单片开洞钢板剪力墙的结构设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过实际大震的检验证明,钢板剪力墙结构为现今存在的最优抗震耗能结构体系。由于要满足建筑的使用功能,难免要求在钢板墙上开设多种样式的洞口,本文以单片开洞薄板墙为研究对象,系统研究了多种开洞薄板墙的受力特性,主要包括以下内容:
     1、对现存的开洞钢板墙按部位的不同划分为SW-Ce、SW-Be、SW-Bo、SW-Co四类形式,从开洞钢板墙中有、无边缘构件的存在入手进行分析,通过两者的抗剪极限承载力及结构延性确认边缘构件存在的必要性。采用经典力学的分析方法对SW-Ce型钢板墙的边缘构件受力进行求解,得到经典解析解后推广应用至其他开洞钢板墙的边缘构件,以此为依据提供了边缘构件强度计算的方法。
     2、采用有限元软件对上述四种开洞钢板墙建立精致模型,以准确模拟不同开洞形式下钢板墙的受力性能,通过静力分析提出影响开洞钢板墙受力的主要因素,除普通钢板墙的影响因素外,主要由洞口水平偏心率(η_1)与墙板水平截面开洞率(η2)两个因素所决定,通过大量算例证明上述两因素均与开洞钢板墙的极限承载力与延性呈一定的线性关系。
     3、从施工角度分析焊接作用对开洞钢板墙受力性能的影响,分析了不同的施焊顺序造成结构自身应力与变形的不同,得到开洞钢板墙的最佳焊接顺序,并提出减小焊接不利影响的施焊工艺;通过具体算例可知,考虑焊接作用对结构的抗剪极限承载力降低约5%,且结构的延性有所降低,证明焊接作用对开洞钢板墙的受力性能是不可忽略的因素;考虑施工过程中由于钢板墙几乎同步或稍微滞后于结构主体施工,结构主体的轴向压缩导致钢板墙产生轴向预压作用,通过对开洞钢板墙最大层压缩比的分析可知,由施工顺序造成钢板墙承受的轴向预压作用等同于初始缺陷产生的影响。
     4、对四种开洞钢板墙的受力结果与相同状况下的无洞口钢板墙进行比较可知,由于边缘构件的存在导致开洞钢板墙的抗剪极限承载力高于普通无洞钢板墙,且随边缘构件数量的增加其承载力也逐步提高,但承载力的提高是以结构的延性降低为代价;无洞口钢板墙的延性远优于相同状况下的开洞钢板墙,且其塑性强化阶段没有出现类似开洞钢板墙应力-应变曲线存在的明显下降段。
     5、为了不降低开洞钢板墙的水平抗剪能力,提出洞口侧面补强钢板的计算方法,并通过大量算例验证采用补强后的开洞钢板墙,其抗剪承载力没有降低,为开洞钢板墙计算模型(USMO模型)的提出做了铺垫。
     6、边缘构件在开洞钢板墙中处于重要的地位,直接影响到开洞钢板墙的极限承载力与延性指标,如边缘构件刚度选取过大则会招致过大的地震力而导致结构延性性能下降,如刚度过小则不能提供足够的锚固力以实现内填板拉力带的形成,故通过对开洞钢板墙中的计算各种参数进行变化,提炼出边缘构件刚度对结构初始刚度的影响,以观察边缘构件参与抗侧的份额来判断其经济、合理的刚度范围,最终确定I_c/I_(co)处于6~8范围内时,为最优的边缘构件的刚度比值。
     7、对现有钢板墙最佳计算模型USM进行研究分析,考虑开洞钢板墙中边缘构件的存在对其抗剪极限承载力及延性的影响,并对USM模型进行修正,提出适用于开洞钢板墙的USMO计算模型,其形式同USM模型,均由剪切作用部分与拉力场部分所组成,不同的是在拉力场部分增设一压力杆,以模拟洞口处边缘构件的存在导致结构承载力提高而延性下降的问题,剪切作用部分由于前述最小安全板厚的补强作用而无变化。
     8、通过对单片开洞钢板墙的的非线性单级与多级滞回分析,发现由于边缘构件的存在而使开洞薄板墙没有出现明显的捏缩现象,变换多种参数以确定各种因素对开洞钢板墙受力性能的影响;通过考察开洞钢板墙的能量耗算系数、承载力退化系数等检验其在往复荷载作用下的耗能能力及承载力的稳定性,最终提出开洞钢板墙的骨架曲线。
     9、观察开洞钢板墙滞回分析全过程,明确提出开洞钢板墙在受力破坏时存在的两种不同的形态,并对此两种破坏形态进行分析,提出为满足多道抗震设防的概念设计要求,应采用第I类破坏形态的延性设计,而应避免第II类破坏形态所带来的滞后型延性设计。
     10、总结开洞钢板墙的基本设计流程,对一12层的单榀开洞钢板墙框架进行初步设计(SW-Ce型),在满足各项设计指标的情况下,采用三条实际地震波对其进行多遇地震与罕遇地震分析,以验证开洞钢板墙的可靠性,并提取整体模型的顶层及底层侧向位移,以说明开洞钢板墙在罕遇地震作用下是安全可靠的。
     论文的研究成果可为钢板剪力墙结构的理论研究与抗震设计提供有价值的数据和参考依据。
Through tests under actual severe earthquakes, steel plate shear wall is proved tobe one of the best anti-seismic structure systems. But sometimes in order to satisfyarchitectural funtions., various openings are inevitable.So in this paper, the mechanicalperformances of various thin wall shear walls with openings are investigated. Mainpoints in this paper include:
     1. According to the position of openings,all existing steel plate shear walls withopenings are classified into four types: SW-Ce, SW-Be, SW-Bo and SW-Co.First of all,differences are researched between shear wall with edge members and that withoutedge members.By comparing their ultimate bearing capacity and ductility, we canjudge whether edge members are necessary. With the help of classical mechanics, thispaper researches the stressing situation of edge members in SW-Ce. Then this paperextendes the classical results to other types of shear walls with openings. In the end,the strength calculation method for edge members is summarized.
     2. Exact models of the former4kinds of steel walls with opening are built byFEM to simulate of the force of steel walls with different openings. The static analysispoints out that, in additional to the factors of normal steel walls, the horizoantleccentricity (η_1) and the horizoantl opening rate (η2) are the most important factorswhich affect the performance of steel walls. A large number of examples show that theformer two factors are proportional to the ultimate load and the ductility of walls.
     3. In order to find out the effect of welding to Steel Plate Shear Wall withOpenings in construction, different stress and deformation in strucure caused bydifferent welding process are studied. An optimum welding process is obtained in result and a technique that can decrease the welding effect is proposed simutaneously.It is tested that the cultimate shearing load decrease by5%considering the weldingeffect and the structure ductility decreased considerably. So the welding effect can notbe ommited in loading of steel plate shear wall with openings. Considering the steelplate wall is built at the same time with structure or lagged behind, the steel plate wallis prepressed for the axial pression in structure, and the prepression caused byconstruction process is equal to the intial defect through the analysis of maximumstorey compression ratio in steel plate shear wall with openings.
     4. Capareing the results of the4kinds of steel walls with the one without openingunder the same condition, it is found out that, the ultimate load of walls with opening ismuch larger than normal walls without opening because of the edge members, andmore edge members means higher ultimate load. However, the ductility reduces withedge members for the ductility of normal walls is much better than that with openings,besides, the stress-strain curve of walls with opening decreases clearly while thenormal walls do not.
     5. Additional steel plates next to the opening are needed to impove resistanceability of horizoantl shear force, and the formula is proposed at the same time. A largenumber of examples show that resistance ability of horizoantl shear force is notreduced because of additional plates, which provide the base of steel walls of openingmodel (USMO).
     6. The edge members are very important in the model of steel walls, which have adirect effect to the ultimate load and ductility. Edge members with high stiffness willlead to high seismic effect and brittle damage, while ones with low stiffness cannotprovide enough anchoring force, which is an important cause of the tension beltformation of infill plate. Through studying these parameters, the effect of edgemembers to the initial stiffness of components could be proposed, which can be used tofind the resist-horizoantl-force ratio of edge members and economic scope of stiffness.It is found that the best scope of stiffness ratio is I_c/I_(co)=6~8.
     7. Investigating for the best USM model and considering the influence of edgemembers for the ultimate strength and ductility for the steel shear wall with holes,Imodified the USM model and advanced USMO model.The two models are all made upof the shear field and the tension field. The only difference between the USMO and theUSM model is the compression bar in the tension field.The compression bar simulatesthe increasing ultimate load and the decreasing ductility for the adding of edgemembers,and the shear field doesn’t change for the strengthening of the minimum safe thickness panel.
     8. Investigating for the nonlinear monotonic and cyclic analysis of the steel shearwall with openings,the analysis results hasn’t the shrinking phenomenon.And theresult shows the influences of many parameters for the uniqueperformance.Investigating the Energy dissipation coefficient and Strength degradationcoefficient,I advanced the skeleton curve for the steel shear wall with openings.
     9. Analyzing the hysterrisis curve,there are two types of failure models.The firstmodel is ductile failure, and the second model is lag ductile failure. Aftercomprehensive analysis for the two failure models,the project should adopt the firstmodel and avoid the second model on the basis of multi-channel seismic fortificationconcept design.
     10. A one-bay12-story steel shear wall model with openings has been carried outto demonstrate the unique performances,and the model meets various design indexs.The model is analyzed by elastoplastic seismic time-history analysis under threepractical seismic waves to demonstrate the reliability. And the lateral displacement ofthe top floor show that the model is in acceptable reliability level.
     The research offers valuable datas and references for the theory research andseismic design of the steel shear wall.
引文
[1] Thorburn L.J, Kulak G.L,&Montgomery C.J. Analysis of steel plate shearwalls. Struct. Engrg Rep. No.107, Dept. of Civil Engineering, University ofAlberta, Edmonton, Canada,1983
    [2]李国强等,高层建筑钢-混凝土混合结构分区耦合模型及开裂层位移参数分析[J].建筑结构,32(2),21-25,2002.2
    [3]中华人民共和国建设部,国家质量监督检验检疫总局. GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社,2001
    [4]江磊鑫,装配式防屈曲耗能支撑构件设计方法研究[硕士学位论文].北京:清华大学土木系,2010.7
    [5] Troy R.&Richard R. Steel Plate Shear Walls Resist Lateral Load, Cut Costs,Civil Engineering-ASCE, Feb.1979,53-55.
    [6]郭彦林,周明.各类钢板剪力墙结构性能及设计方法的最新研究进展.钢结构研究和应用的新进展(2009年第三届结构工程新进展国际论坛文集).北京:中国建筑工业出版社,2009
    [7]郭彦林,周明.钢板剪力墙的分类及性能.建筑科学与工程学报,2009,26(3):1-13
    [8] Engelhardt, M. D., Fry, G. T., Jones, S., Venti, M., and Holliday S. Behaviorand design of radius cut, reduced beam sectionconnections. SAC/BD-00/17,SAC Joint Venture, Sacramento, Calif,2000.。
    [9]蒋莼秋,世界地震工程100年(1891—1991)编年简史(一).世界地震工程,1992,01
    [10] Astaneh-Asl A. Seismic behavior and design of steel plate shear walls, SteelTIPS report, Structural steel educational council, Jan.2001
    [11] Fujitani. H., Yamanouchi, H., Okawa, I. et al. Damage and performance of tallbuildings in the1995Hyogoken Nanbu earthquake. Proceedings. The67thRegional Conference, Council on Tall Building and Urban Habitat, Chicago,103-125.1996
    [12] Inoue T, Analysis of plastic buckling of steel plates in shear based on theTresca yield criterion, Int. J. Solids Structures Vol.33, No.26, pp.3903-3923,1996
    [13] C. Marsh. Theoretical model for collapse of shear webs. Journal ofEngineering Mechanics Division. ASCE108(5),1882:819-832
    [14] Driver R G and Grondin G Y, Steel plate shear wall: Now performing on themain stage, Modern steel construction, September2001
    [15] Naeim F.Lessons Learned from Performance of Nonstructural ComponentsDuring the January17,1994Northridge Earthquake---Case Studies of SixInstrumented Multistory Buildings. JSEE: Fall1999, Vol.2, No.1
    [16] Takanashi Y., Takemoto, T.and Tagaki M.,“Experimental Study on Thin SteelShear Walls and Particular Bracing under Alternative Horizontal Load”Preliminary Report, IABSE, Symp. On Resistance and UltimateDeformability of Tsructures Acted on by Well-defined Repeated Loads,Lisbon, Portugal,1973
    [17] Robinson K and Ames D, Steel plate shear walls: Library seismic upgrade,Modern steel construction, Jan.2000
    [18] Tromposch, E.W, and Kulak, G.L. Cyclic and static behaviour of thin panelsteel plate shear walls, Structural Engineering Rep. No.145. Dept. of CivilEngineering. University of Alberta, Edmonton, Alta., Canada,1987
    [19] H. Mimura and H. Akiyama. Load-deflection relationship ofearthquake-resistant steel plate shear walls with a developed diagonal tensionfield. Trans., Arch. Inst. of Japan, Tokyo, Japan,260(oct.),1977:109-114(inJapanese)
    [20] H. Wagner. Flat sheet metal girders with very thin webs. Part I-Generaltheories and assumptions.1931, Tech. Memo No.604, National AdvisoryCommittee for Aeronautics, Washington D.C.
    [21] Elgaaly M, Liu Y. Analysis of thin steel plate shear walls. Journal of StructuralEngineering. ASCE1997, November:1487-1496
    [22] M. Elgaaly. Post-buckling behavior of thin steel plate using computationalmethod. Advances in Engineering Software, Vol.31,2000:511-517
    [23] M. Elgaaly, V. Caccese&C. Du. Post-buckling behavior of steel plate shearwalls under cyclic loads. Journal of Structure Engineering Vol.119, No.2, Feb,1993:588-605
    [24] M. Elgaaly and Yinbo Liu. Analysis of thin steel plate shear walls. Journal ofStructural Engineering,1997, Vol.123, No.11:1487-1496
    [25] M. Elgaaly. Thin steel plate shear walls behavior and analysis. Thin-WalledStructures,1998, Vol.32:151-180
    [26] Usami T., Gao S. and Ge H., Elastoplastic analysis of steel members andframes subjected to cyclic loading, Engineering Structures,22,2000,135-145
    [27] V. Caccese, M. Elgaaly&Ruobo Chen. Experimental study of thin steel plateshear walls under cyclic load. Journal of Structural Engineering,1993,Vol.119, No.2:573-587
    [28] M. Xue&L.W. Lu. Interaction of infilled steel shear wall panels withsurrounding frame members. Proceeding of Structural Stability ResearchCouncil Annu. Tech. Session, Bethlehem,1994:339-354
    [29] M. Xue&L.W. Lu. Monotonic and cyclic behavior of infilled steel shearpanels. Proc.17th Czech and Slovak Int. Conf. on Steel Struct and Bridges,Bratislava, Slovakia,1994
    [30] BSSC, NEHRP Recommended Provisions for Seismic Regulations for NewBuildings and Other Structures, Part I: Provisions, and Part II, Commentary,2003Edition, prepared by the Building Seismic Safety Council, published bythe Federal Emergency Management Agency, Publications,FEMA450ReportWashington, D.C.,2004.
    [31] Paik J K, Thayamballi A K, Lee S K et al, A semi-analytical method for theelastic-plastic large deflection analysis of welded steel or aluminum platingunder combined in-plane and lateral pressure loads, Thin-walled structures39:235-152,2001
    [32] A.S. Lubell, H.G.L. Prion, H.G.L. Prion, C.E. Ventura&M. Rezai.Unstiffened steel plate shear wall performance under cyclic loading. Journalof Structural Engineering,2000, Vol.126, No.4:453-460
    [33] Fujitani. H., Yamanouchi, H., Okawa, I. et al. Damage and performance of tallbuildings in the1995Hyogoken Nanbu earthquake. Proceedings. The67thRegional Conference, Council on Tall Building and Urban Habitat, Chicago,103-125.1996
    [34] Naeim F.Lessons Learned from Performance of Nonstructural ComponentsDuring the January17,1994Northridge Earthquake---Case Studies of SixInstrumented Multistory Buildings. JSEE: Fall1999, Vol.2, No.1
    [35] Robert, T.M. and Sabouri Ghomi, S. Hysteretic characteristics of unstiffenedplate shear panels, Thin-Walled Structures, Vol.12, No.2,1991:145-162
    [36] Driver R G, Kulak G L, Laurie Kennedy D. G. FE and simplified models ofsteel plate shear wall, Journal of Structural Engineering. Vol.124, No.2:121-130,1998
    [37]陈国栋,郭彦林.十字加劲钢板剪力墙的抗剪极限承载力.建筑结构学报,2004,25(1):71-78
    [38]陈国栋,郭彦林.钢板剪力墙低周反复荷载试验研究.建筑结构学报,2004,25(2):19-26
    [39]郭彦林,陈国栋,缪友武.加劲钢板剪力墙弹性抗剪屈曲性能研究.工程力学,2006,23(2):84-91
    [40]缪友武.两侧开缝钢板剪力墙结构性能研究.[硕士学位论文].北京:清华大学土木系,2004.7
    [41]郭彦林,缪友武,董全利.全加劲两侧开缝钢板墙弹性屈曲研究.建筑钢结构进展,2007,9(3):58-62
    [42]董全利.防屈曲钢板剪力墙结构性能与设计方法研究.[博士学位论文].北京:清华大学土木系,2007.6
    [43]郭彦林,董全利,周明.防屈曲钢板剪力墙滞回性能的理论与试验研究.建筑结构学报,2009,30(1):31-39
    [44]郭彦林,董全利,周明.防屈曲钢板剪力墙弹性性能及混凝土盖板约束刚度研究.建筑结构学报,2009,30(1):40-47
    [45]郭彦林,周明,董全利.防屈曲钢板剪力墙弹塑性抗剪极限承载力及滞回性能研究.工程力学,2009,26(2):108-114
    [46]董子建非加劲钢板剪力墙试验与理论研究[硕士学位论文].西安建筑科技大学,2005
    [47]钟玉柏钢板剪力墙和开缝钢板剪力墙抗剪静力性能研究.[硕士学位论文].哈尔滨工业大学,2005
    [48]蔡克铨,林盈成,林志翰.钢板剪力墙抗震行为与设计.第四届海峡两岸及香港钢结构技术交流会论文集.中国上海.2006,11:108-116
    [49]蔡克铨,林盈成,林志翰.钢板剪力墙抗震行为与设计.建筑钢结构进展.2007,9(5):19-24
    [50]郭彦林,周明.两层单跨钢板墙的比较试验研究及其简化分析模型.第六届全国土木工程研究生学术论坛论文集.北京:清华大学,2008,11.
    [51]周明.非加劲与防屈曲钢板剪力墙结构设计方法研究.[博士学位论文].北京:清华大学土木系,2009.11
    [52] ANSI-AISC-341-05, Seismic Provisions For Structural Steel Buildings.2005,Chicago
    [53] ANSI-AISC-360-05, Specification for Structural Steel Buildings.2005,Chicago,66
    [54] Michel Bruneau AISC Design Guide Steel Plate Shear Walls AmericanInstitute of Steel Construction Inc2007
    [55]郭彦林,周明.非加劲与防屈曲钢板剪力墙性能及设计理论的研究现状.建筑结构学报,2011,32(1):1-16
    [56] ANSYS结构分析指南—非线性. ANSYS中国,2006
    [57]张朝晖. ANSYS11.0结构分析工程应用实例解析(第2版).北京:机械工业出版社,2008.
    [58]王新敏. ANSYS工程结构数值分析.北京:人民交通出版社,2007.
    [59]谭建国.使用ANSYS6.0进行有限元分析.北京:北京大学出版社,2002.
    [60] Bathe, K.J. and Wilson, E. J. SAPIV: A Structural Analysis Program forStatic and Dynamnic Response of Linear System. University of California,Berktley,1973.
    [61] Kohnke, P.C. ANSYS-Engineering Analysis System Theoretical Manual,Swanson Analysis Systems. Inc. Houston Pennsylvania,1983.
    [62]王勖成,邵敏.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社,2004.
    [63]颜云辉.结构分析中的有限单元法及其应用.东北大学出版社,2003.
    [64] ANSYS, Inc. Theory Reference
    [65] ANSYS, Inc. ANSYS Guide to User Programmable Features.
    [66] ANSYS, Inc. ANSYS Basic Analysis Guide
    [67] ANSYS, Inc. ANSYS online help
    [68]陈惠发, A. F.萨里普.土木工程材料的本构方程.武汉:华中科技大学出版社,2001
    [69]中华人民共和国行业标准,《高层民用建筑钢结构设计规程》JGJ99-98.北京:中国建筑工业出版社,1998
    [70]日本建筑学会.钢构造结合部设计指针(Reeommendation for DesignofConneetions in Steel Sturclures),2001
    [71]中华人民共和国行业标准《,高层建筑混凝土结构技术规程》JGJ3-2002.北京:中国建筑工业出版社,2002
    [72]钟玉柏,张素梅,马欣伯.四边简支开缝钢板剪力墙抗剪静力性能研究.哈尔滨工业大学学报,2006.12
    [73]陈国栋.钢板剪力墙结构性能研究.清华大学[博士学位论文],2002.6
    [74]徐鹤山. ANSYS建筑钢结构工程实例分析.机械工业出版社,2007.4
    [75] S.铁木辛柯.材料力学.科学出版社,1979
    [76] R. Gradzki&K. Kowal-Michalska. Influence of strain hardening and initialimperfections on the collapse behavior of plates. Thin-Walled Structures12,1991:129-144
    [77]陈骥.钢结构稳定理论与设计.科学出版社.2001
    [78]李戈.开洞钢板墙的试验与理论研究.西安建筑科技大学硕士学位论文,2008.5
    [79] Vian, D. Steel plate shear walls for siesmic design and retrofit of buildingstructures. PhD dissertation, The State University of New York at Buffalo,American,2005
    [80] Kuhnet al., A summary of diagonal tension:Part I:Methods ofanalysis[R].Technical Note2661.Washington: National AdvisoryCommittee of Aeronauics,1952
    [81] Canadian Standards Association (CSA), Limit states design of steel structures,CAN/CSA-S16-01. Willowdale, Ont., Canada,2002
    [82] Federal Emergency Management Agency(FEMA450),Recommendedprovisions for seismic regulationsfor new building and other structures[S]
    [83].陈绍蕃.钢结构稳定设计指南.第2版.北京:中国建筑工业出版社,2004
    [84]黄炳生.日本神户地震中建筑钢结构的震害及启示,建筑结构,2000,30(9).
    [85]刘洪波,谢礼立,邵永松.钢框架结构的震害及其原因.世界地震工程,2006,22(4):47-51.
    [86] Miller D.K.. Lessons learned from the Northridge earthquake. EngineeringStructures,1998,20(4):249-260.
    [87] Nakashima M, Inoue K, Tada M. Classification of Damage to Steel BuildingObserved in the1995Hyogoken-Nanbu Earth quake. Engineering Structures,1998,20(4):271-281.
    [88]马宗晋.中国自然灾害和减灾对策(之三)——我国的地震灾害及其应对.防灾科技学院学报,2007,9(1):1-5.
    [89]孙士宏,彭克银.2001年震情评述.中国地震,2002,18(l):112-1160.
    [90] S.Sabouri-Ghomi, M.Gholhaki. Ductility of Thin Steel Plate Shear Walls.Asian Journal of Civil Engineering(Builing and Housing). Vol.9, No.2(2008):153-166.
    [91] Lubell A S, Prion H.G. L, Ventura C.E.&Rezai M. Unstiffened steel plateshear wall performance under cyclic loading. Journal of StructuralEngineering.2000,126(4):453-46
    [92] Ming Xue. Behavior of steel shear wall panels and frame-wall systems. PhDdissertation, Univ. of Lehigh, Bethlehem,Pennsylvanla,United States,1995
    [93] BSSC, Recommended Provisions for Seismic Regulations for New Buildingsand Other Structures (FEMA450). Washington: FE-MA,2004.
    [94]中华人民共和国行业标准《,建筑抗震实验方法规程》(JGJ101-96)北京:中国建筑工业出版社,1996
    [95] Vian D, Lin Y, Bruneau M,&Tsai k. Cyclic performance of Low YieldStrength Steel Panel Shear Walls. The sixteenth KKCNN Symposium on CivilEngineering, Dec.8-10,2003, Korea.
    [96]胡庆昌,1995年1月17日日本阪神大地震神户市房屋结构震害简介,建筑结构学报,1995,16(3):10~12.
    [97] Hitaka T,&Matsui C. Experimental study on Steel Shear Wall with Slits.Journal of Structural Engineering,2003,129(5):586-595.
    [98] Timler, P.A, Kulak G.L. Experimental study of steel plate shear walls. Struct.Engrg Rep. No.114, Dept. of Civil Engineering, University of Alberta,Edmonton, Canada,1983
    [99] G.L. Kulak. Unstiffened steel plate shear wall: Structures subjected torepeated loading stability and strength. R. Narayanan and T.M. Roberts, eds.,Elsevier Applied Science Publishing, London, U.K,1991:237-276
    [100] Federal Emergency Management Agency, Prestandard and commentary forthe seismic rehabilitation of buildings (FEMA356), Nov.2000
    [101]王迎春,郝际平,李峰,孙彤.钢板剪力墙力学性能研究.西安建筑科技大学学报(自然科学版),2007,39(2):181-186
    [102]童根树.钢结构设计方法.中国建筑工业出版社.2007.11
    [103]兰涛,郭彦林,郝际平.考虑施工过程的柱轴压作用对开洞薄板墙的受力影响.施工技术,2011,6
    [104]郭彦林,兰涛,赵思远,张博浩.巨型落地圆环钢结构安装方案研究与分析,施工技术,2010,8:17-23
    [105]汪大绥,陆道渊,黄良.天津津塔结构设计,建筑结构学报2009(S1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700