磨料群可控排布砂轮的制备技术及其磨削性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削技术向着高速、高效和精密方向发展,以及飞速发展的新材料带来的磨削加工需求,对传统磨具提出了新的挑战。一方面,传统固结磨料磨具,特别是精密磨削磨具,由于磨粒十分细小、磨粒分布紧密、容屑空间小,造成磨削过程中磨具工作表面极易堵塞、导致磨具过早失效、工件磨削热损伤甚至正常加工无法进行。另一方面,传统单层超硬磨料砂轮,砂轮精度过度依赖于基体精度及安装配合精度。为了解决传统磨具存在的上述缺陷,本文提出了磨料群可控排布砂轮,即磨具中的磨粒或磨料群及其间距能够按照使用要求进行科学地排列或分布,磨料群可以为单层或多层磨粒结构,且能够确保合理的容屑空间。
     首先对磨料群可控排布砂轮进行参数化表征,分析了磨料群主要参数的关系,并从磨削理论和磨粒运动学的角度分析了砂轮表面主要参数的对磨削性能的影响,建立了包含磨料群直径、有效面积比、磨料群运动轨迹密度等指标的磨料群可控排布砂轮表征与评价体系。对不同排布样式的磨料群可控排布砂轮、不同磨料群间距、不同砂轮转速的磨削轨迹密度计算和分析,为磨料群可控排布砂轮设计和工艺参数选取提供依据。
     提出了经济简单的磨料群可控排布电镀砂轮的制备工艺——选择性复合电沉积,并研究了主要的基础工艺:包括基于丝网印刷技术、照相制版技术、激光打孔技术的掩模制备方法和工艺及其适用范围;通过正交试验对脉冲电镀镍钴合金砂轮制备体系的主要工艺参数的优化选取;制定了复合电沉积工艺规范并研制了适合小批量试验和生产的半自动化电镀砂轮制备系统,成功制备出几种端面磨削和周边磨削用磨料群可控排布砂轮样件。
     为减小安装后的电镀砂轮工作表面圆跳动误差,研制了具有多层磨料的微磨料群可控排布电镀镍钴合金砂轮,提出了基于电解加工方法的磨料群可控排布镍钴合金镀层砂轮的电解修整技术,根据标准电极电位理论和极化曲线测试研究了镍钴合金镀层电解去除的可行性;砂轮安装到主轴后工作表面圆跳动误差减小到初始值的61.5%,显著提高了砂轮的使用精度;电镀多层CBN砂轮电解修锐中镍钴合金结合剂去除均匀,磨粒平均出刃高度达到磨粒粒径的42.9%。
     结合航天企业对碳纤维/环氧树脂复合材料构件的磨削加工需求及其干磨削的难题,进行了磨料群可控排布电镀砂轮的磨削碳纤维/树脂复合材料的试验。连续磨削中磨料群可控排布砂轮的轴向力稳定、工件表面完整性较好,工件表面粗糙度Ra值稳定在0.8至1.3μm之间;由于磨削温度低于树脂软化温度未发生树脂和切屑软化粘附现象,磨料群之间的间隙容纳了大量的切屑、方便切屑转移,有效地防止砂轮堵塞。根据新型砂轮加工碳纤维复合材料优异的磨削性能,将其装备于ZM1000型数控高速钻磨机床上,在某碳纤维/树脂复合材料筒状构件干磨削加工中得到了应用。
With grinding technology developing toward high speed, high efficiency and high accuracy, and grinding needs from booming new materials, challenges are posed to the conventional grinding wheels. On the one hand, on the traditional fixed abrasive wheel, especially for precision grinding, the grain is so little and the chip clearance is so small that the tool surface are prone to be loaded, causing the tool invalid and the workpiece burned even the normal machining process unable to continue. On the other hand, the accuracy of traditional single layer superabrasive wheel depends on the accuracy of wheel substrate significantly. To solve these problems in traditional grinding wheel, a wheel with controlled abrasive cluster is proposed in this paper, on which the distance between the grits or abrasive clusters and the distribution pattern are set suitably with practice. Monolayer or multilayer abrasives are feasible and the chip clearance is ensured properly.
     Firstly, the wheel with controlled abrasive cluster is characterized by parameters and the relationship of the abrasive-cluster's main parameters is analyzed. Also the effect of the main parameters of the wheel surface on the grinding performance is studied at the point of view of grinding theory and grit kinematic analysis. A characterization and evaluation system was established, which contains such as diameter of abrasive cluster, the effective abrasive index, the kinematic tracks of the abrasive clusters and so on. The density of grinding tracks of cluster on the wheel with different distribution patterns, with different distance between the clusters and different rotation speed of wheel, are calculated and analyzed. They provide a basis for choosing the parameters of the wheel design and machining.
     An economical and easy fabrication process of selective composited electro-deposition is proposed and the main processes are studied. The method and processes of mask fabrication are explored and their available ranges are given based on the following three aspects:the screen printing technology, the photolithography technology and the laser drilling. The main parameters of pulse plating of Nickel-Cobalt alloy are optimized and chosen by orthogonal experiments. The process specification for the wheel fabrication is set and a semi-automatic electroplating equipment fulfilling for small batch experiment and production is developed. Some samples of the wheel with controlled abrasive cluster are fabricated successfully.
     To reduce or eliminate the run-out error of the wheel working surface after it to be assembled, the multi-layer abrasive electroplated Ni-Co wheel with controlled abrasive cluster is developed. And then, the process of electrolytic dressing is proposed for the Ni-Co electroplated wheel based on electrolytic machining. By analyzing the standard electrode potential and testing the polarization curve, the removal feasibility of electroplated Ni-Co alloy by electrolytic dressing is studied. In the experiment of electrolytic dressing on a straight wheel, the surface run-out error after assembled on the grinder spindle has a reduction by 61.5% compared with dressed before, which improve the wheel use accuracy significantly. In the experiment of electrolytic dressing on multi-layer abrasive wheels, the Ni-Co alloy bonding of the wheel is removed uniformly and the average protrusion height is up to 42.9% of the grain size.
     In order to fulfill with the needs of machining of carbon fiber reinforced plastics (CFRP) and solve the difficulties of dry grinding of CFRP, grinding experiments by using the wheel with controlled abrasive cluster are conducted. The results show that the grinding temperature is dramatically reduced. The steady axial force and good surface integrity are obtained by using the wheel with controlled abrasive cluster, and the surface roughness Ra of the workpiece keeps in a range from 0.8 to 1.3μm. There is no soften resin and chips because the grinding temperature is lower than the soften temperature of the epoxy resin. The space among the clusters serve as room and access for grinding chips accommodation and removal, which avoids wheel loading effectively. Due to the excellent performance of the new wheel on grinding of CFRP, the wheel with controlled abrasive cluster is equipped on the high speed drilling and grinding CNC machine typed ZM1000 and applied in grinding of a certain cylindraceous composites part.
引文
[1]Malkin S. Grinding technology:theory and application of machining with abrasives [M]. New York: John Wiley&Sons,1989.
    [2]李长河,修世超,蔡光起.高速超高速磨削技术发展与关键技术[J].精密制造与自动化.2006,164(4):16-21.
    [3]Jackson M J, Davis C J, Hitchiner M P et al. High-speed grinding with CBN grinding wheels-applications and future technology [J]. Journal of Materials Processing Technology.2001,110(1): 78-88.
    [4]Komanduri R, Lucca D A, Tani Y. Technological advances in fine abrasive processes [J]. CIRP Annals-Manufacturing Technology.1997,46(2):545-596.
    [5]Chen X, Rowe W B, Cai R. Precision grinding using CBN wheels [J]. International Journal of Machine Tools and Manufacture.2002,42(5):585-593.
    [6]Martin K, Yegenoglu K. HSG-Technologie, Handbuch zur praktischen Anwendung [J]. Guehring Automation GmbH, Stetten akM-Frohnstetten.1992.
    [7]Kopac J, Krajnik P. High-performance grinding-a review [J]. Journal of Materials Processing Technology.2006,175(1-3):278-284.
    [8]Pecherer E, Malkin S. Grinding of steels with cubic boron nitride (CBN) [J]. CIRP Annals-Manufacturing Technology.1984,33(1):211-216.
    [9]Ikeno J, Tani Y, Sato H. Nanometer grinding using ultrafine abrasive pellets-manufacture of pellets applying electrophoretic deposition [J]. CIRP Annals-Manufacturing Technology.1990,39(1): 341-344.
    [10]叶伟昌,梁萍.砂轮技术的新进展[J].机械制造.2000,38(427):30-32.
    [11]谢国治,左敦稳.单层钎焊砂盘磨粒分布有序性研究[J].南京航空航天大学学报.2000,32(3):282-287.
    [12]Chattopadhyay A K, Chollet L, Hintermann H E. On performance of chemically bonded single-layer CBN grinding wheel [J]. CIRP Annals-Manufacturing Technology.1990,39(1):309-312.
    [13]傅玉灿,徐鸿钧.从电镀到钎焊—国外单层超硬磨料砂轮制造技术新发展[J].工具技术.1998,32(8):4-8.
    [14]傅玉灿,徐鸿钧.高效磨削用砂轮地貌的优化设计研究[J].应用科学学报.2001,19(1):48-52.
    [15]Tawakoli T. Innovative Werkzeugsysteme zum Schleifen, Abrichten und Fr sen (T-Tool Profil, und T-Tool), Ⅲ [C]. Seminar "Moderne Schleiftechnologie", an der FH-Furwangen, Hrsg., Furtwangen, 2000.
    [16]Zheng H W, Gao H. A general thermal model for grinding with slotted or segmented wheel [J]. CIRP Annals-Manufacturing Technology.1994,43(1):287-290.
    [17]高航,宋振武.断续磨削温度场的研究[J].机械工程学报.1989,25(2):22-28.
    [18]高航,梁然.内冷却开槽砂轮及其应用[J].东北工学院学报.1991,12(5):524-529.
    [19]Fu Y C, Xu H J, Xu J H. Optimization design of grinding wheel topography for high efficiency grinding [J]. Journal of Materials Processing Technology.2002,129(1-3):118-122.
    [20]Ding W F, Xu J H, Shen M et al. Development and performance of monolayer brazed CBN grinding tools [J]. The International Journal of Advanced Manufacturing Technology.2007,34(5):491-495.
    [21]傅玉灿,徐鸿钧.开槽砂轮缓进给深切磨削时工件表层温度场解析[J].中国机械工程.2002,13(7):541-543.
    [22]李迎,徐鸿钧.带通液孔的CBN开槽砂轮的试验研究[J].磨料磨具与磨削.1994,81(3):14-16.
    [23]Tawakoli T, Westkaemper E, Rabiey M. Dry grinding by special conditioning [J]. The International Journal of Advanced Manufacturing Technology.2007,33(3):419-424.
    [24]Tawakoli T. Advances in grinding with T-tool [C]. International Manufacturing Engineering Conference, Storrs, CT, USA,1996.
    [25]Suto T, Waida T, Noguchi H et al. High performance creep feed grinding of difficult-to-machine materials with new-type wheels [J]. Bulletin of the Japan Society of Precision Engineering.1990, 24(1):39-44.
    [26]Nguyen T, Zhang L C. Modelling of the mist formation in a segmented grinding wheel system [J]. International Journal of Machine Tools and Manufacture.2005,45(1):21-28.
    [27]Nguyen T, Zhang L C. The coolant penetration in grinding with segmented wheels—Part 1: Mechanism and comparison with conventional wheels [J]. International Journal of Machine Tools and Manufacture.2005,45(12-13):1412-1420.
    [28]Nguyen T, Zhang L C. The coolant penetration in grinding with a segmented wheel—Part 2: Quantitative analysis [J]. International Journal of Machine Tools and Manufacture.2006,46(2): 114-121.
    [29]Nguyen T, Zhang L C. Performance of a new segmented grinding wheel system [J]. International Journal of Machine Tools and Manufacture.2009,49(3-4):291-296.
    [30]Webster J, Tricard M. Innovations in abrasive products for precision grinding [J]. CIRP Annals-Manufacturing Technology.2004,53(2):597-617.
    [31]Sung C M. Brazed diamond grid:a revolutionary design for diamond saw [J]. Diamond and related materials.1999,8(8-9):1540-1543.
    [32]肖冰,徐鸿钧.钎焊单层金刚石砂轮关键问题的研究[J].中国机械工程.2002,13(13):1147-1149.
    [33]Heinzel C, Rickens K. Engineered wheels for grinding of optical glass [J]. CIRP Annals Manufacturing Technology.2009,58(1):315-318.
    [34]Aurich J C, Braun O, Warnecke G et al. Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation [J]. CIRP Annals-Manufacturing Technology. 2003,52(1):275-280.
    [35]Pinto F W, Vargas G E, Wegener K. Simulation for optimizing grain pattern on engineered grinding tools [J]. CIRP Annals-Manufacturing Technology.2008,57(1):353-356.
    [36]Koshy P, Iwasald A, Elbestawl M A. Surface generation with engineered diamond grinding wheels: insights from simulation [J]. CIRP Annals-Manufacturing Technology.2003,52(1):271-274.
    [37]Aurich J C, Herzenstiel P, Sudermann H et al. High-performance dry grinding using a grinding wheel with a defined grain pattern [J]. CIRP Annals-Manufacturing Technology.2008,57(1): 357-362.
    [38]Burkhard G, Rehsteiner F, Schumacher B. High Efficiency Abrasive Tool for Honing [J]. CIRP Annals-Manufacturing Technology.2002,51(1):271-274.
    [39]Luo S Y, Yu T H, Hu Y C. Fabrication of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology [J]. Journal of Micromechanics and Microengineering.2007,17: 1130.
    [40]Luo S Y, Yu T H, Liu C Y et al. Grinding characteristics of micro-abrasive pellet tools fabricated by a LIGA-like process [J]. International Journal of Machine Tools and Manufacture.2009,49(3-4): 212-219.
    [41]Gahlin R, Jacobson S. Micromechanical manufacturing of abrasive surfaces for fundamental studies on wear and grinding [J]. Wear.1998,217(2):231-236.
    [42]Gahlin R, Bjorkman H, Rangsten P et al. Designed abrasive diamond surfaces [J]. Wear.1999,233: 387-394.
    [43]Gagliardi J J. Microreplication technology meets coated abrasive demands [J]. Metal Finishing.1995, 93(12):14-19.
    [44]Gagliardi J, Webb R, Rueb C et al. Fixed abrasives and selective chemistries:some real advantages for direct STI CMP [C],2002.
    [45]Shaw M C. Precision finishing [J]. CIRP Annals-Manufacturing Technology.1995,44(1):343-348.
    [46]Islam M M, Senthil Kumar A, Balakumar S et al. Characterization of ELID grinding process for machining silicon wafers [J]. Journal of Materials Processing Technology.2008,198:281-290.
    [47]Ohmori H, Nakagawa T. Utilization of nonlinear conditions in precision grinding with ELID (Electrolytic In-Process Dressing) for fabrication of hard material components [J]. CIRP Annals-Manufacturing Technology.1997,46(1):261-264.
    [48]Ohmori H, Nakagawa T. Analysis of Mirror Surface Generation of Hard and Brittle Materials by ELID (Electronic In-Process Dressing) Grinding with Superfine Grain Metallic Bond Wheels [J]. CIRP Annals-Manufacturing Technology.1995,44(1):287-290.
    [49]Tonshoff H K, Friemuth T. In-process dressing of fine diamond wheels for tool grinding [J]. Precision Engineering.2000,24(1):58-61.
    [50]Xie J, Tamaki J. In-process evaluation of grit protrusion feature for fine diamond grinding wheel by means of electro-contact discharge dressing [J]. Journal of Materials Processing Technology.2006, 180(1-3):83-90.
    [51]Xie J, Tamaki J, Kubo A et al. Application of Electro-contact Discharge Dressing to a Fine-grained Diamond Grinding Wheel [J]. International Journal of the Japan Society for Precision Engineering. 2001,67(11):1844-1849.
    [52]Denkena B, Becker J C, van der Meer M. Potential of the electro contact discharge dressing method in truing and sharpening super abrasive grinding wheels [J]. Key Engineering Materials.2004,257: 353-358.
    [53]Hirao M, Izawa M, Iguchi N et al. Water-jet in-process dressing [J]. International Journal of the Japan Society for Precision Engineering.1998,9:1335-1339.
    [54]Nomura M, Wu Y, Kuriyagawa T. Investigation of internal ultrasonically assisted grinding of small holes:effect of ultrasonic vibration in truing and dressing of small CBN grinding wheel [J]. Journal of mechanical science and technology.2007,21(10):1605-1611.
    [55]Hosokawa A, Ueda T, Yunoki T. Laser dressing of metal bonded diamond wheel [J]. CIRP Annals-Manufacturing Technology.2006,55(1):329-332.
    [56]Zhang C, Shin Y C. A novel laser-assisted truing and dressing technique for vitrified CBN wheels [J]. International Journal of Machine Tools and Manufacture.2002,42(7):825-835.
    [57]王耀先.复合材料结构设计[M].北京:化学工业出版社,2001.
    [58]李志强,樊锐,陈五一等.纤维增强复合材料的机械加工技术[J].航空制造技术.2003,(12):34-37.
    [59]Koplev A, Lystrup A, Vorn T. The cutting process, chips and cutting forces in machining CFRP [J]. Composites.1983,14(4):371-376.
    [60]Arola D, Ramulu M, Wang D H. Chip formation in orthogonal trimming of graphite/epoxy composite [J]. Composites Part A:Applied Science and Manufacturing.1996,27(2):121-133.
    [61]Bhatnagar N, Ramakrishnan N, Naik N K et al. On the machining of fiber reinforced plastic (FRP) composite laminates [J]. International Journal of Machine Tools and Manufacture.1995,35(5): 701-716.
    [62]Pwu H Y, Hocheng H. Chip formation model of cutting fiber-reinforced plastics perpendicular to fiber axis [J]. Journal of Manufacturing Science and Engineering.1998,120(1):192-196.
    [63]Mondelin A, Furet B, Rech J. Characterisation of friction properties between a laminated carbon fibres reinforced polymer and a monocrystalline diamond under dry or lubricated conditions [J]. Tribology International.2010,43(9):1665-1673.
    [64]Davim J P, Reis P. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments [J]. Composite Structures.2003,59(4):481-487.
    [65]Enemuoh E U, El-Gizawy A S, Chukwujekwu Okafor A. An approach for development of damage-free drilling of carbon fiber reinforced thermosets [J]. International Journal of Machine Tools and Manufacture.2001,41(12):1795-1814.
    [66]Hocheng H, Puw H Y. On drilling characteristics of fiber-reinforced thermoset and thermoplastics [J]. Internatioal Journal of Machine Tools and Manufacture.1992,32(4):583-592.
    [67]Abrate S, Walton D A. Machining of composite materials. Part Ⅱ:Non-traditional methods [J]. Composites Manufacturing.1992,3(2):85-94.
    [68]Inoue H, Kawaguchi I. Study on the grinding mechanism of glass fiber reinforced plastics [J]. Journal of Engineering Materials and Technology.1990,112(3):341-345.
    [69]Colligan K, Ramulu M. Edge trimming of graphite/epoxy with diamond abrasive cutters [J]. Journal of Manufacturing Science and Engineering.1999,121(4):647-655.
    [70]Hu N S, Zhang L C. A study on the grindability of multidirectional carbon fibre-reinforced plastics [J]. Journal of Materials Processing Technology.2003,140(1-3):152-156.
    [71]Hu N S, Zhang L C. Some observations in grinding unidirectional carbon fibre-reinforced plastics [J]. Journal of Materials Processing Technology.2004,152(3):333-338.
    [72]Kim P J, Lee D G, Choi J K. Grinding characteristics of carbon fiber epoxy composite hollow shafts [J]. Journal of Composite Materials.2000,34(23):2016-2035.
    [73]Park K Y L, Lee D G, Nakagawa T. Mirror surface grinding characteristics and mechanism of carbon fiber reinforced plastics [J]. Journal of Materials Processing Technology.1995,52(2-4): 386-398.
    [74]Lee D G, Kim P J, Choi J K. Composites during cut-off grinding temperature rise and surface roughness of carbon fiber epoxy [J]. Journal of Composite Materials.2000,34(24):2061-2080.
    [75]Selzer R, Friedrich K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture [J]. Composites:Part A.1997,28A:595-604.
    [76]Asp L E. The effects of moisture and temperature on the interlaminar delamination toughness of a carbon-epoxy composite [J]. Composties Science and Technology.1998,58:967-977.
    [77]吕小军,张琦,马兆庆等.湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J].材料工程.2005,(11):50-53.
    [78]Todo M, Nakamura T, Takahashi K. Effects of moisture absorption on the dynamic interlaminar fracture toughness of carbon/epoxy composites [J]. Journal of Composite Materials.2000,34(8): 630.
    [79]Harris B. Engineering composite materials [M]. London:IOM Communications,1999.
    [80]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.
    [81]Marinescu I D, Rowe W B, Dimitrov B et al. Tribology of Abrasive Machining Processes [M]. New York:William Andrew, Inc.,2004.
    [82]Alden G I. Operation of grinding wheels in machine grinding [J]. Trans ASME.1914,36:451-460.
    [83]Guest J J. Grinding Machinery [M]. London:Edward Arnold,1915.
    [84]Tonshoff H K, Peters J, Inasaki I et al. Modeling and simulation of grinding processes [J]. Annals of CIRP.1992,41(2):677-688.
    [85]庄司克雄(著),郭隐彪,王振忠(译).磨削加工技术[M].北京:机械工业出版社,2007.
    [86]康仁科,杨巧凤,齐威等.电镀CBN砂轮缓进给磨削高温合金叶片窄深槽的试验研究[J].航空制造技术.1999,(6):16-18.
    [87]李大佛.电镀金刚石钻头技术[M].北京:地质出版社,1995.
    [88]郭鹤桐,张三元.复合镀层[M].天津:天津大学出版社,1991.
    [89]陈永常.现代印刷技术[M].北京:化学工业出版社,2003.
    [90]张逸新.特种承印材料印刷技术[M].北京:化学工业出版社,2003.
    [91]郑德海.现代印刷工艺[M].北京:化学出版社,2004.
    [92]张国顺.现代激光制造技术[M].北京:化学工业出版社,2005.
    [93]张永康.激光加工技术[M].北京:化学工业出版社,2004.
    [94]李大佛,李天明,陈洪俊.中国电镀金刚石钻头的研究与应用[J].探矿工程.1996,(4):41-43.
    [95]李云东,王淮东,李立波等.电沉积纳米镍-钴合金制备金刚石工具[J].电镀与环保.2008,28(6):15-17.
    [96]李云东,江辉,李根生等.电镀金刚石工具中新型镀层的研究[J].材料保护.2002,35(12):31-32.
    [97]王敏.复合电镀(Ni-Fe)-金刚石工艺[J].电镀与精饰.2008,30(3):28-29.
    [98]黎向锋,左敦稳,王珉Ni-Mo-金刚石复合电沉积工艺[J].航空制造技术.1999,(6):19-23.
    [99]王秦生.超硬材料电镀制品[M].北京:中国标准出版社,2000.
    [100]张允诚,胡如南,向荣主编.电镀手册[M].北京:国防工业出版社,2007.
    [101]郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社,2006.
    [102]杨洋,潘秉锁,杨凯华.电镀金刚石钻头胎体性能与电镀工艺的关系研究[J].金刚石与磨料磨具工程.2004,144(6):34-36.
    [103]唐春华.电镀金刚石工具 第一部分 电镀金刚石工具的工艺因素探讨及故障排除[J].电镀与涂饰.2005,24(11):33-35.
    [104]向国朴.脉冲电镀发展概况[J].电镀与涂饰.2000,19(4):43-47.
    [105]王鸿建.电镀工艺学[M].哈尔滨:哈尔滨工业大学出版社,1995.
    [106]Panagopoulos C N, Papachristos V D. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating [J]. Thin Solid Films.2000,366(1-2):155-163.
    [107]王群英,杨凯华,兰桥昌.电镀铵盐镍基金刚石钻头试验与分析[J].金刚石与磨料磨具工程.2008,163(1):31-34.
    [108]杨凯华,段隆臣.脉冲电镀工艺参数对镀层性能影响的研究[J].探矿工程.1996,(3):28-30.
    [109]张景双.电镀溶液与镀层性能测试[M].北京:化学工业出版社,2003.
    [110]张碧玉,李照美,李云东等.脉冲电镀中脉冲电镀参数对镍镀层显微硬度的影响[J].电镀与涂饰.2005,24(2):1-3.
    [111]Marinescu I D, Hitchiner M, Uhlmann E et al. Handbook of Machining with Grinding Wheels [M]. Boca Raton:CRC Press,2007.
    [112]康仁科,原京庭,史兴宽等.超硬磨料砂轮的激光修锐技术研究[J].中国机械工程.2000,11(5):493-497.
    [113]王续跃,汲丛平,康仁科等.青铜结合剂金刚石砂轮激光修锐试验研究[J].大连理工大学学报.2007,47(6):823-828.
    [114]尤卫民,陈根,余于俊勇等.激光修整青铜金刚石砂轮的高速磨削试验研究[J].精密制造与自动化.2006,168(4):31-34.
    [115]Zhang C, Shin Y C. Wear of diamond dresser in laser assisted truing and dressing of vitrified CBN wheels [J]. International Journal of Machine Tools and Manufacture.2003,43(1):41-49.
    [116]陈根余,谢小柱,李力钧等.超硬磨料砂轮修整与激光修整新进展[J].金刚石与磨料磨具工程.2002,128(2):8-12.
    [117]Ohmori H, Takahashi I, Bandyopadhyay B P. Ultra-precision grinding of structural ceramics by electrolytic in-process dressing(ELID) grinding [J]. Journal of Materials Processing Technology. 1996,57(3):272-277.
    [118]Fathima K, Rahman M, Kumar A S et al. Modeling of ultra-precision ELID grinding [J]. Journal of Manufacturing Science and Engineering.2007,129(2):296-302.
    [119]张飞虎,朱波,栾殿荣等.ELID磨削——硬脆材料精密和超精密加工的新技术[J].宇航材料工艺.1999,(1):51-55.
    [120]Kumar A, Lim H, Rahman M et al. A study on the grinding of glass using electrolytic in-process dressing [J]. Journal of Electronic Materials.2002,31(10):1039-1046.
    [121]Lim H S, Fathima K, Senthil Kumar A et al. A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding [J]. International Journal of Machine Tools and Manufacture. 2002,42(8):935-943.
    [122]Zhu Z, Wang X, Thangam S. Simulation and analysis of rigid/foil electrolytic in-process dressing (ELID) systems for grinding [J]. Journal of Manufacturing Science and Engineering.2004,126(3): 565-570.
    [123]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001.
    [124]陈祥宝.先进树脂基复合材料扩大应用的关键[J].高科技纤维与应用.2002,27(6):1-5.
    [125]David-West O S, Nash D H, Banks W M. An experimental study of damage accumulation in balanced CFRP laminates due to repeated impact [J]. Composite Structures.2008,83(3):247-258.
    [126]陈绍杰,申屠年.先进复合材料的近期发展趋势[J].高科技纤维与应用.2004,29(1):1-7.
    [127]张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋势[J].纤维复合材料.2004,21(1):50-53.
    [128]陈祥宝.先进树脂基复合材料的发展[J].航空材料学报.2000,20(1):46-54.
    [129]赵宗桂.碳纤维及其复合材料的发展与应用[J].石化技术与应用.2002,20(4):273-276.
    [130]胡宝刚,杨志翔,杨哲.复合材料后加工技术的研究现状及发展趋势[J].宇航材料工艺.2000,30(5):24-27.
    [131]郝元凯,肖加余.高性能复合材料学[M].北京:化学工业出版社,2003.
    [132]赵渠森.先进复合材料手册[M].北京:机械工业出版社,2003.
    [133]Selzer R, Friedrich K. Influence of water up-take on inter-laminar fracture properties of carbon fibre-reinforced polymer composites [J]. Journal of Materials Science.1995,30(2):334-338.
    [134]Chihung S, Springer G S. Moisture absorption and desorption of compostie materials [J]. Journal of Composite Material.1976,10(1):2-20.
    [135]李向阳,蒋莉,张志民.湿热环境对损伤分层复合材料夹层板弯曲性能的影响[J].复合材料学报.2000,17(4):110-113.
    [136]李伟.碳纤维复合材料磨削温度理论分析与试验研究[D].(硕士学位论文).大连:大连理工大学,2008.
    [137]Weinert K, Kempmann C. Cutting temperatures and their effects on the machining behaviour in drilling reinforced plastic composites [J]. Advanced Engineering Materials.2004,6(8):684-689.
    [138]Persson E, Eriksson L, Zackrisson L. Effects of hole machining defects on strength and fatigue life of composite laminates [J]. Composites Part A.1997,28A:141-151.
    [139]Gutowski T G. Advanced Composites Manufacturing [M]. New York: John Wiley & Sons,1997.
    [140]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700