用户名: 密码: 验证码:
ZYB液压静力沉桩机液压振动沉桩研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在桩基础施工中,液压静力沉桩机以其低噪音、污染小和工作效率高的优良性能获得了广泛的应用,已经成为桩基础施工中一种重要的施工设备。随着不断的应用和开发,其性能也在不断地增加和完善。为了解决在施工过程中遇到砂层导致不能完成施工任务这一问题,在液压静力沉桩机上首次进行了对液压振动压桩系统的设计和研究工作。
     液压振动系统的主要特点是在桩机液压系统中的压桩油路产生流体压力变化和波动,从而使沉桩力出现高频的周期变化,产生振动压桩的效果。
     本文首先通过对压桩过程的描述和桩与液压静力沉桩机的力学分析,确立了液压振动压桩在桩的强度条件下和液压静力沉桩机工作要求下的压桩频率与压桩力幅值之间的关系;定量分析振动压桩时系统的频率特性,得出了ZYB200B型液压静力沉桩机振动压桩时压桩频率的取值范围和系统能得到的最佳频率值。然后根据液压振动系统设计了振动开关阀,并重点对液压振动系统中的溢流阀和振动开关阀进行了耦合分析和仿真研究,得出压桩油路中流体压力变化的模拟曲线,并根据模拟曲线分析得出流体压力的最高压力值、平均压力值和压桩频率间的相互关系。最后通过现场实验,证实液压振动系统能完成振动压桩工作,实验数据分析表明了压桩系统中流体的压力变化与理论分析相符。
     该液压振动系统的设计研究,进一步提高了液压静力沉桩机的性能,促进了液压静力沉桩机向多功能化方向发展。
In the pile-driving process, because of its excellent qualities of low noise, low pollution and high working efficiency etc, the HSPD(hydraulic static pile-driver) has already been used widely and has already become an important equipment in the construction work. With continual application and development, its qualities have also been increasingly perfect. In order to solve the problem that the task of the pile- driving process could not be finished because of sandy soil layer. So a new HVS(hydraulic vibrancy system) in the HSPD has been designed and developed .The main character of the HVS is that, by means of fluctuating oil pressure, the pile-driving force can be changed in a higher frequency, and therefore better vibrating effect can be gained.In this paper, on the basis of the description of the pile-driving process and the dynamic analysis of the pile and the HSPD, the relationship between the frequency and the pile-driving force has been established under the conditions of the pile strength and the HSDP working requirements. The frequency character of the ZYB200B HSPD system has been analyzed quantitatively in the vibrancy pile-driving process, therefore the frequency range and the best available frequency have been obtained. Then, according to HVS, the vibrant valve is designed. On the basis of coupling analysis and simulation study of the vibrant valve and the release valve, the simulation curve about the fluid pressure variation in the pile-driving oil pipe is obtained, by which the relationships among the highest pressure value, average pressure value and the pile-driving frequency are obtained. At last, according to the experiment on the worksite, it's proved that the HVS can work very well. The experiment data prove that the variation of the fluid pressure conforms to the theoretic analysis.The achievements of the design and study about the HVS have further improved the qualities of the HSPD and promoted its developments in multi-functions.
引文
[1] 章宏甲.液压传动.北京:机械工业出版社,1998.P1.
    [2] 汤绍和.ICE液压振动拔桩机.[J]建筑机械.1993(3):P21~25.
    [3] 张忠海.液压式振动桩锤发展现状及选型应用.[J] 建筑机械.2001(3):P39~41.
    [4] 王进怀.高频液压振动沉拔桩锤.[J] 建筑机械.1999(2) P166~168.
    [5] 施引蕃.国外灌注桩施工发展状况及选型应用.[J] 建筑机械.1999(4)P12~15.
    [6] 中南大学液压机械工程研究所.ZYB 系列静力液压沉桩机使用说明书.2001.
    [7] 郭传新,杨文军,霍空军.液压锤及桩支承力的计算.[J] 建筑机械.2001;220(10):P76~78.
    [8] 李岸.ZYB静力压桩机机身自动调平控制系统的研究.长沙:中南大学硕士学位论文.2001.6.
    [9] 陈晓阳.YZY160静力压桩及夹持及夹桩油路的改进.[J] 工程机械及维修,2000.1 P68~69.
    [10] 陈九林.全液压静力压桩机液压系统设计.[J] 建筑机械.1996(7):P18~19.
    [11] 朱建新等.静力压桩机液压系统设计方法研究.[J] 建筑机械.1999(4):P41~44.
    [12] 蔡政等.液压桩机动力系统的分析及其应用[J] 建筑机械,2000(4):P28~30.
    [13] 蔡绍据.静力压桩机液压冲击回路及其数学模型[J].建筑机械,1999(5):P21~22.
    [14] 中南大学液压机械工程研究所.ZYB500C 型液压静力沉桩机使用说明书.2001.
    [15] 黄开启,吴万荣,罗春雷等.全液压静力沉桩机行走机构的设计与研究[J].建筑机械,2000(2):P42~45.
    [16] 王树明,刘永波.日本履带行走装置降低噪音技术[J].建筑机械,1997(1):P45~48.
    [17] 郑鹏展.综述讨论[J].建筑机械化,2000(1):P36~38.
    [18] 徐惠民等.静压预制桩对周边建筑物的影响及对策[J].建筑技术开发,2000(12);P16~19.
    [19] 彭志明,陆栋.YZY系列全液压桩机及在软土地区的施工[J].建筑机械,1999(4):P22~30.
    [20] 吴向群.ZYJ320、ZYJ240 液压静力沉桩机[J].建筑机械,1997(2):P15~16.
    [21] 周本祥.新型6000kN液压静力压桩机[J].建筑机械,1997(1):P3~9.
    [22] 江苏省吴江良工桩机有限责任公司.YZY型桩机资料.
    [23] 彭志明,陆栋.YZY系列全液压桩机及在软土地区的施工[J].建筑机械,1999(4):P22~30.
    [24] 郑凤琴等.静压桩机智能型测量系统的研究[J].建筑机械.1997(8):23~24.
    [25] 龚艳玲.静压桩承载力计算机实时预测系统的研究与开发.长沙:中南工业大学硕士学位论文.1996
    [26] Florin, V.A., and P.L. Ivanov: Liquefaction of Saturated Sandy Soils, Proc. Fifth Int. Conf. Soil Mech. Found. Engin., Paris, vol. l,pp. 107-111, 1961.
    [27] K.L. Lee: Liquefaction of Saturated Sands During Cyclic Loading, J. Soil Mech. Found. Div., ASCE, vol. 92, no. SM 6, pp. 105-134,1966.
    [28] Prakash, S., and M.K. Gupta: Liquefaction and Settlement Characteristics of Loose Sand Under Vibrations, Proc. International Conference on Dynamic Waves in Civil Engineering, Swansea, pp. 323-338,1970a
    [29] 施岚青,国振喜,孙培生.简明混凝土结构设计手册[M].北京:冶金工业出版社,1999.
    [30] S.普纳卡什.土动力学.北京:水利电力出版社,1984.P180~183.
    [31] 倪振华.振动力学.西安:西安交通大学出版社,1989.
    [32] 中国建筑科学研究院.GBJ7-89 中华人民共和国国家标准建筑地基基础设计规范.北京:中国建筑工业出版社,1989.P681.
    [33] 陈希哲 土力学基础.北京:清华大学出版社,1998.P256~281.
    [34] 何永森,刘邵英.机械管路内流体数值预测.北京:国防工业出版社,1999.P108~155.
    [35] 盛敬超.液压流体力学.北京:机械工业出版社,1980.
    [36] 徐万椿.流体动力控制学.台湾:徐氏基金会出版,1971.P519~539.
    [37] [美]G.R.凯勒.液压系统分析.北京:国防工业出版社,1985.P103~121.
    [38] 刘鸿文.材料力学.北京:高等教育出版社,1979.P224~244.
    [39] 关冶,陆金甫.数值分析基础.北京:高等教育出版社,1998.
    [40] 龚剑,朱亮.Matlab5.x入门与提高.北京:清华大学出版社,2000.
    [41] 陈克诚.流体力学实验技术.北京:机械工业出版社,1983.P206~232.
    [42] 王沫然.simulink4建模及动态仿真.北京:电子工业出版社,2000.P101~106.
    [43] 邹伯敏.自动控制理论.浙江大学.北京:机械工业出版社,1999.P112~143.
    [44] Novak, M.:" Foundations and Soil Structure Interaction, "Theme Report, Topic 4, Proc. VI World Conference on Earthquake Engineering ,vol. 2, pp1421-1448, New Delhi, 1977.
    [45] T. Nogami: Solid-Pile Interaction in Horizontal Vibration, Int. J. Earthquake Eng. Structural Dynamics, vol. 5, pp. 263-281,1977.
    [46] 马林诺夫斯基等.振动沉拔桩机的发展前景.[J] 建筑机械.1991 (1), P13~16.
    [47] 王馨,陈康宁.机械工程控制基础.西安:西安交通大学出版社,1992.P94~120.
    [48] 王运赣,王紫薇.系统动力学.武汉:华中理工大学出版社,1989.P41~60.
    [49] 何存兴.液压元件.华中工学院.北京:机械工业出版社,1982.P483.
    [50] 雷林源.桩基动力学.北京:冶金工业出版社,2000.P50~82.
    [51] 李毅锋.基于液压沉桩过程参数的单桩承载力预测系统的研究.长沙:中南工业大学硕士学位论文.2000.6.P12~13.
    [52] 北京有色冶金设计研究总院.机械设计手册第4卷.北京:化学工业出版社.1993.P19-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700