声光调Q Nd:YAG脉冲激光修整青铜金刚石砂轮机理及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青铜金刚石砂轮具有异常优良的磨削性能,在难加工材料的磨削、精密磨削、高效磨削和磨削自动化中有广泛的应用前景。近年来,由于砂轮制造问题得以突破及陶瓷、玻璃等难加工材料应用增多,青铜金刚石砂轮应用急剧增加。由于金刚石硬度极高,传统的单一的“硬碰硬”修整方法不适应青铜金刚石砂轮的修整,严重影响了其优良磨削性能的充分发挥。青铜金刚石砂轮的修整是其进一步推广应用的瓶颈问题和数控精密磨床中迄今未完全解决的关键技术难题。寻找一种从根本上解决青铜金刚石砂轮修整问题的修整方法,成为各国学者研究的目标。
     本文综述了国内外研究现状后,从青铜金刚石修整的本质出发,指出关键问题是:找到能有效直接微米级去除金刚石的方法;能实现选择性去除,能有效、高效提高修整精度;同时能突破传统概念,既能整形又同时实现修锐。传统的基于力和电的方法不能有效直接去除金刚石,较理想的方法是基于微区热作用的激光烧蚀微细加工激光修整。笔者从理论和试验上全面开展了研究。
     首先,提出声光调Q脉冲激光以其单脉冲功率密度高、脉宽窄、占空比小、易于控制等特点,是青铜金刚石砂轮修整的合适光源。自行试制了一台声光调Q Nd:YAG激光器,通过测量,该激光器输出的最大平均功率可达100W,最小脉宽约为170 ns,重复频率0.5~50kHz。
     其次,为了寻找合适的烧蚀去除金刚石磨粒和结合剂的激光参数,使得烧蚀后磨粒无微裂纹,变质层浅,烧蚀后仍具有良好的磨削性能,修整后可得到良好地形地貌,分别进行了单脉冲激光烧蚀青铜结合剂和金刚石磨粒及青铜金刚石砂轮的理论和试验研究。通过理论计算确定了在不同脉宽情况下青铜结合剂与金刚石磨粒单脉冲激光烧蚀功率密度阈值。表明声光调Q脉冲激光可有效去除金刚石和青铜,建立了脉冲激光烧蚀单晶金刚石颗粒的数学模型。通过模拟计算,得到脉冲激光的脉宽和占空比是影响变质层厚度和表面微裂纹的最主要的因素。同时通过试验,找到了合适的激光烧蚀参数。针对砂轮,建立了二维几何和数学模型,采用数值计算的手段模拟烧蚀去除时情况,并通过试验验证了当激光功率密度在1.41×107 W/cm2~2.85×108 W/cm2(f=1kHz)时,只可进行修锐;而当激光平功率密度达到2.85×108 W/cm2(f=1kHz)后,可进行整形,并可实现整形和修锐的合二为一。通过理论和试验分析了激光修整青铜金刚石砂轮的机理是在短脉冲高功率密度激光作用下,大部分能量用于气化去除材料,主要是通过浅层气化机制实现材料烧蚀去除。
     随后,针对目前尚无有效和高效纠正青铜金刚石砂轮圆跳动误差的方法,本文采用激光径向辐照,基于光学三角测量方法,测量光源与加工光源合二为一,研制了闭环控制电路控制脉冲激光,在线检测待加工表面相对于指定位置的偏移,当测量信号表明被测点高于预定位置时,发出巨脉冲激光对该点进行微量烧蚀,否则不发出巨脉冲激光,从而进行选择性烧蚀,可快速消除砂轮较大的圆跳动误差,达到10μm左右精度。试验证实激光整形同时可实现修锐。进一步研究了激光-机械复合精密修整技术,该技术适合于磨粒尺寸较大的青铜金刚石砂轮精密修整。
     最后,为了检验激光的修整效果和激光参数对修整效果的影响规律,进行了激光修整青铜金刚石砂轮磨削氧化铝陶瓷磨削力和工件表面粗糙度试验研究。表明合适的激光和工艺参数修整后,可进行有效磨削。并且激光修整法优于碳化硅滚轮修整法修整效果。
     本文主要创新成果如下:
     1、首次采用声光调Q YAG脉冲激光径向辐照烧蚀青铜金刚石砂轮,实现金刚石磨粒的无损伤微量去除,为实现青铜金刚石砂轮精密修整奠定基础;
     2、突破传统概念,打破目前超硬磨料砂轮整形和修锐要分两道工序进行的模式。实现整形与修锐同时进行,两道工序合二为一;
     3、创造性地将光学三角测量及闭环控制系统与激光修整装置集成,自行研制了闭环测控系统;
     4、通过理论与试验研究,选择合理的激光、运动参数,闭环控制激光径向辐照,实现了青铜金刚石砂轮的精密修整;验证了激光修整后的砂轮的磨削性能。
With excellent grinding performance, the Bronze-bonded diamond wheels have a wide application prospect in the field of precision, ultra-precision, high efficiency grinding, grinding automation and difficult processing material forming. In recent years, Because of the breaking through of the grinding wheels manufacture question and the Increasing application to difficult processing materials such as ceramics, glasses and so on, Bronze-bonded diamond wheel’s application growth sharply. Because of the ultrahigh hardness of diamond, It’s difficultly for traditional truing and dressing method which was based on the interacton of force to promot.which really affects the grinding performance of Bronze-bonded diamond wheels, and also is the key problem which up to now not solved completely in the accurate numerical controlling grinding machines. A new method which to solve Bronze-bonded diamond wheel’s truing and dressing problems fundamentally truing has attracted much attention all over the world .
     This article summarized the present research situation on domestic and foreign countries. Embark on the essence of Bronze-bonded diamond wheel’s truing and dressing,to pointed out the key question: found methods to remove micron level diamond directly and effectively; and also can removed selectively, enhanced the precision effectively; simultaneously can break through the tradition concept. The traditional methods which based on strength and electricity cannot remove the diamond effective directly. The ideal method is which item was based on the accurate laser machining with little heat effec.The author has carried out the research comprehensively from the theory and the experiment.
     Fist, with high peak power, low duty ratio, short pulse duration, high repetition frequency and controllable feature, the acoustic-optic Q-switched pulsed laser is considered to be suitable for truing and dressing Bronze-bonded diamond wheels. An acoustic-optic Q-switched Nd:YAG laser has be developed and tested independently. Through measured the maximum average power is 100W; the minimum pulse duration is 170ns; the repetition frequency is 0.5~50kHz.
     Next, in order to seek the appropriate laser ablation parameters of bonds and abrasives, this causes the abrasives to have not micro crack after ablation, to get shallow deterioration level, to have good grinding performance under ablation, and also to obtain Better surface topography after truing and dressing. Theory and experiment study has separately carried on bonds and abrasives and Bronze-bonded diamond wheels with single pulse laser ablation. The single pulsed laser ablation power density threshold value of bonds and abrasives has determined through theoretical calculation. Indicated that the acoustic-optic Q-switched laser can be possible to remove diamond and bronze in effectively. The mathematical model of the unit crystal diamond pulse laser ablation has been established. Through analog computation, obtained the result those pulse duration and duty ratios are the most primary factor for the deterioration level thickness and the superficial micro crack. And through experimental confirmation, the appropriate laser ablation parameter had been found. The actual process of pulsed laser ablation on a bronze bonded diamond wheel is extremely complex. Just for wheel (but is not alone aims at bonds or abrasives) the two-dimensional geometry model and mathematical model both has been established to simulate the ablation situation. Meanwhile, through experiments can determine that when the laser average power density is lower than 30×107 W/cm2, only dressing can be carried on. But after the laser average power density achieved 30×107 W/cm2, truing and dressing both be realized at the same time.
     Analyzed the mechanism of laser truing and dressing bronze diamond grinding wheel under the short pulse duration、high power density laser function, the majority energies were used to remove the material in gasify, ablation material which to be removed was mainly realized through the mechanism of shallow layer gasification Afterwards, the method which to corrected the circle beats erroneous of bronze-bonded diamond grinding wheel in highly effective was still not existence at present .this article based on optics triangulation method with laser exposure in wheels radial direction has development the closed-loop electric circuit to control pulse laser and obtained the output signal of great pulse laser controlled by closed-loop circuit. An accurate online machining system to measured the laser’s emission was designed, the pulsed laser was controlled to ablate the wheels, solved the problem which can't control the precision of direction optical axis of laser ablation and obtain the satisfactory result. Further more, we found that the truing and dressing can carry out at the same time ,which changed the tradition that truing and dressing must be carried out by two steps.The precisely truing and dressing technology of laser-machinery which was suitable to truing and dressing bronze-boned diamond wheels with bigger abrasives in size, has been studied in further,
     Finally, in order to examine the effect of truing and dressing and the influence rule caused by laser parameters, the survey experiment of grinding force and surface roughness of work piece of aluminum oxide ceramics which grinded by the bronze-bonded diamond wheels was studied. Indicated that the wheels could be carry on grinding effectively after truing and dressing with appropriate laser parameters, and the effect of truing and dressing with laser was surpass to silicon carbide hoop.
     This article’s main innovation achievements as follows:
     1.The first time to use the acoustic-optic Q-switched Nd:YAG laser to ablation bronzed-bonded diamond wheel in radial direction, the realization of non-damage abrasive’s micro removes lays the foundation for precisely truing and dressing to realize
     2. Further more, we found that the truing and dressing can carry out at the same time ,which changed the tradition that truing and dressing must be carried out by two steps.
     3. Creatively makes top observable and controllable system.
     4. Through studying in theory and experimental、choosing reasonable laser process parameters, the precisely truing and dressing of bronze-bonded diamond wheels was realized and the grinding performance after truing and dressing by laser was confirmed.
引文
[1] 任敬心,康仁科、史兴宽编著.难加工材料的磨削.北京:国防工业出版社,1999,24-32
    [2] 郭志猛,宋月清,陈宏霞等.超硬材料与工具.北京:冶金工业出版社,1996,3-6
    [3] 庄司克雄.陶瓷结合剂金刚石砂轮的修整研究(Ⅰ)——各种修整方法修整效果的比较.磨料磨具与磨削,1992,(5):6-12
    [4] 傅玉灿,徐鸿钧. 超硬磨料砂轮的演变与发展——介绍国外新型的单层高温钎焊超硬磨料砂轮. 金刚石与磨料磨具工程,1999,(3):14-19
    [5] 邹峰,于爱兵,王长昌.金属基金刚石砂轮修整技术的研究进展.精密制造与自动化,2003,2:12-14
    [6] 横川宗彦,横川和彦.ボラゾソCBNホイ-ル(砥石)の研削性能.机械と工具,1985,(8):111-194
    [7] Hitoshi Ohmori. Electrolytic In-process Dressing (ELID) Grinding Technique for Ultra-precison Mirror Surface Machining. Int. Journal of JSPE,1992,26(4):273-278
    [8] Jun’ichi Tamaki, Takeaki Kitagawa. Electro-contact discharge dressing of metal-bonded diamond wheel (Part 1)——Truing efficiency and grinding performance. Int. Journal of JSPE,1992,26(4):284-288
    [9] D Kramer, F Rehsteiner. ECD (Electrochemical In-process controlled Dressing), a new method for grinding of modern high-performance cutting materials to highest quality. Annals of the CIRP, 1999,48(1): 265-268
    [10] Kiyoshi Suzuki, Keizo Takeuchi, Tetsutaro, et al. A new dressing method for superabrasive wheels utilizing magnetic abrasive polishing. Int. Journal of JSPE, 1999,33(1): 27-31
    [11] M. Sch?pf, I. Beltrami, M. Boccadoro, et al. ECDM (Electro chemical discharge machining) , a new method for truing and dressing of metal-bonded diamond grinding wheels. Annals of CIRP, 2001,50(1) :125-128
    [12] 王平,张春河,李伟等. ELID 镜面磨削用铸铁超硬砂轮的精密整形与电解预修锐的质量评价. 磨料磨具与磨削,1995,2:13-16
    [13] 张春河,谭业发,于爱兵等. 铸铁基超硬磨料砂轮的电化学机械整形工艺及其作用机理. 中国机械工程,1998,9(5):70-72
    [14] 崔仲鸣,严文浩,马琳. 磨削中砂轮修整技术的新发展. 湖南大学学报,1999,26(2):57-61
    [15] 王先逵,应宝阁.金刚石微粉砂轮软弹性修整研究(Ⅰ)——软弹性修整法及其机理.金刚石与磨料磨具工程,1995,6:7-11
    [16] Yasushi Ikuse, Takeshi Nonokawa, Noriji Kawabata, et al. Development of new ultrasonic dressing equipment. Int. J. Japan Soc. Prec. Eng., 1995,61(7), 1995:986-990.
    [17] 何 琦 , 杨 继 昌 , 徐 家 文 . 复 合 加 工 修 整 金 刚 石 砂 轮 的 研 究 . 中 国 机 械 工程,1998,(3):12-27
    [18] 李伯民,赵波. 现代磨削技术. 北京:机械工业出版社,2003:101-111
    [19] 左铁钏. 现代激光制造及其未来发展.北京工业大学学报, 2004,30(2):260-264
    [20] 陈明,李晓天,孙方宏等. 激光技术在砂轮修锐中的应用. 制造技术与机床,2000,(9):23-25
    [21] 康仁科,原京庭,史兴宽等. 超硬磨料砂轮的激光修锐技术研究. 中国机械工程,2000,11(5):493-496
    [22] N Ramesh Babu, V Radhakrishnan, Y V G S Murti. Investigation on laser dressing of grinding wheels—Part ?:Preliminary study. Journal of Engineering for Industry, Transaction of ASME, 1989,111:244-252
    [23] N Ramesh Babu, V Radhakrishnan. Investigation on laser dressing of grinding wheels—Part Ⅱ:Grinding performance of a laser dressed Aluminum Oxide wheel. Journal of Engineering for Industry, Transaction of ASME,1989,111: 253-261
    [24] N Ramesh Babu, V Radhakrishnan. Influence of dressing feed on the performance of laser dressed Al2O3 wheel in wet grinding. International Journal of Machine Tools & Manufacture,1995,35(5): 661-671
    [25] V Phanindranath and N Ramesh Babu. A theoretical model for prediction of groove geometry on laser dressed grinding wheel surface. International Journal of Machine Tools & Manufacture,1996,36(1):1-16
    [26] Toshikatsu Nakajima, Kazuhito Ohashi, Li Xi Sun, et al. Dressing of resinoid bond wheel with moving heat source (1st report)-Transaction of wheel source with a single pulse irradiation of YAG laser. 精 密 工 學 會 志 , 1993,59(12):1967-1972
    [27] Toshikatsu Nakajima, Kazuhito Ohashi, Li Xi Sun, et al. Dressing of resinoidbond wheel with moving heat source (2st report)—Dressing effect with YAG laser. 精密工學會志,1995,61(4):556-560
    [28] Toshikatsu Nakajima, Kazuhito Ohashi, Daisuke Yagi. Dressing of resinoid bond wheel with moving heat source (3st report)—Improvement of dressing effect with Q-switched YAG laser. 精密工學會志,1997,63(8):1153-1157
    [29] Y.Wu, X.Y.Wang,T.Tachibana M.kato, et al. Laser Truing and Dressing of Small Vitrified CBN Grinding Wheel, Key Engineering Materials, 2006, Vol ,329:163-168
    [30] Y.Kunieda, H.Matsuura, S.Kodama, N.Yoshihara, J.W.Yan, T.Kuriyagawa, et al. Development of a New Laser Conditioning Method for Ultra-Fine Grit Diamond Wheels, Key Engineering Materials, 2006, Vol ,329:175-180
    [31] H.Matsuura, K.Hane, Y.Kunieda, N.Yoshihara, J.W.Yan, T.Kuriyagawa, et al. Development of Laser Dresser for Resin Bonded Diamond Wheel, Key Engineering Materials, 2006, 329:169-174
    [32] E Westk?mper, J Freytag, U Harbs. Dressing of resin-bonded CBN grinding wheels by means of a pulsed Nd:YAG solid-state laser. In: Proceedings of the LANE’94,1994,491-500
    [33] E Westk?mper. Grinding assisted by Nd:YAG lasers. Annals of the CIRP,1995,44(1):317-320
    [34] H. -W. Hoffmeister and J.H. Timmer. Laser conditioning of superabrasive grinding wheels. Industrial Diamond Review, 2000(3): 209-218
    [35] C Zhang and Y C Shin. A novel laser-assisted truing and dressing technique for vitrified CBN wheels. International Journal of Machine Tools & Manufacture, 2002,42:825-835
    [36] 李晓天,陈明,项玉成等.激光修锐树脂结合剂砂轮的理论计算与试验研究.机械工程师,2000(4):43-45
    [37] 康仁科,史兴宽,任敬心等.激光修整金刚石砂轮的研究.西北工业大学学报,1999,17(4):624-628
    [38] 康仁科,原京庭,史兴宽等.超硬磨料砂轮的激光修锐技术研究.中国机械工程,2000,11(5):493-496
    [39] R K Kang, J T Yuan, Y P Zhang, et al. Truing of diamond wheels by laser. Key Engineering Materials,2001,202-203:137-142
    [40] 左敦稳,河野良弘,山下俊一等.金刚石砂轮的 CO2 脉冲激光修锐实验.机械工程学报,1999,35(2):42-45
    [41] F. O. Olsen. Pulsed laser materials processing, ND-YAG versus CO2 lasers. Annals of theCIRP, 1995,42(1): 141-145
    [42] 李晓天,陈明,项玉成等.激光修锐树脂结合剂砂轮的理论计算与试验研究.机械工程师,2000(4):43-45
    [43] G Chryssolouris, P Sheng, W C Choi. Investigation of Laser Grooving for Composite Materials. Annals of the CIRP, 1988,31(1):161-164
    [44] Michael Buzinski,Alan Levine,Warren H.Stevenson.Laser triangulation range sensors.Astudy of performance limitations.J.Laser Applications.1992,4(1):
    [45] 宁国庆,钟敏霖.激光直接制造金属零件过程的闭环控制研究.应用激光,2002,22(2):172-176
    [46] Kuang-ChaoFan,Kuang-PuWen,Non-contact automatic measurement offree- form surface profile son CNC machines.Proc.SPIE,1993,2 (101):949~958
    [47] 渡部武弘. YAG レ一ザ光によるセラミツクスの三次元加工に关する研究. 见昭和 63 年精密工学会春季大会学术讲演会论文集, 1989,851~852
    [48] 坂本冶久. YAG レ一ザ光によるセラミツクスの三次元加工に关する研究 (第 4 报). 见精密工学会春季大会学术讲演会论文集: 1990,581~582
    [49] 刘劲松. 三维激光烧蚀加工的机理与加工精度. [湖南大学博士论文].湖南:湖南大学激光研究所, 1997,36-46
    [50] G. Eberl. New Development in Laser CAV Technology. ICALEO, 1991, 1-4
    [51] 李力钧.三维激光烧蚀加工的试验研究.机械工程学报,1995,31(2):39-44
    [52] 李力钧,刘劲松,洪蕾等. 三维激光烧蚀激光的精度控制. 应用激光,1998,18(4):155-157
    [53] 李适民,黄维玲.激光器件原理与设计.北京:国防工业出版社,2001, 148-266
    [54] W 克希耐尔著 .孙文 ,江泽文 ,程国祥等译 .固体激光工程 .北京 :科学出版社,2002,5,39-45
    [55] M N 奥齐西克著[美],俞昌铭主译.热传导.北京:高等教育出版社,1983, 78-82
    [56] 张洪济.热传导.北京:高等教育出版社,1992, 57-62
    [57] 复旦大学数学系主编.数学物理方程.上海:上海科学技术出版社,1983, 91-93
    [58] 马 庆 芳 , 方 荣 生 . 实 用 热 物 理 性 质 手 册 . 北 京 : 中 国 农 业 机 械 出 版社,1986,455-500
    [59] Raznjevic Kuzman. Handbook of Thermodynamic Tables and Charts. Washington: Hemisphere Pub,1976,24-27
    [60] 周东晨,赵国权.金刚石合成工艺.北京:机械工业出版社,1998,6-20
    [61] 谢有赞.金刚石理论与合成技术.长沙:湖南科学技术出版社,1993,91-107
    [62] 郭志猛,宋月清,陈宏霞等.超硬材料与工具.北京:冶金工业出版社,1996, 7-9
    [63] M.D.Shirk and P.A.Molian. Ultrashort pulsed laser ablation of diamond. KeyEngineering Materials, 1997,321:89-105
    [64] S I Anisimov, V A Khokhlov. Instabilities in Laser-Matter Interaction. London: CRC Press,1995,31-35
    [65] B Dieter. Laser Processing and Chemistry(I). Berlin: Spring-Verlag,2000,87-92
    [66] J.F.Ready. Effect due to Absorption of Laser Radiation. Journal of Applied Physics,1965,36(2):462-468
    [67] M Von Allmen. Laser drilling velocity in metals. Journal of Applied Physics, 1976,47(12):5460-5463
    [68] M Von 奥尔曼著,漆海滨,胡洪波,谢柏林等译.激光束与材料相互作用的物理原理及应用.北京:科学出版社,1994,164-171
    [69] C.L.Chan, J.Mazumder. One-dimensional steady model for damage by vaporization and liquid expulsion of due to laser-material interaction. Journal of Applied Physics,1987,62(11):4579-4586
    [70] Vladimir Semak, Akira Matsunawa. The role of recoil pressure in energy balance during laser materials processing. Journal of Applied Physics, 1997,30:2541-2552
    [71] D.K.Y Low, L. Li, P.J.Byrd. Hydrodynamic physical modeling of laser drilling. Journal of Manufacturing Science and Engineering,2002,124:852-862
    [72] Martin Von Allmen. Laser-beam interactions with materials. Berlin: Spring-Verlag, 1987
    [73] 陶文铨.数值传热学.西安交通大学出版社,1988
    [74] 俞昌铭.热传导及其数值分析.北京:清华大学出版社,1982
    [75] 福雪斯,华沙.偏微分方程的有限差分方法.胡祖炽等.上海:上海科技出版社,1964
    [76] 姜礼尚.庞之垣.有限元方法及其理论基础.北京:人民教育出版社,1979
    [77] 孔祥谦等.有限元法在传热学中的应用.第二版.北京:科学出版社,1986
    [78] 唐兴伦,范群波,张朝晖等.ANSYS 工程应用教程—热与电磁学篇.北京:中国铁道出版社,2003
    [79] H S Carslaw, J C Jaeger. Conduction of Heat in Solids. New York: Oxford University Press,11985,133-142
    [80] D.R.克罗夫特,D.G.利利.传热的有限差分方程计算.张风禄.第 1 版.北京:冶金工业出版社,1982,22-23
    [81] 严镇军.数学物理方程.第 2 版.合肥:中国科学技术大学出版社,2001,37-77
    [82] 陆金甫,关治.偏微分方程数值解法.第 2 版.北京:清华大学出版社,2004,13-28
    [83] 张志涌.精通 MATLAB6.5 版.第 1 版.北京:北京航空航天大学出版社,2003,1-467
    [84] B. Braren. Laser Ablation in Materials Processing: Fundamentals and Applications. Boston: Materials research society symposium proceedings, 1992,187-249.
    [85] Rajiv K. Singh. Advances in Laser Ablation of Materials. California: Materials research society, 1998, 391-399.
    [86] 孙承伟主编.激光辐照效应.北京:国防工业出版社,2002,65-86
    [87] 张广军.PSD 器件及其在精密测量中的应用.北京航空航天大学学报,1994,20(3):259-262
    [88] LucuvskyG.Photo-Effectsin Nonuniformly Irradiated P-Njunctions[J].Appl Phys,1960,31:1088-1095
    [89] Ji,Z. ,Leu,M. C. Design of Optical Triangulation Devices. Optical $. Laser Technology,1989,21(5):335-339
    [90] Zhuang B. H. Precision Laser Triangulation Range Sensor with Double Detector for Measurement on CNLMS. SPIL 2349,1995,44-52
    [91] Warren Stevenson.Theuse of laser Triangulation Probes Incoordinate Measuring Machines for parttole rance in spextion and reverse engineering. Proc.SPIE,1992,1812
    [92] M.Born , E.Wolf , Principles of Optics , (Sixthedition).NewYork :PergamonPress,1980,182-184
    [93] KauzoYamazaki,Kee SeinLee.Non-contact probefor continuous measurement of surface inclination and positionusing dynamic irradiation of light beam. Annals of CIRP,1993,42(1): 585~588
    [94] 三好隆志 .三次元自由曲面の非接触形状测定ㄝンㄆの开发研究 (第一报) .JSPE,1992,58(11)∶1886-1889
    [95] 刘劲松,李孟秋,金湘中等.PSD 不同位里取向时激光三角位移计的分辨率与测量范围.光学仪器,1996,18(4):1-5
    [96] 王少清,庄葆华、张文伟等.激光三角法位移测量中被测物面倾斜产生测量误差的机理及其校正.应用光学,1995,16(2):58 -64.
    [97] 张良仪,吴敏金等.滤波器组合设计与参数优化.自动化学报,2002, 28 (4) :113-121
    [98] 彭永胜,王太勇,范胜波.高品质抗混叠滤波器设计.西南交通大学学报, 2003,38(5): 596-601
    [99] 康华光.电子技术基础.北京:高等教育出版社,1998,343-350
    [100] 童诗白,华成英主编.模拟电子技术基础.北京:高等教育出版社,2000,312-331
    [101] 赵斌,侯金龙.基于 PSD 激光三角测量的非线性校正电路.传感器技术, 2005, 24(6):9-11
    [102] 李伯民,赵波. 现代磨削技术. 北京:机械工业出版社,2003:85-150
    [103] L. Yin, H. Huang. Ceramic Response to High Speed Grinding. Machining Science and Technology, 2004, 8(1): 21-37
    [104] 沈剑云,徐燕申,曾伟民等.Si3N4 陶瓷材料的磨削试验研究.轴承,2003(12):25-28
    [105] 何兆凤. 公差与配合. 北京:机械工业出版社,2004:100-106
    [106] 袁正有,宫波. 公差配合与技术测量. 大连:大连理工大学出版社,2004:92-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700