有序化微刃刀具设计及基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种新型结构的有序化微刃刀具,采用方条形金刚石纤维取代传统砂轮的磨粒与传统切削刀具的刀片,通过金刚石纤维在基体材料中的定向排布和对金刚石纤维的刃磨,保证有序化微刃刀具的每个金刚石纤维均能以一定的切削角度参与切削,并且每个金刚石纤维均具有锋利的刀刃。众所周知,传统砂轮是由磨粒、结合剂与气孔三部分组成。由于磨粒形状及其分布的随机性,造成砂轮磨削时存在法向力与切向力之比大、磨削比能高、磨削温度高、对机床刚度要求高等不足,由于砂轮同时参与切削的磨粒数量多,单个磨粒的切深很小,一般在亚微米级,对于超精密磨削,砂轮的单个磨粒切深甚至可达到纳米级,因而利用砂轮磨削能获得较高的表面质量与加工精度。传统的切削加工,刀具的切削部分因经过人为刃磨而具有锋利的刀刃,刀具的形状与切削角度均可人为控制,因而法向力与切向力之比小、切削比能低、对机床刚度要求也相对较低,然而,切削刀具同时参与切削的刀刃数量少,为了保证一定的加工效率,往往单个刀刃的切削深度较大,一般在几百微米至几毫米,从而导致切削力比较大(一般可达几百牛),因而加工质量相对要差一些。有序化微刃刀具的金刚石纤维其宽度在0.2-0.5mm之间,比传统的切削刀具小得多,同时参与切削的金刚石纤维数量可远大于普通切削刀具的刀刃数,并且各纤维同样具有锋利的刀刃与确定的切削角度,因而可获得较高的加工精度与保证较好的加工效率。有序化微刃刀具是一种集砂轮与切削刀具优点于一身的新型刀具,开展有序化微刃刀具的设计及其基础研究具有很好的应用价值与理论价值。
     本课题首先对传统的磨削加工与切削加工进行了比较,对目前国内外砂轮结构创新现状以及切削刀具的研究现状进行了全面综述,在此基础上提出了有序化微刃具的概念与构想。
     金刚石纤维的制备是开发有序化微刃刀具最关键的一步,由于金刚石具有极高的硬度与耐磨性,并且在大气压下当温度升高至1000K以上时金刚石会出现石墨化,因此,普通的纤维制备方法很难适于金刚石纤维的制备。本课题提出了减薄聚晶金刚石复合片(Polycrystalline Diamond Compacts,简称PDC)与高能切割技术相结合以制备金刚石纤维的方案。开展了PDC的电火线花切割加工与Nd:YAG激光切割加工的实验研究,采用扫描电镜(Scanning Electric Microscopy,简称SEM)与拉曼光谱仪对切割试件进行了显微观察与分析,发现纳秒级脉宽的KTP/Nd:YAG激光所切割的试件热损伤小,并且切割速度比较快,因而采用纳秒级脉宽的KTP/Nd:YAG激光切割PDC的方法制备金刚石纤维,金刚石纤维的截面尺寸为0.3mm宽×0.6mm厚×10mm长。
     为了保证有序化微刃刀具在切削加工过程中其金刚石纤维具有一定的切削角度,采用了自制模具对金刚石纤维进行定向、均匀、有序排布。为了保证每个金刚石纤维具有锋利的刀刃,开展了金刚石纤维的固结磨粒刃磨与游离磨粒刃磨实验研究,通过SEM的显微观察发现,固结磨粒刃磨很容易造成刃口的崩刃,采用游离磨粒刃磨则可以获得较好的刃口质量,最终确定以游离磨粒刃磨的方法实现金刚石纤维的刃磨加工。
     氧化铝、碳化硅等陶瓷颗粒增强铝合金因具有材质轻、耐磨性好、比强度高等优点而在汽车与航空领域得到广泛地应用,然而,硬质颗粒的加入也给其加工带来了极大的困难。金刚石刀具是目前公认的加工陶瓷颗粒增强铝合金的最有效工具,由于金刚石刀具无法制备成复杂的形状,严重影响了陶瓷颗粒增强铝合金更为广泛地应用。本课题以碳化硅增强高硅铝合金为试件材料,开展了有序化微刃刀具对塑性金属材料的精密切削实验研究,单个纤维切削深度为1-10μm,介于传统的切削加工与磨削加工之间。经SEM与表面轮廓仪对试件表面的检测与分析发现,有序化微刃刀具在加工碳化硅增强高硅铝合金时获得了较高的加工质量,当单纤维切深为4μm、进给速度为10mm/sec时,表面粗糙度达到了Ra0.08。并开展了与数控铣削加工的对比性实验研究,在相同的材料去除率下,有序化微刃刀具的加工表面质量明显好于数控铣削加工,其加工表面没有微裂纹,而数控铣削加工在较大切削效率时表面存在明显的微裂纹。
     对于普通的工程陶瓷材料,如碳化钨/钴、氧化铝,材料硬度越高则其断裂韧性越低,然而,当材料晶粒减小至纳米级时,如纳米碳化钨/钴,材料硬度提高时断裂韧性降低较少。纳米碳钨/钴涂层作为一种新型的耐磨涂层材料其优越的物理力学性能已获得广泛的认同,在机械制造、工具、国防、航空航天、地质勘探领域获得了广泛地应用。目前,纳米碳化钨/钴涂层主要是采用金刚石砂轮进行磨削加工。本文采用有序化微刃刀具开展了纳米碳化钨钴涂层材料的精密切削加工试验研究,并开展了与金刚石砂轮磨削加工的对比分析,经SEM显微观察分析发现,采用0°前角的有序化微刃刀具进行切削加工,最大未变形切削层厚度存在临界值,当最大未变形切削层厚度小于临界值时,其加工表面质量明显好于SD600N100V金刚石砂轮磨削表面,只要控制单个微刃的最大未变形切削层厚度,既可获得脆性材料的无损伤加工,因此,通过增加参与切削的微刃数量,采用0°前角的有序化微刃刀具可以实现脆性材料的高效精密加工;当切削前角为-30°时,法向力与切向力之比较大,并且当切削深度与进给速度较大时,加工表面存在碎粒状形貌;
This study is aimed at developing a new engineered cutter which combines the advantages of grinding wheels and cutting tools through replacing the abrasives in a grinding wheel or the inserts in a cutting tool with superabrasive fibers. Similar to a cutting tool with inserts, the engineered cutter has superabrasive fibers that are artificially ordered so as to have the desired geometric angles and edge space among themselves. Since superabrasive fibers are normally preferred for the engineered cutter, diamond fibers have been chosen in this study. For the purpose of achieving the desired geometric angles and sharp cutting edges, diamond fibers are first artificially aligned along the desired direction and distributed in a mold and fixed with epoxy resin. The spacially ordered diamond fibers are then lapped with diamond abrasives to get sharp cutting edges and the necessary clearance angles.
     It is well known that a grinding wheel is composed of abrasives, bond and pores, and due to the random nature of the abrasive geometries and their distribution in a grinding wheel, grinding is characterized by good surface finish and quality, good dimensional accuracies, but a high ratio of normal to tangential grinding forces, high specific energy, high temperature rise, and a high demand in grinding machine stiffness. The good surface finish and quality in grinding is largely due to the small depth of cut in individual abrasive grits which is usually in the submicron or even nanometer range. On the other hand, due to its favorable geometric parameters, such as positive rake angle, a milling cutter usually results in a low normal to tangential force ratio, low specific energy, and high material removal efficiency as compared to grinding. However, machined workpiece surface finish and quality in milling is inferior to that in grinding.
     Machining with an engineered cutter is expected to provide both good surface finish and high machining efficiency at the same time. The development of the engineered cutter, which combines the advantages of both grinding and cutting, is considered a technological breakthrough in cutting tools. The engineered cutter is therefore of technological importance. In this study, the current state-of-the-art in the grinding wheel structures is discussed. Presented in this study are also the recent advances in cutting tools through analyzing and comparing grinding against cutting processes. The concept of an enineered cutter is proposed and verified.
     The fabrication of diamond fibers is a key step towards the successful preparation of an engineered cutter. This is due to the fact that it is difficult to obtain diamond fibers through the conventional processes of fiber preparation because of the graphization tendency of diamond in a temperature range of 700-800℃or above. In order to prepare diamond fibers, this study deals with the cutting mechanisms of Polycrystalline Diamond Compacts (PDC) with an Nd:YAG laser and Wire Electric Discharge Machining (WEDM). Based on the observations with Scanning Electron Microscopy (SEM) and the analysis with Raman spectra, it is discovered that the samples cut by the Nd:YAG laser with pulse width in nanoseconds have better surface quality, less thermal damage, moreover, and a higher efficiency. Therefore, the diamond fibers with cross-sectional dimensions of 0.3×0.6×10 mm are prepared by the Nd:YAG laser cutting of PDC.
     The artificially oriented diamond fibers are fabricated into blocks of 3-5mm thickness. Each block contains spacially distributed fibers in epoxy resin. It is very important for a diamond fiber cutter to have sharp cutting edges so as to improve its cutting efficiency. In this regard, sharpening of diamond fibers is carried out in the preparation of diamond fiber cutter. In this study, the diamond fibers have been ground by fixed diamond abrasives and polished by free diamond abrasives, respectively, and then investigated through SEM observations. It is found that the quality of polished PDC cutter edges is better with the free diamond abrasives than that with the fixed diamond abrasives. Therefore, polishing with the free diamond abrasives is performed throughout the study.
     Aluminum metals reinforced by alumina or silicon carbide particles are now widely used in automotive and aerospace industries because of their enhanced mechanical properties, low density and high thermal conductivity. Nevertheless, the addition of hard particles poses great difficulty for the machining, because the hard particles, which intermittently come into contact with the cutting edges, act as abrasives against the cutting edges, which causes rapid tool wear and poor surface finish. So far, as to the machining of aluminum alloy reinforced by hard particles, a diamond cutter is recognized as the most appropriate cutting tools due to its hardness and wear resistance. However, it is difficult to fabricate a complicated diamond tool due to the extreme properties of diamond, which prevents the application of aluminum alloy in industry. To investigate the material removal mechanisms with the diamond fiber cutter, aluminum-silicon alloy is chosen as the sample material. Depth of cut is set in the range of 1-10μm for the diamond fiber cutter, which is smaller than that used in the conventional machining and larger than in grinding. Based on the SEM obervations and inspections with a surface profilometer, it is discovered that the diamond fiber cutter results in a surface roughness of Ra0.08μm on the aluminum-silicon alloy workpiece. Moreover, in a comparison study, the diamond fiber cutter is used to compare with conventioal milling cutters. The results are promising. At the similar material removal rates, the diamond fiber cutter provided obviously better surface quality than the conventioal milling cutters. The former generated smooth workpiece surface without observable machine damage such as microcracks, while the latter showed many microcracks which are perpendicular to the direction of cutting at increased depths of cut.
     For common engineering ceramics, such as tungsten carbide/coabalt and alumina, an increase in hardness is often accompanied by a decrease in toughness. However, there is no decrease in toughness for a nanostructured material with high hardness. Nanostructured WC/Co coatings are finding a wide application in many industries, such as manufacturing, machine tools, cutting tools, military and areospace. Because of their enhanced hardness and toughness, nanostructured materials are difficult to machine. Grinding with a diamond wheel is widely used in machining these materials. A comparative investigation is carried out in this study on the machining mechanisms of the nanostructured WC/Co coatings by the diamond fiber cutter and by diamond wheels, respectively. The study verifies that the diamond fiber cutter with zero rake angle results in better surface finish than the 600# diamond wheel. On the other hand, the diamond fiber cutter with -30°rake angle results in large ratio of normal to tangential forces. The resulting machined workpiece showed a surface with granular surface roughness and also obvious microcracks at an increased depth of cut.
引文
[1] Kalpakjian S, Schmid S R. Manufacturing engineering and technology. 5th Ed., New York: Addison-Wesley Publishing Company, 2006, pp. 622-801.
    [2] Huang S F, Tsai H L, Lin S T. Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix. Materials Chemistry and Physics, 2004, 84: 251-258.
    [3]林增栋.金属-金刚石的粘接界面与金刚石表面的金属化.粉末冶金技术, 1989, 7(1): 1-9.
    [4]卢金斌,徐九华,徐鸿钧. Ni-Cr合金真空钎焊金刚石界面反应的热力学与动力学分析.焊接学报, 2004, 25(1): 21-24.
    [5] Sung C M. Brazed diamond grid: a revolutionary design for diamond saws. Diamond and Related Materials, 1999, 8: 1540-1543.
    [6] Sun F L, Feng J C, Li D. Bonding of CVD diamond thick films using an Ag-Cu-Ti brazing alloy. Journal of Material Processing Technology, 2001, 115: 333-337.
    [7] Yamazaki T, Suzumura A. Role of the reaction product in the solidification of Ag-Cu-Ti filler for brazing diamond. Journal of Materials Science, 1998, 331: 1379-1384.
    [8] Chattopadhyay A K, Chollet L, Hintermann H E. On performance of brazed bonded monolayer diamond grinding wheel. Annals of the CIRP, 1991, 40: 347-350.
    [9] Chattopadhyay A K, Chollet L, Hintermann H E. Experimental investigation on induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere. Journal of Materials Science, 1991, 26: 5093-5100.
    [10] Chattopadhyay A K, Hintermann H E. On improved bonding of TiC-Coated CBN grits in nickel-based matrix. Annals of the CIRP, 1993, 42: 413-416.
    [11] Chattopadhyay A K, Hintermann H E. On brazing of cubic boron nitride abrasive crystals to steel substrate with alloys containing Cr or Ti. Journal of Materials Science, 1993, 28: 5887-5893.
    [12]孙凤莲. CVD金刚石厚膜与硬质合金的钎焊连接机理及工艺研究: [哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学, 2002, pp. 71-83.
    [13]武志斌,徐鸿钧,肖冰等.钎焊单层金刚石砂轮的实验研究.中国机械工程, 2001, 12(12): 1423-1424.
    [14]武志斌,徐鸿钧,肖冰等.银基钎料钎焊单层金刚石砂轮的试验.焊接学报, 2001, 22(1): 24-26.
    [15]姚正军,徐鸿钧,肖冰等. Ni-Cr合金Ar气保护炉中钎焊金刚石砂轮的研究.中国机械工程, 2001, 12(8): 956-958.
    [16]肖冰,徐鸿钧,武志斌等. Ni-Cr合金真空单层钎焊金刚石砂轮.焊接学报, 2001, 22(2): 23-26.
    [17] Yamaguchi K, Horaguchi I. Development of directionally aligned SiC whisker wheel. Precision Engineering, 1995, 17: 5-9.
    [18] Yamaguchi K, Horaguchi I, Sato Y. Grinding with directionally aligned Sic whisker wheel loading-free grinding. Precision Engineering, 1998, 22: 59-65.
    [19] Yamaguchi K, Kikuzawa K, Wei Y Q, Horaguchi I. Grinding characteristics of directionally aligned SiC whisker wheel (comparison with Al2O3 fiber wheel). Transactions of the Japan Society of Mechanical Engineers (Series C) (in Japanese), 1999, 65(638): 342-347.
    [20] Yamaguchi K, Wei Y Q, Horaguchi I. Development of diamond-like carbon fibre wheel. Precision Engineering, 2004, 28(4): 1-7.
    [21] May P W, Rego C A, Thomas R M, et al. Preparation of solid and hollow diamond fibers and the potential for diamond fiber metal matrix composites. Journal of Materials Science Letter, 1994, 13: 247-249.
    [22] May P W, Rego C A, Thomas R M, et al. CVD diamond wires and tubes. Diamond and Related Materials, 1994, 3: 810-813.
    [23] Smith N P, Smith D J, Pearce T R A, et al. The ductile grinding of glass using diamond fibres oriented radially in a grinding wheel. Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 2003, 217: 387-396.
    [24]何贤昶,沈荷生. CVD金刚石涂层丝与涂层纤维.机械工程材料, 2001, 25(9): 1-4.
    [25] Gviniashvili V K, Woolley N H, Rowe W B. Useful coolant flowrate in grinding. International Journal of Machine Tools and Manufacture, 2004, 44: 629-636.
    [26] Ramesh K, Yeo S H, Zhong Z W, et al. Coolant shoe development for high efficiency grinding. Journal of Materials Processing Technology, 2001, 114: 240- 245.
    [27] Nguyen T, Zhang L C. Modelling of the mist formation in a segmented grinding wheel system. International Journal of Machine Tools and Manufacture, 2005, 45: 21-28.
    [28] Nguyen T, Zhang L C. The coolant penetration in grinding with a segmented wheel-Part 1: mechanism and comparison with conventional wheels. International Journal of Machine Tools and Manufacture, 2005, 45: 1412-1420.
    [29] Nguyen T, Zhang L C. The coolant penetration in grinding with a segmented wheel-Part 2: Quantitative analysis. International Journal of Machine Tools and Manufacture, 2006, 46: 114-121.
    [30] KIM J D, Kang Y H, Jin D X, et al. Development of discontinuous grinding wheel with multi-porous grooves. International Journal of Machine Tools and Manufacture, 1997, 37(11): 1611-1624.
    [31] Aurich J C, Braun O, Warnecke G. Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation. Annals of the CIRP, 2003, 52(1): 275-280.
    [32]肖冰,徐鸿均,武志斌.钎焊单层金刚石砂轮关键问题的研究.中国机械工程, 2002, 13(13): 1147-1149.
    [33]魏莎莎,吴春笃.涂层氮铝钛(TiAlN)硬质合金刀具的研究.燕山大学学报, 2005, 29(6): 485-488.
    [34]邓建新,钮平章,王景海,艾兴.“软”涂层刀具的发展与应用.工具技术, 2005, 39(3): 10-12.
    [35] Renevier N M, Hamphire J, Fox V C, et al. Advantages of using self-lubricating hard wear-resistance MoS2-based coatings. Surface Coatings Technology, 2001, 142-144: 67-77.
    [36]李绍纯,戴长虹.碳化硅颗粒、晶须、晶片增韧陶瓷复合材料的研究现状.硅酸盐通报, 2004, 23(6): 63-65.
    [37]苗赫濯.新型陶瓷刀具的发展与应用.中国有色金属学报, 2004, 14(1): 237-242.
    [38]谢峰,沈维蕾,杨海东等.纳米改性金属陶瓷刀具切削性能研究.农业机械学报, 2006, 37(1): 132-135.
    [39] Claussen N. Fracture toughness of Al2O3 with an unstabiliaed ZrO2 dispersed phase. Journal of the American Ceramic Society, 1976, 59(1-2): 49-51.
    [40] Salomon C J. Process for the machining of metals or similarly acting materials when being worked by cutting tools. German Patent. 523594, pp. 1931-04.
    [41]陈世平,廖林清,侯智等.高速切削刀具系统动平衡研究与分析.机床与液压, 2005, (10): 32-34.
    [42]王树林,王贵成.高速加工及其工具系统的研究进展.江苏理工大学学报(自然科学版, 2001, 32(4): 49-53.
    [43]王宇,胡景姝,盆洪民. PCBN刀具技术最新进展.工具技术, 2006, 40(1): 15-17.
    [44]张竟敏.天然金刚石刀具技术的发展概况.工具技术, 2001, 35(4): 3-6.
    [45] Kupp E R, Drawl W R, Spear K E. Interlayers for diamond coated cutting tools. Surface anc Coatings Techology, 1994, 68/69: 378-383.
    [46]邓福铭,陈启武. PDC超硬复合刀具材料及其应用.北京:化学工业出版社, 2003, 23-128.
    [47]曹凤国,桂小波.大面积PCD复合片电火花加工高效节能脉冲电源的研究.金刚石与磨粒磨具工程, 2004, (2): 17-20.
    [48]王军,姜新桥,瞿大中.提高超硬刀具材料线切割加工效率的途径.电加工与磨具, 2004, (4): 59-60.
    [49]丁景祥.锚杆钻头金刚石复合片的切割.西部探矿工程, 2002, (3): 92-94.
    [50]赵秀香,冯克明.电火花线切割在PCD加工方面的研究.金刚石与磨粒磨具工程, 1998, (4): 21-23.
    [51] Thoe T B, Aspinwall D K, Wise M L H. Polycrystalline diamond edge quality and surface integrity following electrical discharge grinding. In: Proceedings of the International Conference on Advances in Materials and Processing Technologies, Dublin, Ireland, 1993, 3, pp. 1921-1933.
    [52] Kozak J, Peronczyk J. Electrical discharge machining of polycrystalline diamond (PCD), In: Proceedings of the ISEMⅦ, Aachen, Germany, 1989, 1405, pp. 465-474.
    [53] Spur G, Appel S, Wire EDM cutting of PCD. Industrial Diamond Review. 1997, (4): 124-130.
    [54]王适,张弘弢. PCD刀具最小刃磨余量的研究,工具技术, 2004, 38(4): 17-19.
    [55]王适.金刚石热稳定性及其刀具受热损伤的研究: [大连理工大学博士学位论文].大连:大连理工大学, 2003, pp. 85-90.
    [56]陈根余,李力钧,马宏路等.声光调QYAG脉冲激光修锐和整形青铜金刚石砂轮.机械工程学报, 2005, 41(4): 174-179.
    [57]马庆芳,方荣生.实用热物理性质手册.北京:中国家农业机械出版社, 1986, pp. 455-500.
    [58] Guo C F. A new technology of high-speed machining polycrystalline diamond with increased electric discharge breakdown explosion force. In: Proceedings of internationals symposium for electro-machining(ISEM-9), Nagoya, 1989, pp. 309-312
    [59] Lin J F, Lin J W, Wei P J. Thermal analysis for graphitization and ablation depthsof diamond films. Diamond and related Materials, 2006, 15: 1-9.
    [60] Cappelli E, Mattei G, Orlando S, et al. Pulsed laser surface modifications of diamond thin films. Diamond and Related Materials, 1999, 8: 257-261.
    [61] Ascarelli P, Cappelli E, Oralando S, et al. Laser treatment of diamond films. Applied Surface Science, 1998, 127-129: 837-842.
    [62] Gloor S, Lüthy W, Weber H P, et al. UV laser polishing of thick diamond films for IR windows. Applied Surface Science, 1999, 138-139: 135-139.
    [63] Park J K, Ayres V M, Asmussen J, et al. Precision micromachining of CVD diamond films. Diamond and Related Materials, 2000, 9: 1154-1158.
    [64] Meijer J, Du K, Gillner A, et al. Laser machining by short and ultrashort pulses: state of the art and new opportunities in the age of the photons. Annals of the CIRP, 2002, 51(2): 531-550.
    [65] Ivarson A, Powell J, Kamalu J. The oxidation dynamics of laser cutting of mild steel and the generation of striations on the cut edge. Journal of Materials Processing Technology, 1994, 40:359-374.
    [66] Kaebemick H, Jeromin A, Mathew P. Adaptive control for laser cutting using striation frequency analysis. Annals of CIRP, 1998, 47(1): 137-140.
    [67] Wee L M, Li L. An analytical model for striation formation in laser cutting. Applied Surface Science, 2005, 247: 277-284.
    [68] Lv S J, Wang Y. An investigation of pulsed laser cutting of titanium alloy sheet. Optics and Lasers in Engineering, 2006, 44: 1067-1077.
    [69] Rao B T, Kaul T, Tiwari P. Inert gas cutting of titanium sheet with pulsed mode CO2 laser. Optics and Lasers in Engineering, 2005, 43: 1330-1348.
    [70] Karatas C, Keles O, Uslan I. Laser cutting of steel sheets: influence of workpiece thickness and beam waist position on kerf size and stria formation. Journal of Materials Processing Technology, 2006, 172: 22-29.
    [71]李力钧.现代激光加工及其装备.北京:北京理工大学出版社, 1993, pp. 130-153.
    [72] Kononenko T V, Ralchenko G V, Vlasov I I. Ablation of CVD diamond with nanosecond laser pulses of UV-IR range. Diamond and Related Materials, 1998, 7: 1623-1627.
    [73]谢小柱.声光调Q YAG脉冲激光修锐超硬磨料砂轮的试验研究: [湖南大学硕士学位论文].长沙:湖南大学, 2002, pp. 13-28.
    [74] Fabis P M. Laser machining of CVD diamond: chemical and structural alteration effects. Surface and Coatings Technology, 1996, 82: 320-325.
    [75] Gloor S, Pimenov S M, Obraztsova E D. Laser ablation of diamond films in various atmospheres. Diamond and Related Materials, 1998, 7: 607-611.
    [76] Norman D A. Discerning toughening mechanisms of filled polymers by aligning inclusions with an electric field: [dissertation]. Michigan: Michigan University, 2002, pp. 5-25.
    [77] Park C R, Robertson R E. Aligned microstructure of some particulate polymer composites obatained with an electric field. Journal of Materials Science, 1998, 33: 3541-3553.
    [78] Itoh T, Hirai H, Isomura R. Aluminum alloy matrix composites with discontinuous fibers oriented uniaxially by electrostatic method. Journal of Japan Institute of Light Materials(in Japanese), 1988, 38: 620-625.
    [79] Prasse T, Cavaille J Y, Bauhofer W. Electric anisotropy of carbon nanofibre/epoxy resin compsites due to electric field induced alignment. Composites Science and Technology, 2003, 63: 1835-1841.
    [80] Harlen O G, Koch D L. Orientational drift of a fibre suspended in a dilute polymer solution during oscillatory shear flow. Journal of Non-Newtonian Fluid Mechanics, 1997, 73: 81-93.
    [81] Tsunekawa Y, Masahiro O. Improvement of bending strength in aluminum alloy matrix composites containing short alumina fibers by centrifulgal force. Journal of Japan Institute for Light Materials, 1990, 40: 7-12.
    [82] Masatoshi K, Tatuhiro T, Junichi T, et al. Flow-induced whisker orientation and viscosity for molten composite systems in a uniaxial elongational flow field. Polymers, 1995, 36(20): 3927-3933.
    [83] Miani M. Two-component extrusion head having a spinneret with high perforation intensity. U.S. Patent. 5466, pp. 1995-142.
    [84] Bay R S, Tucker C L. Fibre orientation in simple injection mouldings. PartⅡ: experimental results. Polymer Composites, 1992, 13: 332-431.
    [85] Bechtold G, Gaffney K M, Botsis J, et al. Fibre orientation in an injection moulded specimen by ultrasonic backscattering. Composites, Part A, Applied Science and Manufacturing, 1998, 29(7): 743-7487.
    [86] Morehead M, Huang Y, Hartwig K T. Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools. International of Journal of Machine Tools and Manufacture, 2007, 47: 286-293.
    [87] Ding X, Liew W Y H, Liu X D. Evaluation of machining performance of MMC with PCBN and PCD tools. Wear, 2005, 259: 1225-1234.
    [88] Miklaszewski S, Zurek M, Beer P, et al. Micromechanism of polycrystalline cemented diamond tool wear during milling of wood-based materials. Diamond and Related Materials, 2000, 9: 1125-1128.
    [89] Bai Q S, Yao Y X, Chen S D. Research and development of polycrystalline diamond woodworking tools. International Journal of Refractory Metals and Hard Materials, 2002, 20: 395-400.
    [90] Philbin P, Gordon S. Characterisation of the wear behaviour of polycrystalline diamond (PCD) tools when machining wood-based composites. Journal of Materials Processing Technology, 2005, 162-163: 665-672.
    [91] Thoe T B, Aspinwall D K, Wise M L H P, et al. Polycrystalline diamond edge quality and surface Integrity following electrical discharge grinding. Journal of materials processing technology, 1996, 56: 773- 785.
    [92] Kenter T M. Effect of process parameters when grinding PCD-1. Industrial Diamond Review, 1992, 52(1): 29- 33.
    [93] Kenter T M. Effect of process parameters when grinding PCD-2. Industrial Diamond Review, 1992, 52(2): 75- 80.
    [94] Kenter T M. Effect of process parameters when grinding PCD-3. Industrial Diamond Review, 1992, 52(6): 313- 318.
    [95] Zong W J, Li D, Cheng K, et al. The material removal mechanism in mechanical lapping of diamond cutting tools. International journal of machining tools and manufacture, 2005, 45: 783-788.
    [96] Li X P, Rahman M, Liu K, et al. Nano-precision measurement of diamond tool edge radius for wafer fabrication. Journal of Materials Processing Technology, 2003, 140: 358-362.
    [97] Zong W J, Li D, Sun T, Cheng K. Contact accuracy and orientations affecting the lapped tool sharpness of diamond cutting tools by mechanical lapping. Diamond and Related Materials, 2006, 15: 1424-1433.
    [98] Zong W J, Cheng K, Li D, Liang Y C. The ultimate sharpness of single- crystal diamond cutting tools, Part I: Theoretical analyses and predictions. International journal of machining tools and manufacture, 2007, 47: 852- 863.
    [99] Zong W J, Li D, Sun T, et al. The ultimate sharpness of single- crystal diamond cutting tools, PartⅡ: A novel efficient lapping process, International journal of machining tools and manufacture, 2007, 47: 852-863.
    [100] Yuan Z J, Yao Y X, Zhou M, et al. Lapping of single crystal diamond tools. Annals of the CIRP, 2003, 52(1): 285-288.
    [101] Chen Y, Zhang L C, Arsecularatne J A, et al. Polishing of polycrystalline diamond by the technique of dynamic friction, Part 1: Prediction of the interface temperature rise. International Journal of Machine Tools and Manufacture, 2006, 46: 580-587.
    [102]俞汉清.金属塑性成形原理,北京:机械工业出版社, 2001, pp. 6-56.
    [103] Zhang B, Tokura H, Yoshikawa M. Study on surface cracking of alumina scratched by single-point diamonds. Journal of Materials Science, 1988, 23: 3214-3224.
    [104] Zhang B, Howes T D. Material-removal mechanisms in grinding ceramics. Annals of the CIRP, 1994, 43: 505-508.
    [105] Nakasuji T, Kodera S, Hara S, et al. Diamond turning of brittle materials for optical components. Annals of the CIRP, 1990, 39(1): 89-92.
    [106]Blake P N, Scattergood R O. Ductile regime machining of germanium and silicon. Journal of America Ceramic Society, 1990, 73(4): 949-957.
    [107] Shibata T, Fuji S, Makino E, et al. Ductile-regime turning mechanism of single-crystal silicon. Precision Engineering, 1996, 18(2/3): 130-137.
    [108] Leung T P, Lee W B, Lu X M. Diamond turning of silicon substrates in ductile-regime. Journal of Material Processing Technology, 1998, 73: 42-48.
    [109] Yan J, Syoji K, Kuriyagawa T. Fabrication of large-diameter single-crystal silicon aspheric lens by straight-line enveloping diamond-turning method. Journal of Japanese society of precision engineering, 2002, 68(4): 1561-1565.
    [110] Yan J, Syoji K, Tamaki J. Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear, 2003, 255: 1380-1387.
    [111] Yan J, Yoshino M, Kuriyagawa T, et al. On the ductile machining of silicon for micro-electro-mechanical systems(MEMS), opto-electronic and optical applications. Material Science and Engineering(A), 2001, 297(1/2): 230-234.
    [112] Jasinevicius R G, Santos F J, Pizani P S, et al. Surface amorphization in diamond turning of silicon crystal investigated by transmission electron microscopy. Journal of Non-Crystalline Solids, 2000, 272: 174-178.
    [113] Lawn B R, Evans A G. A model for crack initiation in elastic/plastic: indentation fields. Journal of Materials Science, 1977, 12: 2195-2199.
    [114]龚江洪.陶瓷材料断裂力学,北京:清华大学出版社, 2001, pp. 7-100.
    [115] Liu J H, Pei Z J, Fisher G R, Grinding wheels for manufacturing of silicon wafers: A literature review. International Journal of Machine Tools and Manufacture, 2007, 47(1): 1-13.
    [116] Kasai T, Horio K, Karaki-Doy T, et al. Improvement conventional polishing conditions for obtain super smooth surface of compound semiconductor wafers. Annals of CIRP, 1990, 39(1): 297-301.
    [117] Chou Y K, Liu J. CVD diamond tool performance in metal matrix composite machining. Surface and Coating Technology, 2005, 200: 1872-1878.
    [118] Durante S, Rutelli G, Rabezzana F. Aluminum-based MMC machining with diamond-coated cutting tools. Surface and Coatings Technology, 1997, 94-95: 632-640.
    [119] Kishawy H A, Kannan S, Balazinski M. An energy based analytical force model for orthogonal cutting of metal matrix composites. Annals of the CIRP, 2004, 53(1): 91-94.
    [120] Pramanik A, Zhang L C, Arsecularatne J A. Prediction of cutting forces in machining of metal matrix composites. International Journal of Machine Tools and Manufacture, 2006, 46: 1795-1803.
    [121] Manna A, Bhattacharayya B. A study on machinability of Al/SiC-MMC. Journal of Materials Processing Technology, 2003, 140: 711-716.
    [122] Arumugam P U, Malshe A P, Batzer S A. Dry machining of aluminum-silicon alloy using polished CVD diamond-coated cutting tools inserts. Surface and Coatings Technology, 2006, 200: 3399-3403.
    [123]陈明,张志明,许柳英等.复杂形状金刚石薄膜涂层刀具的制备与试验研究.工具技术, 1998, 32(12): 3-5.
    [124] Davim J P, Baptista A M. Relations between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. Journal of Materials Processing Technology, 2000, 103: 417-423.
    [125]石广新,王利国,王海龙等. SiCp/Al复合材料研究进展.河南建材, 2005, (1): 16-18.
    [126] Konbaeetal L. Interfacial reaction in SiCp/Al composite fabricated by pressureless infiltration. Scripta Materialia, 1997, 36(8): 847-852.
    [127]杨遇春.高新材料中异军突起的金属复合材料.材料科学与工程, 1991, 9(2): 7-12.
    [128]马建平,傅丹鹰,邢绍美. SiCp/Al复材光机结构件及光学反射镜的制造研究.航天工艺, 2000, (2): 1-4.
    [129]张洪立,许奔荣,周海丽.铝基复合材料在惯性导航仪表中的应用分析.宇航材料工艺, 2003, (3): 10-14.
    [130]张建华,尚自河.车削硅铝合金活塞的PCD刀具刃磨及几何参数.山东大学学报(工学版) , 2005, 35(5): 5-8.
    [131]马鸣图,石力开,熊柏青等.喷射沉积成型铝合金在汽车发动机缸套上的应用.汽车工艺与材料, 2001, (2): 16-19.
    [132]腾杰.高速列车用铝基复合材料制动盘及其闸片的制备、摩擦磨损特性及机理研究: [湖南大学博士学位论文].长沙:湖南大学, 2005, pp. 2-20
    [133]齐海波,樊云昌,丁占来.轿车用铝基复合材料制动盘的制备.石家庄铁道学院学报, 2003, 13(1): 18-22.
    [134]齐海波,丁占来,樊云昌等. SiC颗粒增强铝基复合材料制动盘的研究.复合材料学报, 2001, 18(1): 62-66.
    [135]王大镇,刘华明,韩荣第等. SiCp增强铝基复合材料切削加工中刀-屑摩擦模型及其磨损性能研究.摩擦学学报, 2000, 20(2): 85-89.
    [136]王大镇,韩荣第,刘华明等.铝基复合材料超精密加工中的刀-屑摩擦磨损性能及模型研究.摩擦学学报, 2005, 25(6): 569-573.
    [137]韩荣第,王大镇,韩滨.铝复合材料超精密加工表面微观分析.中国机械工程, 2003, 14(9): 747-749.
    [138] Pramanik A, Zhang L C, Arsecularatne J A. Prediction of cutting forces in machining of metal matrix composites. International Journal of Machine Tools and Manufacture, 2006, 46: 1795-1803.
    [139] Chambers A R. The machinability of light alloy MMCs, Part A. Composites,, 1996, 27: 143-147.
    [140] Polini R, Casadei F, Antonio P D, Traversa E. Dry turning of alumina aluminum composites with CVD diamond coated Co-cemented tungsten carbide tools. Surface and Coatings Technology, 2003, 166:27-134.
    [141] El-Gallab M, Sklad M. Machining of Al/SiC particulate metal-matrix composites Part I: Tool performance. Journal of Materials Processing Technology, 1998, 83: 151-159.
    [142] Davim J P. Design of optimization of cutting parameters for turning metal matrix composites based on the orthogonal arrays. Journal of Materials Processing Technology, 2003, 132: 340-344.
    [143] Davim J P. Diamond tool performance in machining metal-matrix composites. Journal of Material Processing Technology, 2002, 128: 100-105.
    [144] Hooper R M, Henshall J L, Klopfer A. The wear of polycrystalline diamond tools used in the cutting of metal matrix composites. International Journal of Refractory Metals and Hard Materials, 1999, 17: 103-109.
    [145] Heath P J. Developments in applications of PCD tooling. Journal of MaterialsProcessing Technology, 2001, 116: 30-38.
    [146] Andrewes C J E, Feng H Y, Lau W M. Machining of an aluminum/SiC composite using diamond inserts. Journal of Materials Processing Technology, 2000, 102: 25-29.
    [147] Chan K C, Cheung C F, Ramesh M V, et al. A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix composite. International Journal of Mechanical Sciences, 2001, 43: 2047-2068.
    [148]Ozden S, Ekici R, Nair F. Investigation of impact behavior of aluminum based SiC particle reinforced metal-matrix composites, Part A. Composites, 2007, 38: 484-494.
    [149] Malkin S. Grinding technology: theory and application of machining with abrasives. New York: John Wiley & Sons, 1989, pp. 30-50.
    [150] Winert K. A consideration of tool wear mechanism when machining metal matrix composites (MMC). Annals of CIRP, 1993, 42: 95-98.
    [151]陈日曜.金属切削原理.北京:机械工业出版社, 2007, pp. 38-42.
    [152] Liu X B. Microgrinding of nanostructured materials:Experimentation and theoretical modeling: [dissertation]. Storrs: University of Conneticut, USA, 2001, pp. 5-15.
    [153]邓朝晖.纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究: [博士学位论文].长沙:湖南大学, 2004, pp. 119-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700