薄钢板剪力墙在压弯剪作用下承载力的试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄钢板剪力墙结构由于其优良的抗震性能正逐步从研究向应用转变,现在国内虽已有一些采用该结构体系的工程项目在建或完工,但尚无相应国家标准可循,此外,尚无该类构件在压弯剪复合荷载作用下承载力的研究成果。
     本文采用拟静力试验与理论分析相结合的方法,研究了加劲和无加劲薄钢板剪力墙在压弯剪复合荷载作用下的剪切承载能力,为工程应用提供依据。主要研究内容和成果如下:
     1)通过对15个强边框刚接框架内填加劲与无加劲薄钢板剪力墙的拟静力试验研究,揭示构件的剪切变形强度、刚度、延性、耗能能力和破坏机理等,为理论研究提供参考依据。试验结果表明边框刚强且延性良好是内填板拉力场充分发展的条件;通过内填板加劲或增强边框均可提高钢板墙的弹性强度和刚度;构件具有较好的延性;抗震规范的阻尼系数适用于薄钢板剪力墙。
     2)以高厚比、层间宽高比、轴压比和整体高宽比为影响因素,每因素设置三个水平,利用四因素三水平正交设计表法设计试件,采用有限元方法对无加劲薄钢板剪力墙在压弯剪复合作用下进行弹塑性分析。提出了在边框刚强的条件下,以层间剪切位移角1/500相应的剪应力为极限状态的设计准则,此时的弹性抗剪强度、刚度是与高厚比相关的,随高厚比增大成非线性下降趋势,文中给出了相应的计算方法;轴向压力约降低构件剪切强度10%;整体倾覆弯矩约降低构件剪切强度40%;内填板拉力场形成过程中其承担的轴压应力向边框柱转移,加重了边框柱的负担;构件的倾覆弯矩主要由边框柱承担;对强框弱板理念设计的高宽比较大构件,侧向变形随侧移增大可能会从弯曲向弯剪型的转变,对框架-剪力墙结构体系层剪力分配造成影响。
     3)设计了3层、6层和9层两组不同宽度系列的试件,按倒三角形分布荷载施加侧向力,分别对有限元法和双向强拉弱压杆简化分析法的计算结果进行了对比。结果表明采用基于薄腹梁剪切屈曲后强度公式的双向强拉弱压杆模型与内填板的抗剪机理相协调,能够较为准确的模拟构件在屈服前的性能,文中给出了简化模型参数的确定方法。
     4)采用理论与有限元对比分析的方法,对加劲薄钢板剪力墙在弹性和弹塑性阶段的肋板刚度比进行了研究,对肋板刚度比门槛值提出建议。在发生剪切弹性屈曲、弹塑性变形时保持构件整体性能基本不变的门槛值建议不小于30~40,高厚比大的取上限值。在压弯剪复合作用下,建议考虑轴压力对抗弯刚度的影响进一步提高。
     5)以高厚比、高宽比、轴压比和肋板面积比为影响因素,每因素设置三个水平,利用四因素三水平正交设计表法设计试件,采用有限元方法对加劲薄钢板剪力墙在压弯剪作用下进行弹塑性分析。认为高层建筑层间位移角按1/400控制是可行的,对多层建筑需从严控制。边框刚强时,在压剪作用下,加劲构件的剪切承载力比纯剪构件约降低10%;在压弯剪作用下,剪切承载力约降低42%。构件在极限状态下的局部弯曲内力可近似按作用有分布内力计算,分布力大小可按0.5t t或(t_u-t_(cr))t来计算。构件主要通过边框柱承担倾覆力矩,用在筒体结构中对其整体抗倾覆能力的评价和改善需深入研究。内填板的面外变形幅度对滞回曲线有影响。
Steel plate shear walls is transiting from research to application for excellentseismic capability, some engineering projects adopted SPSWs is constructing orcompleted, though there is no corresponding national standards to be followed and noresearch achievements of bearing capacity on the compound actions.
     The method of pseudo-static experiments and theoretical analysis is taken, bearingcapacity of stiffened and no-stiffened thin SPSWs on the compound load action havebeen discussed, theory for the engineering application is provided. Main contents andthe results are as follows.
     The pseudo-static experiments have been done on15stiffened and no-stiffenedthin SPSWs with moment frame. The analysis includes the damage mode, limit driftratios, skeleton curves, hysteretic curves and the bearing capacity etc. Test results showthat stronger and better ductility frame is the condition of tension-field developed fully.SPSWs with stiffener or enhancing frame has higher elastic strength and rigidity,member has excellent ductility, damping coefficient of seismic code is suitable to thinsteel plate shear wall.
     Regarding height to thickness ratio, axial compression ratio, overall and localheight to width ratio as affecting factors, specimens is designed using four factors ofthree levels orthogonal table, SPSWs on shearing, compression-shearing andbending-shearing action is analysis with finite element methods. On the condition ofstronger frame, it is suggested that ultimate shear strength is taken the stress wheninter-story drift ratio is about1/500, the shear strength and stiffness is mainly relatedwith ratio of height to thickness, the trend is declined nonlinearly with ratio of height tothickness increased, calculation method is presented. Axial load reduced about10%shear strength; moment reduced about40%shear strength. The axial compressive stressafforded by inner-plate transits to frame with the forming process of tension field, the burden of column increased. Overturning moment is mainly bearing by out-frame. Forstrong-frame and weak inner-plate members with high height to width, when lateraldisplacement is increased, the lateral deformation may turn from bending tobending-shear modes, leading to the redistribution of internal force, which haveinfluence on shearing force redistribution in frame-shear wall structures.
     Two groups of different width series specimens with3,6,9floors is designed,inverted triangular lateral load is applied, the results is compared from the finite elementmethods and USM model. It shows that USM based on post-buckling shear strengthformula is harmonious with shear mechanism, can relatively accurately simulatedbehavior before yield, specific method is provided.
     Using the method of comparison between theory and finite element results, rib toplate stiffness ratio is studied. Based on no significant changes of performance inelastic-plastic stage, it is suggested that the threshold values of rib to plate stiffness ratioof SPSWs is not less than30~40, upper values is suitable to higher ratio of height tothickness. The value should be increased in the condition of compound-load action.
     Regarding height to thickness, height to width ratio, axial compression ratio, rib toplate area ratio as influence factors, stiffen-specimens is designed using four factors ofthree levels orthogonal table, SPSWs on compression-bending-shearing actions isanalysis with finite element method. It is feasible to limit drift ratio to1/400for thehigh-rise buildings, multistory buildings should be controlled strictly. When frame isstronger, shear bearing capacity of stiffened SPSWs reduced10%on the axial loadaction, and reduced42%on the compound load actions. The local internal force ofcomponents can be approximately calculated taken distribution loads from inner-platetension field as0.5t tor (t_u-t_(cr))t tin the ultimate shear state approximately.Overturning moment is mainly bearing by out-frame, improvement and evaluation ofthe overturn-resistant ability need deeply study when using in tube structures.*sponsored by Lai-wu iron and steel corporation
引文
[1] GB50017,钢结构设计规范[S].北京:中国计划出版社,2003.
    [2] JGJ99-98,高层民用建筑钢结构技术规程[S].北京:中国建筑工业出版社,1998.
    [3] GB50011,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [4] CAN/CSA-S16.1, Limit states design of steel structures[S]. Canadian standard association.Canada.2001.
    [5]郭彦林,董金利.钢板剪力墙的发展与研究现状[J].钢结构,20(1):1-6,2005.
    [6]郭彦林,周明.钢板剪力墙的分类及性能[J].建筑科学与工程学报,26(3):1-13,2009.
    [7]郭彦林,周明.非加劲与防屈曲钢板剪力墙性能及设计理论的研究现状[J].建筑结构学报,32(1):1-16,2011
    [8]王迎春,郝际平,李峰,孙彤.钢板剪力墙力学性能研究[J].西安建筑科技大学学报(自然科学版),39(2):181-186,2005.
    [9]郝坤超,高辉,孙飞飞.组合钢板剪力墙的抗震性能研究进展[J].建筑钢结构进展,12(2):49-56,2010.
    [10]兰银娟.折板钢板剪力墙抗侧力结构理论研究[D].西安建筑科技大学硕士论文,2006.
    [11] J.W.Berman, O.C.Celic, M.Bruneau. Comparing hysteretic behavior of light-gauge steel plateshear walls and braced frames [J]. Engineering Structure,27:475-485,2005.
    [12] J.W.Berman, M.Bruneau. Experimental Investigation of Light-Gauge Steel Plate ShearWalls[J]. Journal of Structural Engineering, ASCE131(2):259-267,2005.
    [13]缪友武.两侧开缝钢板剪力墙结构性能研究[D].清华大学硕士论文,2004.
    [14]钟玉柏.钢板剪力墙和开缝钢板剪力墙抗剪静力性能研究[D].哈尔滨工业大学硕士论文,2005.
    [15]方礼凯.开孔和未开孔钢板剪力墙抗剪性能研究[D].哈尔滨工业大学硕士论文,2005.
    [16]苏磊.带缝钢板墙结构分析与试验研究[D].武汉理工大学硕士论文,2004.
    [17]曹志亮.带缝钢板墙稳定性分析[D].武汉理工大学硕士论文,2004.
    [18]王恒.带缝钢板剪力墙性能研究[D].西安建筑科技大学硕士论文,2006.
    [19] T.Hitaka, C.Matsui. Experimental study on steel shear wall with slits [J]. Journal of StructuralEngineering, ASCE,129(5):586-595,2003.
    [20]曹春华,郝际平,王迎春,李峰等.开缝薄钢板剪力墙低周反复荷载试验研究[J].西安建筑科技大学学报,40(1):46-52,2008.
    [21]郭彦林,董全利,周明.防屈曲钢板剪力墙滞回性能理论与试验研究[J].建筑结构学报,30(1):31-39.2009。
    [22]郭彦林,董全利,周明.防屈曲钢板剪力墙弹性性能及混凝土盖板约束刚度研究[J].建筑结构学报,30(1):40-46,2009.
    [23] G.L.Kulak, D.J.L.Kennedy, R.G.Drive, M.Medhekar. Steel plate shear walls-an overview [J].Engineering journal,50-62,2001.
    [24] L.J.Thorburn, G.L.Kulak, C.J.Montgomery. Analysis of steel plate shear walls. Structuralengineering report, No.107, university of Alberta, Edmonton,Albert,Canada.1983.
    [25] P.A.Timler, G.L.Kulak. Experimental study of steel plate shear walls, structural engineeringreport, No.114, University of Alberta, Edmonton, Albert, Canada.1983.
    [26] T.E.W.romposch, G.L.Kulak. Cyclic and static behavior of thin panel steel plate shear walls.Engineering report, No.145, Department of civil Engineering, University of Alberta,Edmonton,Albert, Canada.1987.
    [27] R.G.Driver, G.L.Kulak, D.J.L.Kennedy, A. E.Elwi. Cyclic tests of four-story steel plate shearwall [J]. Journal.of Stuctural Engineering, ASCE,124(2):112-120,1998.
    [28] P.Timler, C.Venture, H.Prion, A. Reza. Experimental and analytical studies of steel plateshear walls as applied to the design of tall buildings [J]. The structural design of tallbuildings,7:233-249,1998.
    [29] V.Caccese, M.Elgaaly, R.Chen.Experimental study of thin steel plate shear walls undercyclic load [J]. Journal of Structural Engineering, ASCE,119(2):573-587,1993.
    [30] A.S.Lubell, H.G.L.Prion, C.E.Ventura, M.Rezail. Unstiffened steel plate shear wallperformance under cyclic loading [J]. Journal of structural Engineering, ASCE,126(4):453-460,2000.
    [31] Astaneh-Asl. Seismic behavior and design of steel plate shear walls. Steel tips report,Structural Steel Educational Council, Moraga, CA, January.2001.
    [32] M.Rezaii. Seismic behavior of steel plate shear walls by shake table testing[D], Ph.D.Dissertation, University of British Columbia, Vancouver,Canada,1999.
    [33]苏幼坡,刘英利,王绍杰.薄钢板剪力墙抗震性能试验研究[J].地震工程与工程振动,22(4):81-84,2002.
    [34]陈国栋,郭彦林.钢板剪力墙低周反复荷载试验研究[J].建筑结构学报.25(2):19-26,2004.
    [35] S.G.Saeid, E.V.Carlos, H.K.k.Mehdi. Shear Analysis and Design of Ductile Steel PlateWalls[J]. Journal of structural Engineering. ASCE,131(6):878-891,2005.
    [36]董子建.非加劲钢板剪力墙试验与理论研究[D].西安建筑科技大学硕士论文,2005.
    [37] Sheng-Jin Chen, Chyuan Jhang. Cyclic behavior of low yield point steel shear walls[J].Thin-Walled Structures,44:730–738,2006.
    [38] Qu, M.Bruneau,C.H.Lin,K.C.Tsai. Testing of full-scale two-story steel plate shear wall withreduced beam section connections and composite floors[J]. Journal of structural Engineering,ASCE,134(3):364-374,2008.
    [39]聂建国,樊健生,黄远,周炜等.钢板剪力墙的试验研究[J],建筑结构学报,31(9):1-8,2010.
    [40]曹万林,李刚,张建伟,张文江等.钢管混凝土边框不同高厚比钢板剪力墙抗震性能[J].北京工业大学学报,36(8):1059-1069,2010.
    [41]郭彦林,周明,董全利,王小安.三类钢板剪力墙结构试验研究[J].建筑结构学报,32(1):17-29,2011.
    [42]王迎春,郝际平,曹春华,孙彤.栓焊混合连接钢板剪力墙试验研究[J].建筑钢结构进展,11(1),2009.
    [43] Q.H.Zhao, A.Astaneh-Asl. Cyclic behavior of traditional and innovative composite shearwalls[J]. Journal of structural Engineering,ASCE,130(2):271-281,2004.
    [44] Astaneh-Asl. Seismic behavior and design of composite shear walls. Steel tips report,Structural steel educational council, Moraga, CA.2001.
    [45]陆烨,李国强,孙飞飞.大高宽比屈曲约束组合钢板剪力墙的试验研究[J].建筑钢结构进展,11(2):18-27,2009
    [46]李国强.钢板外包混凝土剪力墙板抗剪滞回性能试验研究[J].工业建筑.25(6):32-35.1995.
    [47] M.Nakashima. Energy dissipation behavior of shear panels made of low yield steel [J].Earthquake Engineering and Structural Dynamics,23:1299-1313,1994.
    [48] G.D.Matteis, R.Landolfo, F.M.Mazzolani. Seismic response of MR steel frames withlow-yield steel shear panels[J]. Engineering structures,25:155-168,2003.
    [49]蔡克铨,林盈成,林志翰.钢板剪力墙抗震行为与设计[J].建筑钢结构进展,9(5):19-25,2007.
    [50] Vian, M.Bruneau, R.Purba. Special perforated steel plate shear walls with reduced beamsection anchor beams:analysis and design recommendations[J]. Journal of structuralEngineering,ASCE,135(3):221-231,2009.
    [51]丁玉坤,张耀春.无粘结内藏钢板支撑剪力墙滞回性能分析[J].哈尔滨工业大学学报,40(4):521-528,2008.
    [52] Schumacher, G.Y.Grodin, G.L.Kulak. Connection of infill panels in steel plate shear walls [J].Journal of Civil. Engineering,26(5):549-563,1999.
    [53] R.G.Driver, G.L.Kulak, D.J.L.Kennedy, A.E.Elwi. Seismic behavior of steel plate shearwalls[J]. Structural Engineering Report, No.215,Department of Civil and EnvironmentalEngineering. university of Alberta, Edmonton, Albert, Canada.1997.
    [54] R.G.Driver, G.L.Kulak, D.J.L.Kennedy, A.E.Elwi. FE and simplified modeling of a steelplate shear wall [J]. Journal of structural Engineering, ASCE,124(2):121-130.1998.
    [55] M.Elgaaly, V.Caccese and c.Du. Post-buckling behavior of steel-plate shear walls undercyclic loads [J]. Journal.of Stuctural Engineering,ASCE,119(2):588-605,1993.
    [56] D.J.L.Kennedy, G.L.Kulak, R.G.Driver. Discussion to “Postbuckling behavior of steel plateshear walls under cyclic load” by M.Elgaaly,V.Caccese,C.Du[J]. Journal of StucturalEngineering,ASCE,120(7):2250-2251,1994.
    [57] M.Elgaaly, V.Caccese, C.Du, Closure to “post-buckling behavior of steel-plate shear wallsunder cyclic loads”[J], Journal of Stuctural Engineering,ASCE,120(7):2251-2255,1994.
    [58] G.L.Kulak, D.J.L.Kennedy, R.G.Driver. Discussion to “Experimental study of thin steel plateshear walls under cyclc load” by V.Caccese, M.Elgaaly, R.Chen [J]. Journal of StructuralEngineering,ASCE,120(10):3072-3073,1994
    [59] V.Caccese, M.Elgaaly, R.Chen. Closure to “Experimental study of thin steel plate shear wallsunder cyclic load”[J]. Journal of structural Engineering, ASCE,120(10):3074,1994.
    [60] M.Elgaaly, Y.Liu. Analysis of thin-steel-plate shear walls [J]. Journal of StucturalEngineering, ASCE,123(11):1487-1496,1997.
    [61] M.Elgaaly. Thin steel plate shear walls behavor and analysis [J]. Thin-Walled Structures.32:151-180,1998.
    [62] M.Elgaaly, Post-buckling behavior of thin steel plates using computational models [J].Advances in engineering software,31:511-517,2000.
    [63] C.J.Montgomery, M.Medhekar. Discuss to “Unstiffened steel plate shear wall performanceunder cyclic loading” and Closure to it by Helmut G.L.Prion, C.E.Ventura, M.Rezail [J].Journal of structural Engineering, ASCE,8:973-975,2001.
    [64] M.Rezaii, C.E.Ventura, H.G.L.Prion. Numerical investigaton of thin unstiffened steel plateshear walls. Proceedings,12th World Conf. On Earthquake Engineering,2000.
    [65] S.Sabouri-Ghomi, T.M.Roberts. Nonlinear dynamic analysis of steel plate shear wallsincluding shear and bending deformations[J]. Engineering Structures,14(5):309-317,1992.
    [66] J.J.Shishkin, R.G.Driver, G.Y.Grondin. Analysis of Steel Plate Shear Walls Using theModified Strip Model[J]. Journal of structural Engineering,ASCE,135(11):1357-1366,2009.
    [67]魏德敏,温沛纲.新型钢板剪力墙钢框架结构的地震响应分析[J].地震工程与工程振动,Vol.24:63-67,2004
    [68] M.Xue, L.W.Lu. Influnce of steel shear wall panels with surrounding frame members.Proceedings. SSRC Annual Technical Session,339-354,1994
    [69] J.W. Berman, M. Bruneau. Plastic analysis and design of steel plate shear walls [J]. Journal ofStructural Engineering, ASCE,129(11):1448-1456,2003.
    [70] T.M.Robert.钢板剪力墙的地震抗力[J].世界地震工程,8(3):88-96,1996.
    [71]陈国栋.钢板剪力墙结构性能研究[D].清华大学博士论文,2002.
    [72]陈国栋,郭彦林.非加劲板抗剪极限承载力[J].工程力学,20(2):49-54,2003.
    [73]孙飞飞,戴成华,高辉,李国强.四边连接组合钢板剪力墙简化模型[J].同济大学学报(自然科学版),37(7):851-856,2009.
    [74]孙飞飞,刘桂然.组合钢板剪力墙的简化模型[J].同济大学学报(自然科学版),38(1):18-23,2010.
    [75] T.M. Robert, S.Sabouri-Ghom. Hysteretic characteristics of unstiffened plate shear panels [J].Thin-walled structures.145-162,1991.
    [76] J.W. Berman. Seismic behavior of code designed steel plate shear walls [J]. EngineeringStructures,33:230–244,2011
    [77]汪大绥,陆道渊.天津津塔结构设计[J].建筑结构学报(增刊1),1-7,2010.
    [78] JGJ101-96,建筑抗震试验方法规程[S].北京:中国计划出版社..
    [79] J.K.Paik, A.K.Thayamballi. Ultimate limit state design of steel plated structures[M].korea,2001.
    [80]陈骥.钢结构稳定理论与设计(第二版)[M].北京:科学出版社,2001.
    [81]陈绍蕃.钢结构设计原理(第二版)[M].北京:科学出版社,2000.
    [82]万红霞,谢伟平,王小平.考虑屈曲后强度的钢板剪力墙极限剪力计算[J],钢结构,19(1):66-68,2004.
    [83]王庆义,李泽.工字梁腹板和钢板剪力墙剪切屈曲系数分析[J].建筑钢结构进展,12(3):37-42,2010.
    [84] A.W.Daavies, D.S.C.Griffith. Shear strength of steel plate girders, Proc.Instn Civ. EngrsStructs&Bldgs,134:147-157,1999
    [85] S.T.Smith, M.A.Bradford, D.J.Oehlers. Elastic buckling of unilaterally constrainedrectangular plates in pure shear[J]. Engineering Structures,21:443–453,1999.
    [86]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社,1997.
    [87]沈祖炎.钢结构学[M].北京:中国建筑工业出版社,2005.
    [88]李国强,石文龙,王静峰.半刚性连接钢框架结构设计[M].北京:中国建筑工业出版社,2009.
    [89]黄义,何芳社.弹性地基上的杆板壳[M].北京:科学出版社,2005.
    [90]夏桂云,李传习.考虑剪切变形影响的杆系结构理论与应用[M].北京:人民交通出版社,2008.
    [91]童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.
    [92] J.W.Berman, M.Bruneau. Steel plate shear walls are not plate girders[J]. Engineering Journal,41(3):95-106,2004.
    [93] S.G.Saeid. C.E.Ventura, M.H.K.Kharrazi. Shear analysis and design of ductile steel platewalls[J]. Journal of Structural Engineering, ASCE,131(6):878-889,2005.
    [94] C.H.Li, K.C.Tsai. Experimental responses of four2-story narrow steel plate shear walls[J].ASCE, Structure congress,2008.
    [95]解琦,郝际平,于金光.半刚性框架-钢板剪力墙体系性能研究[J].建筑结构学报(增刊),12-17,2010
    [96]陈国栋,郭彦林.十字加劲钢板剪力墙的抗剪极限承载力[J].建筑结构学报,25(1):71-78,2004.
    [97]候蕾.纵横加劲肋钢板剪力墙试验与理论研究[D].西安建筑科技大学硕士论文,2005.
    [98]候蕾,郝际平,董子健等.十字加劲肋钢板剪力墙低周反复荷载试验研究[J].钢结构,21(2):12-16,2006.
    [99] M.H.K. Kharrazia, H.G.L. Prionb, C. E. Venturab. Implementation of M-PFI method indesign of steel plate walls[J]. Journal of Constructional Steel Research,64:465–479,2008.
    [100] M.M.Alinia, M.Dastfan. Behaviour of thin steel plate shear walls regarding frame members[J].Journal of constructional steel research,62:730–738,2006.
    [101] Topkaya, C.O.Kurban. Natural periods of steel plate shear wall systems[J]. Journal ofConstructional Steel Research,65;542–551,2009.
    [102] M.M. Alinia, R.S. Shirazi. On the design of stiffeners in steel plate shear walls[J]. Journal ofConstructional Steel Research,65:2069-2077,2009.
    [103]聂建国,黄远,樊健生.钢板剪力墙结构竖向防屈曲简化设计方法[J].建筑结构,40(4):1-4,2010.
    [104]赵伟,杨强跃,童根树.钢板剪力墙加劲肋刚度及弹性临界应力研究[J].工程力学,27(6):215-23,2010.
    [105] G.P.Warn, M.Bruneau. Blast resistance of steel plate shear walls designed for seismicloading[J]. Journal of structural Engineering, ASCE,135(10):1222-1230,2009.
    [106] M.M.Alinia, M.Dastfan. Cyclic behaviour, deformability and rigidity of stiffened steel shearpanels[J]. Journal of Constructional Steel Research,63:554–563,2007.
    [107] M.M.Alinia, H.R. Habashi. Characteristics of the wall frame interaction in steel plate shearwalls[J]. Journal of Constructional Steel Research,66:150-158,2010.
    [108] Qu, M.Bruneau. Design of steel plate shear walls considering boundary[J]. Journal ofstructural Engineering, ASCE,135(12):1511-1522,2009.
    [109] Topkaya, M.Atasoy. Lateral stiffness of steel plate shear wall systems[J]. Thin-WalledStructures,47:827–835,2009.
    [110] In-Rak Choi and Hong-Gun Park. Hysteresis Model of thin infill plate for cyclic nonlinearanalysis of steel plate shear walls[J]. Journal of structural Engineering, ASCE,136(11):1423-1434,2010.
    [111] A.K.Bhowmick, R.G.Driver, G.Y.Grondin. Seismic analysis of steel plate shear wallsconsidering strain rate and P-delta effects[J]. Journal of Constructional Steel Research,65:1149-1159,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700