouti H, Stupnisek-Lisac E. Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor. Electrochimica Acta,2009,54(27):7106-7113.
    [19]Epelboin I, Keddam M, Takenouti H. Use of impedance measurements for the determination of the instant rate of metal corrosion. Journal of Applied Electrochemistry,1972,2(1):71-79.
    [20]Lorenz W J, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods. Corrosion Science,1981,21(9-10):647-672.
    [21]Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media--a critical review. Corrosion Science,2004,46(1):109-135.
    [22]Van Ingelgem Y, Tourwe E, Vereecken J, Hubin A. Application of multisine impedance spectroscopy, FE-AES and FE-SEM to study the early stages of copper corrosion. Electrochimica Acta,2008,53(25):7523-7530.
    [23]Liao X, Cao F, Zheng L, Liu W, Chen A, Zhang J, Cao C. Corrosion behaviour of copper under chloride-containing thin electrolyte layer. Corrosion Science,2011, 53(10):3289-3298.
    [24]de Figueiredo Junior J C D A, de Freitas Cunha Lins V, De Bellis V M. Surface characterization of a corroded bronze-leaded alloy in a salt spray cabinet. Applied Surface Science,2007,253(17):7104-7107.
    [25]Junior J C D F, De Bellis V M, Lins V F C, Souza L A C. A note on the products of the reaction of AMT with bronze and with three corrosion products of bronze. Studies in Conservation,2007,52(2):147-153.
    [26]Satovic D, Zulj L V, Desnica V, Fazinic S, Martinez S. Corrosion evaluation and surface characterization of the corrosion product layer formed on Cu-6Sn bronze in aqueous Na2SO4 solution. Corrosion Science,2009,51(8):1596-1603.
    [27]Chiavari C, Bernardi E, Martini C, Passarini F, Ospitali F, Robbiola L. The atmospheric corrosion of quaternary bronzes:The action of stagnant rain water. Corrosion Science,2010,52(9):3002-3010.
    [28]Robbiola L, Tran T T M, Dubot P, Majerus O, Rahmouni K. Characterisation of anodic layers on Cu-lOSn bronze (RDE) in aerated NaCl solution. Corrosion Science,2008,50(8):2205-2215.
    [29]Hayez V, Guillaume J, Hubin A, Terryn H. Micro-Raman spectroscopy for the study of corrosion products on copper alloys:setting up of a reference database and studying works of art. Journal of Raman Spectroscopy,2004,35(8-9): 732-738.
    [30]Robbiola L, Blengino J M, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corrosion Science,1998, 40(12):2083-2111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700