钢筋混凝土板柱结构抗倒塌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从历史上看,在偶然荷载下建筑物发生倒塌事故的例子并不鲜见。特别是近年美国俄亥俄州Alfred P.Murrah大楼和纽约世贸双塔遭遇恐怖袭击,建筑发生部分和整体倒塌,更是把对建筑结构安全性能的研究,推到结构工程领域的前沿。国内外研究人员对钢筋混凝土框架结构连续倒塌性能进行了较为广泛的研究,主要针对的是钢结构或混凝土框架等梁柱结构,但对钢筋混凝土板柱结构抗连续倒塌破坏的研究却很少见。混凝土板柱结构是一种常用的结构形式,具有多种优点,但其发生连续倒塌破坏的潜在危险因素,却较梁柱结构复杂,对于结构工程师而言,避免板柱结构遭受意外荷载发生连续倒塌这方面,仍缺少相关的概念和试验依据。
     1.本文采用拟静力的试验方法,对板柱结构进行了中柱破坏(位移达到板厚1倍)、边柱破坏(位移达到板厚2倍)和角柱破坏(位移达到板厚2倍)的抗连续倒塌试验。所谓柱破坏就是正常工作状态下,板柱结构进行抽柱或移柱,来模拟框架柱失效后的结构倒塌。基于试验结果研究了板柱结构在连续倒塌过程中的破坏过程和受力状态,探讨了板柱结构在下层柱破坏后,形成的新荷载路径和传力转换机制,板的压-拉力薄膜作用可以在板柱结构柱破坏后提供高于屈服线承载力的抗倒塌能力。试验以持续施加均布荷载的方式估计结构倒塌极限承载力。试验板柱结构的设计和一些构造措施,在抵抗倒塌冲击的过程发挥了重要作用。
     2.基于板屈服线形式,按屈服线理论计算板承载力。依据板柱结构试验参数,建立有限元分析模型,分别对三种位置柱破坏后的倒塌过程进行模拟分析,将计算结果与试验结果进行对比分析,讨论倒塌破坏形态,最大承载力等等方面的计算结果,比较完整和准确的模拟了板柱结构试验过程,揭示了板柱结构受力特性,可以用来模拟和计算板柱结构的抗连续倒塌能力,为板柱结构进行抗连续倒塌设计提供了参考。
     3.基于板柱结构中间区格、边区格和角区格倒塌试验获得的板面转角临界值,建立板柱结构抗倒塌设计的临界判定标准。在静力抗倒塌设计荷载作用下,依据试验获得板柱结构倒塌判定值,指导板柱结构抗倒塌设计。另外通过有限元模型参数分析,讨论了板柱结构配筋率,混凝土强度和层数对结构倒塌的影响。
     4.对中间区格试验板柱结构进行了集中荷载试验。中间区格板在自身均布荷载作用下,仍能提供一定程度集中荷载承载力,说明板柱结构在其柱破坏后不仅具有均布荷载承载能力,还可以分担上层柱传轴力,可以为解决多层板柱结构柱传轴力的问题提供路径。本文建模分析与集中力试验结果吻合较好,并对边区格和角区格也进行集中力加载的模拟分析。
     通过静载试验来模拟固支板结构承担集中力作用能力。板的压力薄膜作用使得其集中力承载能力比屈服线理论计算值提高40%左右。根据试验结果,研究了承受集中荷载板的倒塌过程的静力特性,破坏过程和受力特点,并指出依靠板压-拉力薄膜作用实现板结构抵抗集中荷载的途径,建立了对应有限元模型,进行过程分析。
     5.完成了在实验室刚性地基上的板柱结构模态试验。结果表明了随混凝土龄期增长,结构各阶频率也得到增加,而试验期间温度变化对各阶频率的影响较小。本文依据试验结果和有限元模拟分析对该板柱结构进行了参数识别和损伤诊断,识别出该板柱结构“中柱”(浇注框架时用千斤顶替代该中柱)无法传递节点弯矩和提供向下的支持力,为板柱结构的损伤诊断提供了参考。
     6.基于试验和分析结果,提出了板柱结构抗倒塌设计流程,充分发挥板柱结构抗倒塌性能。分析板柱结构柱破坏后相邻柱轴压比变化以及相邻板柱节点不对称冲切,提出改善结构体系,保证连续性、赘余度的构造措施以及充分利用板的压-拉力薄膜悬索作用效应以增加结构的抗倒塌性能。
Progressive collapse of structures caused by earthquakes, blasts, and other accidents results in catastrophic loss of life and money. Many practicing engineers and academic researchers have been engaged in the prevention of progressive collapse since the partial collapse of the22-storey Ronan Point apartment building in1968. Especially after the terror attack on the Alfred P. Murrah Federal building in1995and World Trade Center in2001, several changes to the philosophy and practice of design for important buildings have been made in the last decade. Resistance of building structures to progressive collapse has been an important task for the development of structural design codes. The RC flat plate construction systems are being widely used in residential and industrial buildings in many parts of the world. This system is highly advantageous because of the formwork costs reduction, fast execution and easy installation. The reduced storey height and increased architectural freedom in design result in lower overall construction and maintenance costs. However, because of brittle punching failure occurred at the slab-column connections, the flat plate construction is vulnerable under gravity or earthquake load.
     The study on the collapse-resistant experiment of RC flat slab-column structures has not been found in the literature. It is important to explore the alternative load path in a flat slab-column structure when the structure subject to a load-carrying member loss. As the vulnerable behavior of the flat slab-column structures after punching failure of the slab-column connections, it should be interesting to know the collapse-resistant performance after a column loss in the structure. However, the complete design concept is not explicit duo to the lack of relevant experimental investigation on the flat plate structures.
     1. This paper presents a collapse experimental research on two single-stories2×2-bay reinforced concrete flat slab-column structure in order to find the alternative load path in the flat slab-column structures when an interior/side/corner column was removed. The research described in this paper demonstrates the feasibility of using a static unloading approach to simulate column loss and to study the collapse-resistant behavior of flat slab-column structures. The data generated from this experiment will contribute to the much-needed database on collapse behavior of RC flat plate structures. The results of experiments and the analyses reported in this paper will contribute to the future development of collapse resistant design methods.
     2. The experiments utilize a quasi-static method to simulate the failure of a flat plate structure subjected to a sudden column loss, which reveal the plate load transmission mechanism change process and mechanical characteristics. During the collapse process of the flat plate structure, it has experienced elastic stage and plastic stage accompanied by membrane action. The experiment indicates that the compressive membrane action and tensile membrane action could be considered as an alternative load path, compressive membrane action or compressive-tensile composite membrane action is the main characteristics of new alternative load path when the flat plate structure subject to a column loss.
     3. Based on the experimental results, it can be judged that the conventional designed flat plate frame will not collapse after the interior column sudden removed, because the column-losing frame carried2times uniform design load characteristic value finally, the progressive collapse did not happen (dynamic impact factor<2),1.7time design load characteristic value with side column loss,1.17time design load characteristic value with corner column loss.
     4. The experimental results of flat plate structure show that the load-carried capacity is larger than the value predicted by yield-line theory. For flat plate, its plane stiffness is mainly provided by exterior cantilevered plate and surrounding column. Limited compressive membrane could play a certain action with limited plane stiffness, which makes the load-carrying capacity greater than plastic hinge line value.
     The compressive-tensile membrane action should have important effect on the load transfer mechanism when the flat plate structure with an interior column loss. However, the analytic value is hard to be obtained. A finite element model was established and verified by comparing the experimental results, the same loading procedures and constraints as in the testing were used. Finite element method was conducted to simulate the test and it shows a good agreement with the interior span test. The flat plate frame collapse-resistant assessment criterion obtained by the Finite element method is useful for the large deformation/strain analysis of the RC structure collapse, and it could be a preparation for the next parameter analysis.
     5. The collapse failure of the RC flat plate frame is ultimately controlled by the longitudinal reinforcement breaking. The reinforcements were almost all broken, and punching failure occurred when concentrated force113kN (uniform load unload to1time characteristic load stage) was applied downward on the interior column stub. It also shows good performance of deformation which conducive to collapse-resistant capacity of flat plate structure. The collapse-resistant capacity would be further enhanced by the reinforcement ratio which goes through the column.
     6. Damage identification and health monitoring is an important aspect in the evaluation of structural safety recently. This paper also presents a modal experiment and analysis for the RC flat plate frame structure. The displacement mode experiments were carried out by hammer-hitting excitation method in the age of frame concrete. The varieties of the modal parameters of the flat plate were obtained by dynamic testing along with the growth of elastic modulus of concrete and change of the environment temperature. It can be used to identify the location of the damage. Base on the missing of some specific structure modal shapes and reduction of the frame horizontal stiffness, it can be revealed that the interior slab-column connection cannot transfer the unbalance moment well. A3-D solid finite element models with the interior column fixed/hinged were constructed, they were validated to match the frame natural frequencies and mode shapes. The results demonstrate the effectiveness of modal parameters identification method in estimate the damage of column in RC flat plate frame.
     7. The design recommendations for the flat plate structure collapse-resistantant are proposed, the variety of the column axis compression ratio and the increment of the uneven punching shear force of the adjacent slab-column connection are analyzed, two. The structure system integrity, continuity, reducndancy, well-anchored structure and compressive-tensile membrane action would play important roles in the flat plate collapse-resistant performance.
引文
[1]Pearson, C. and Delatte, N. Ronan Point Apartment Tower Collapse and its Effect on Building Codes. Journal of Performance of Constructed Facilities, 2005,19(2):172-177.
    [2]Corley, W. G., Mlakar, P. F., Sozen, M. A. and Thornton, C. H. The Oklahoma City Bombing:Summary and Recommendations for Multihazard mitigation. Journal of Performance of Constructed Facilities,1998,12(3):100-112.
    [3]建筑结构可靠度设计统一标准(GB 50068-2001).北京:建筑工业出版社.2002,5-23.
    [4]ASCE 7-05. Minimum design loads for buildings and other structures. American Society of Civil Engineers,2005,1-9.
    [5]GSA. Progressive Collapse Analysis and Design Guidelines for new Federal Office Buildings and Major Modernization Projects. USA,2003,10-42.
    [6]Martin, R., and Delatte, N.J. Another Look at the L'Ambiance Plaza Collapse. Journal of Performance of Constructed Facilities,2000,14(4):160-165.
    [7]National Institute of Standard and Technology (NIST). Best Practices for educing the Potential for Progressive Collapse in Buildings, NISTIR 7396, 2007.
    [8]Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes G.A., Phan, L.T., and Sozen,M.A. The Pentagon Building Performance Report. American Society of Civil Engineers,2003.
    [9]NIST. The collapse of the World Trade Center towers. Final Rep. NIST, Gaithersburg, Md.2005.
    [10]Taylor, D. A. Progressive collapse. Canadian Journal of Civil Engineering, 1975,2(4).
    [11]Al-Khaiat H., Fereig S., Al-Duaij J., and Awida T. A., Impact of shelling on RC frames with and without infill walls, Journal of Performance of Constructed Facilities,1999,13(1):22-28.
    [12]Emilio Rosenblueth and Roberto Meli. The 1985 earthquake:Causes and effects in Mexico city. Concrete International:Design and Construction,1986, 8(5):23-34.
    [13]建筑抗震设计规范GB 50011-2010.北京:中国建筑工业出版社.2010.
    [14]高层建筑混凝土结构技术规程JGJ 3-201 0.北京:中国建筑工业出版社. 2010.
    [15]Carino N, J. Woodward, K, A and Leyendencker, E. V. and Fattal, G, S. A review of the Skyline Plaza collapse. Concrete International:Design and construction,1983,5:35-42.
    [16]Vecchio F.J. and Collins M.P.. Investigating the Collapse of a Warehouse, ACI Concrete International,1990,12(3):72-78.
    [17]Lew, H. S., Carino, N. J. and Fattal, S. G. Cause of the condominium collapse in Cocoa Beach, Florida. Concrete International:design and Construction, 1982,4(8):64-73.
    [18]Mitchell, D. DeVall, R. H.; Saatcioglu, M. Simpson, R. Tinawi, R.and Tremblay, R. Damage to concrete structures due to the 1994 Northridge earthquake. Canadian Journal of Civil Engineering,1995,22(4):361-377.
    [19]Jonathan G M Wood. Pipers Row Car Park, Wolverhampton Quantitative Study of the Causes of the Partial Collapse on 20th March 1997. http://www.hse.gov.uk/research/misc/pipersrowpt1.pdf
    [20]Suzanne King, and Norbert J. Delatte. Collapse of 2000 Commonwealth Avenue:Punching shear case study. Journal of Performance of constructed facilities,2004,18(1):154-161.
    [21]Yaser MIRZAEI, Post-Punching Behavior of Reinforced Concrete Slabs. Switzerland,2010,1-5.
    [22]Dusenberry, D., Cagley, J., and Aquino, W. Case Studies. Agenda for Best Practices Guidelines for the Mitigation of Progressive Collapse Workshop, Washington, D.C.2004.
    [23]Wardhana, K. and Hadipriono, F. C. Study of Recent Building Failures in the United States. Journal of Performance of Constructed Facilities,2003,17(3).
    [24]朱明程,刘西拉.多层砖混建筑的连续倒塌分析.四川建筑科学研究,1994,02,2-5.
    [25]ACI 318-05. Building Code Requirements for Structural Concrete. American Concrete institute.2005.
    [26]GSA. Facilities standards for the public buildings service:P100-2000, GSA, Washington, D.C.2000.
    [27]Department of Defense (DoD). Unified Facilities Criteria, Design of Buildings to Resist Progressive Collapse. UFC 4-023-03. USA,2005,1-22.
    [28]Department of Defense (DoD). United facilities criteria, DoD minimum antiterrorism standards for building. Department of defense, UFC 4-010-01,U.S. Army Corps of Engineering, Washington, D.C.,31.2003.
    [29]Popoff, A. Jr. Design against Progressive Collapse. PCI Journal,1995, (20)2:44-57.
    [30]Office of the Deputy Prime Minister (OPDM). The Building Regulations 2000, Part A, Schedule 1:A3.Disproportionate Collapse. London (UK),2000,1-10
    [31]BS5950-1, Structural use of steelwork in building-Part 1:Code of practice for design-rolled and welded sections,2000.
    [32]D.B.Moore. the UK and European Regulations for Accidental Actions. Workshop on Prevention of Progressive Collapse, National Institute of Building Sciences, Washington,D,C.
    [33]混凝土结构设计规范(GB50010-2010),北京:建筑工业出版社.2010.
    [34]钢筋混凝土升板结构技术规范(GBJ 130-90),北京:建筑工业出版社.1991.
    [35]万墨林.大板结构抗连续倒塌问题(上).建筑科学,1990,03,17-24.
    [36]万墨林.大板结构抗连续倒塌问题(下).建筑科学,1990,04,10-20
    [37]王志浩,苗启松,陈肇元.冲击波作用下剪力墙房屋的倒塌试验研究.建筑结构学报,1993,14(1):26-33.
    [38]谢步瀛.框架结构倒塌过程中的动力学分析.同济大学学报,1996,24(5):492-497.
    [39]曹兔荣,严林木,张锦屏.防止砌体房屋连续倒塌的几点措施.低温建筑技术,2001,2:37-39.
    [40]秦东,范立础.钢筋混凝土结构倒塌全过程数值模拟.同济大学学报.2001,29(1):80-83
    [41]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析.土木工程学报.2001,34(6):8-10.
    [42]张雷明,刘西拉,框架结构倒塌分析中的几个问题,上海交通大学学报2001.35(10):1578-1582.
    [43]张雷明,刘西拉,钢筋混凝土结构倒塌分析的前沿研究,地震工程与工程振动,2003,23(3):47-52.
    [44]张雷明.灾害荷载下结构倒塌机制研究:[清华大学博士学位论文].北京:清华大学,1999,1-50.
    [45]王安宝,董军,杨秀敏,邓国强.化爆作用下无梁板结构的冲切动力响应分析.工程力学,2003,20(3):6-12.
    [46]宣纲,顾祥林,吕西林.强震作用下混凝土框架结构倒塌过程的数值分析.地震工程与工程振动,2003,23(6):24-30.
    [47]于山,苏幼坡,马东辉,苏经宇.钢筋混凝土建筑抗倒塌设计,地震工程 与工程振动.2005.25(5):67-72.
    [48]陈俊岭,马人乐,何敏娟,防止建筑物连续倒塌的措施,特种结构.2005,22(4):13-15.
    [49]熊世树,潘琴存,熊明祥.钢框架组合结构的冲击倒塌分析与防倒措施研究,铁道工程学报,2006,98(8):53-58.
    [50]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析.解放军理工大学学报(自然科学版),2007,6,652-658.
    [51]易伟建,何庆锋,肖岩,钢筋混凝土框架结构抗倒塌性能的试验研究,建筑结构学报,2007,2(5):104-109.
    [52]Yi Wei-Jian,He Qing-Feng, Xiao Yan, Kunnath Sashi K.. Experimental Study on Progressive Collapse-Resistant Behavior of Reinforced Concrete Frame Structures. ACI Structural Journal.2008,105(4):433-439.
    [53]何庆锋.钢筋混凝土框架结构抗倒塌性能试验研究:[湖南大学博士学位论文].长沙:湖南大学,2009.
    [54]孙利民,秦东,范立础,扩展散体单元法在钢筋混凝土桥梁倒塌分析中的应用,土木工程学报,2002,35(6):53-58.
    [55]梁益,陆新征等.三层RC框架的抗连续倒塌设计.解放军理工大学学报(自然版).2007,8(6):659-664.
    [56]陆新征,张炎圣,江见鲸等.基于纤维模型的钢筋混凝土框架结构爆破倒塌破坏模拟.爆破,2007,24(2):1-6.
    [57]张云鹏,剧锦三;蒋秀根.考虑初始静力荷载效应的框架结构部分底层柱失效时的瞬时动力分析.中国农业大学学报,2007,12(4):90-94.
    [58]扈鹏.框架结构在爆炸冲击荷载下的动力响应及连续倒塌分析研究.长安大学:长安大学,2008.
    [59]胡庆昌.结构的坚固性及钢筋混凝土房屋防连续倒塌设计概念,建筑结构,2008,(1).
    [60]张素芬.钢筋混凝土框架结构抗连续倒塌分析.湖南大学:湖南大学,2008.
    [61]钱稼茹,胡晓斌.多层钢框架连续倒塌动力效应分析.地震工程与工程振动,2008,28(02):8-14.
    [62]张秀华,段忠东,张春巍.近地空中爆炸作用下钢框架结构冲击响应.地震工程与工程振动,2009,29(4):70-76.
    [63]宋晓胜,苏幼坡,王兴国,陈明辉.爆炸与地震作用对钢筋混凝土结构影响的比较.自然灾害学报,2008,17(02):83-86.
    [64]Youpo Su, Ying Tian, and Xiaosheng Song. Progressive collapse resistance of axially-restrained frame beams. ACI structural Journal.2009,106(5):600-607.
    [65]混凝土结构防连续倒塌理论与设计方法研究,陆新征,李易,叶列平著,中国建筑工业出版社.2011.
    [66]傅学怡,黄俊海.结构抗连续倒塌设计分析方法探讨.建筑结构学报,2009.S1:195-199.
    [67]蔡建国,王蜂岚,冯健.大跨空间结构抗连续性倒塌概念设计.建筑结构学报,2010,S1:283-287.
    [68]蔡建国,王蜂岚,冯健,张晋,黄利锋,盛平,甄伟,陈强.新广州站索拱结构屋盖体系连续倒塌分析.建筑结构学报,2010,31(07):103-109.
    [69]McGuire,W. Prevention of Progressive Collapse. Proceedings of the Regional Conference on Tall Buildings. Asian Institute of Technology, Bangkok, Thailand.1974,12-23.
    [70]Breen, J.E. Research Workshop on Progressive Collapse of Building Structures Held at the University of Texas at Austin. National Bureau of Standards, Washington, D.C.,1975,1-23.
    [71]British Standards Institution (BSI). CP 110:Part1:1972 Code of Practice for the Structural Use of Concrete, Design, Materials and Workmanship. London, England,1972,1-50.
    [72]British Standards Institution (BSI). BS5950-1 2000:Structural Use of Steelwork in Building:Code of Practice for Design:Rolled and Welded Sections, London, England,1985,1-50.
    [73]British Standards Institution (BSI). BS5950-1 2000:Structural Use of Steel work in Building:Code of Practice for Design:Rolled and Welded Sections, London, England,1990,1-50.
    [74]British Standards Institution (BSI). BS5950-1 2000:Structural Use of Steel work in Building:Code of Practice for Design:Rolled and Welded Sections, London, England,2000,1-50.
    [75]Office of the Deputy Prime Minister (ODPM). The Building Regulations 2000 Approved Document-A Structure 2004 Edition. Northwich, England.2006.12.
    [76]BSO, European Prestandard ENV 1991-2-7:1998 Eurocode 1:Basis of Design and Actions on Structures, Part 2-7:Accidental Actions due to Impact and Explosion, London.1998,1-60.
    [77]Federal Emergency Management Agency.(FEMA).NEHRP Guidelines for the Seismic Rehabilitation of Buildings. FEMA-273, Washington,D.C,1997,1-24.
    [78]Federal Emergency Management Agency.(FEMA).NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings. FEMA-274, Washington, D.C,1997,1-21.
    [79]Longinow,A. and Miniszewski,K.R. Protecting Building against Vehicle Bomb Attacks. Practice Periodical on Structural Design and Construction.1996, 1(1):12-24.
    [80]Corley W. G.et al. The Oklahoma City Bombing:Summary and Recommendations for Multi-Hazard Mitigation. Journal of Performance of Constructed Facilities,1998,12(3):100-112.
    [81]Corley W. G., Smith, R.G., and Colarusso, L. J., Structural Integrity and the Oklahoma City bombing. Concrete Construction, A Hanley-Wood Publication, Addison, Illinois,2001,46(12):29-30.
    [82]Corley W. G. Applicability of Seismic Design in Mitigating Progressive Collapse.2002.2006.12.
    [83]Bazant, Z. P., and Zhou, Y. Why did the World Trade Center Collapse? Simple Analysis. ASCE.2002,128(1):2-6.
    [84]Bazant, Z. P., Mathieu Verdure. Mechanics of Progressive Collapse:Learning from World Trade Center and Building Demolitions. ASCE.2007,133(3): 308-319.
    [85]Gregory Szuladzinski. Discussion of "Mechanics of Progressive Collapse: Learning from World Trade Center and Building Demolitions" by Zdenfk P. Bazant and Mathieu Verdure. Discussions and Closures of ASCE.2008,134(10):913-915.
    [86]James R. Gourley. Discussion of "Mechanics of Progressive Collapse: Learning from World Trade Center and Building Demolitions" by Zdenfk P. Bazant and Mathieu Verdure. Discussions and Closures of ASCE.2008,134(10):915-916.
    [87]Zdenfk P. Bazant, Jia-Liang Le. Closure to "Mechanics of Progressive Collapse: Learning from World Trade Center and Building Demolitions" by Zdenfk P. Bazant and Mathieu Verdure. Discussions and Closures of ASCE.2008,134(10):917-923.
    [88]Bazant, Z. P., Jia-Liang Le,et al. What Did and Did Not Cause Collapse of World Trade Center Twin Towers in New York? ASCE. 2008,134(10):892-906.
    [89]Zdenfk P. Bazant, and Mathieu Verdure, Mechanics of Progressive Collapse: Learning from World Trade Center and Building Demolitions, Journal of Engineering Mechanics, Vol.133, No.3, March 1,2007.308-319.
    [90]Woodson, S. C. and Baylot, J.T. Structural Collapse:Quarter-Scale Model Experiments. Technical report SL-99-8,US Army Engineer Research and Development Center,Vicksburg,Mississippi,1999,1-50.
    [91]Astaneh, A. Progressive Collapse Prevention in New and Existing Buildings. Technical and Educational Website of Iranian Engineers, Iran Civil Center, 2003-2004.
    [92]Astenah-Asl, A. "Progressive Collapse Prevention in New and Existing Buildings." Proc. Of the 9th Arab Structural Engineering Conference, Emerging Technologies in Structural Engineering, Abu Dhabi UAE.2003.
    [93]Mehrdad Sasani, Serkan Sagiroglu. Progressive Collapse Resistance of Hotel San Diego. Journal of Structural Engineering.2008,134(3):478-488.
    [94]Mehrdad Sasani, Marlon Bazan, and Serkan Sagiroglu. Experimental and Analytical Progressive Collapse Evaluation of Actual Reinforced Concrete Structure. ACI Stuctural Journal.2007,104(6):731-739.
    [95]Mehrdad Sasani, Jesse Kropelnicki.. Progressive collapse analysis of an RC structure. The structural design of tall and special buildings.2007,17. 757-771.
    [96]Mehrdad Sasani. Response of a Reinforced Concrete Infilled-Frame Structure to Removal of two Adjacent Columns. Engineering Structures.2008,30: 2478-2491.
    [97]Mehrdad Sasani, Andre Werner, Ali Kazemi, Bar fracture modeling in progressive collapse analysis of reinforcedconcrete structures, Engineering Structures,2011,33(2):401-409.
    [98]Zineddin M., Krauthammer T.. Dynamic Response and Behavior of Reinforced Concrete Slabs under Impact Loading. International Journal of Impact Engineering (Elsevier).2007,34:1517-1534.
    [99]Francisco J.Q. Melo Joaquim A.O. Carneiro and et. Al..A Simplified Method for the Impact Test of Beams using a Pseudo-Dynamic (PSD) Process. Mechanics Research Communications.2006, (33):190-205.
    [100]Orton, O. L., Development of a CFRP System to Provide Continuity in Existing Reinforced Concrete Buildings Vulnerable to Progressive Collapse, PhD dissertation, University of Texas at Austin, Austin, TX,2007.
    [101]Jesse E. Karns, David L, Bruce E. Joonghwan Kim, Kyungkoo Lee, Analytical Verification of Blast Testing of Steel Frame Moment Connection Assemblies, Structures 2007.
    [102]Val D.V, Fiodor Bljuger, David Z Yankelevsky, Reliability Assessment of Damaged RC Framed Structures, Journal of Structural Engineering, ASCE 1997,123(7):889-895.
    [103]Val D.V, Bljuger F. and Yankelevsky D., Optimization problem solution in reliability analysis of reinforced concrete structures,1996,60(3):351-355.
    [104]Robert Smilowitz, Darren Tennant, Multi-Hazard Design to Resist Progressive Collapse, structures 2001,30(3).
    [105]Kaewkulchai G. and Williamson E. B., Modeling the Impact of Failed Members for Progressive Collapse Analysis of Frame Structures, Journal of performance of constructed facilities,2006,20(4):75-383.
    [106]John Abruzzo, Alain Matta, Gary Panariello, Study of Mitigation Strategies for Progressive Collapse of a Reinforced Concrete Commercial Building, Journal of Performance of Constructed Facilities,2006,20(4):384-390.
    [107]Osama A. Mohamed, Progressive Collapse of Structures:Annotated Bibliography and Comparison of Codes and Standards, Journal of Performance of Constructed Facilities,2006,20(4):418-425.
    [108]Uwe Starossek, Typology of progressive collapse, Engineering Structures, 2000,29(9):2302-2307.
    [109]Ellingwood, B. R. Mitigating Risk from Abnormal Loads and Progressive Collapse. Journal of Performance of Constructed Facilities,2006,20(4): 315-323.
    [110]Bruce R. Ellingwood, Strategies for Mitigating Risk of Progressive Collapse, Structures 2005.
    [111]Ellingwood, B., and Dusenberry, D. O. Building design for abnormal loads and progressive collapse. Comput. Aided Civ. Infrastruct. Eng.2005,20:194-205.
    [112]Ellingwood, B., et al. Probability-based load criteria:Load factors and load combinations.1982, J. Struct. Div.,108(5):978-997.
    [113]Baldridge S. M. and Humay F.K., Multi Hazard Approach to Progressive Collapse Mitigation,2005, Structures 2005.
    [114]Razdolsky L., Explosion in a High-Rise Building, Structures 2005.
    [115]Kapil Khandelwal and Sherif El-Tawi, Progressive collapse of moment resisting steel frame buildings,2005,Structures 2005.
    [116]Kapil Khandelwal, Sherif El-Tawil, Catenary Action during Collapse of Steel MRF Buildings,2006, Structures 2006.
    [117]Colin Gurley, Progressive Collapse and Earthquake Resistance, Practice Periodical on Structural Design and Construction,2008,13(1):19-23.
    [118]Fintel, M., Firnkas, S., Speyer, I. J., and Popoff, A. Design Against Progressive Collapse. PCI journal,1997,22(1):116-121.
    [119]John R. Hayes, Stanley C. Woodson, Robert G. Pekelnicky et al. Can Strengthening for Earthquake Improve Blast and Progressive Collapse Resistance? Journal of Structural Engineering,2005,131(8):1157-1177.
    [120]Hatem Tagel-Din and Nabil A. Rahman, Simulation of the Alfred P. Murrah Federal Building Collapse due to Blast Loads, AEI 2006.
    [121]Ramesh B. Malla, Puneet Agarwal, Inelastic Dynamic Progressive Collapse Analysis of Truss Structures,2006, Structures 2006.
    [122]Nanci Buscemi, Shalva Marjanishvili, SDOF Model for Progressive Collapse Analysis,2005, Structures 2005.
    [123]Graham Powell, Progressive Collapse:Case Studies Using Nonlinear Analysis, 2005, Structures 2005.
    [124]Ru Liu, Buick Davison, Andrew Tyas, A study of progressive collapse in multi-storey steel frames, Structures 2005.
    [125]R. Shankar Nair, Preventing Disproportionate Collapse, Journal of Performance of Constructed Facilities,2006,20(4):309-314.
    [126]Donald E. Grierson, Mohammad Safi, Lei Xu, Yuxin Liu, Simplified Methods for Progressive-Collapse Analysis of Buildings,2005, Structures 2005.
    [127]D.Z.Yankelevsky, V.Yagust, A.N.Dancygier, Y. Karinski, S.Schwarz, Progressive collapse of precast panel buildings subjected to external to external loading,2005,Structures 2005.
    [128]Mohammed Ettouney, Robert Smilowitz, and Tod Rittenhouse, Blast Resistant Design of Commercial Buildings, Practice periodical on structural design and construction,1996,1(1):31-39.
    [129]Shalva Marjanishvili, Elizabeth Agnew, Comparison of Various Procedures for Progressive Collapse Analysis, Journal of Performance of Constructed Facilities,2006,4(1):365-374.
    [130]S. M. Marjanishvili, Progressive Analysis Procedure for Progressive Collapse, Journal of Performance of Constructed Facilities,2004,18(2):79-85.
    [131]Sherif El-Tawil, Kapil Khandelwal, Sashi Kunnath, H.S. Lew, Macro models for progressive collapse analysis of steel moment frame buildings, Structures 2007.
    [132]Lynn K.M., Isobe D., Structural collapse analysis of framed structures under impact loads using ASI-Gauss finite element method, International Journal of Impact Engineering,2006,34:1500-1516.
    [133]Vladimir I. Yagust and David Z. Yankelevsky, On Potential Progressive Failure of Large-Panel Buildings, Journal of Structural Engineering,2007, 133(11):1591-1603.
    [134]Mark A. Cesare, Juan C. Archilla. A Model for Progressive Collapse of Conventional Framed Buildings,17th ANALYSIS AND COMPUTATION SPECIALTY CONFERENCE,2006.
    [135]Donald O. Dusenberry, Ronald O. Hamburger, Practical Means for Energy-Based Analyses, of Disproportionate Collapse Potential, Journal of Performance of Constructed Facilities,2006,20(4):336-348.
    [136]Izzuddin B.A, Vlassisa A.G, Elghazoulia A.Y and Nethercota D.A. Progressive collapse of multi-storey buildings due to sudden column loss-Part Ⅰ: Simplified assessment framework, Engineering Structures.2008,30(5): 1308-1318.
    [137]Izzuddin B.A, Vlassisa A.G, Elghazoulia A.Y and Nethercota D.A, Progressive collapse of multi-storey buildings due to sudden column loss-Part Ⅱ: Application, Engineering Structures.2008,30(5):1424-1438.
    [138]Vlassis A.G., Izzuddin B.A., Elghazouli A.Y., Nethercot D.A., Progressive collapse of multi-storey buildings due to failed floor impact, Engineering Structures,2009,31:1522-1534.
    [139]Pekau O.A., Yuzhu Cui, Progressive collapse simulation of precast panel shear walls during earthquakes, Computers and Structures,2006,84:400-412.
    [140]Kfir Menchel; Thierry J. Massart; Yves Rammer, and Philippe Bouillard, Comparison and Study of Different Progressive Collapse Simulation Techniques for RC Structures, Journal of Structural Engineering,2009, 135(6):685-697.
    [141]Val, D. V., and Val, E. G. Robustness of frame structures. Struct. Eng. Int. (IABSE, Zurich, Switzerland),2006,16(2):108-112.
    [142]Hyun-Su Kim, Jinkoo Kim, Da-Woon An, Development of integrated system for progressive collapse analysis of building structures considering dynamic effects, Advances in Engineering Software,2009,40:1-8.
    [143]Jinkoo Kim, Taewan Kim, Assessment of progressive collapse-resisting capacity of steel moment frames, Journal of Constructional Steel Research, 2009,65:169-179
    [144]Denby G. Morrison, Ikuo Hirasawa and Mete A. Sozen. Lateral-load tests of R/C slab-column connections. Journal of Structural Engineering,1983, 109(11):2698-2714.
    [145]Denby G. Morrison. Dynamic Lateral-load tests of R/C column-slabs. Journal of Structural Engineering,1985,111(3):685-698.
    [146]Sami Megally and Amin Ghali. Design considerations for slab-column connections in seismic zones. ACI Structural Journal,1994,91(3):303-314.
    [147]Sami Megally and Amin Ghali. Punching shear design of earthquake-resistant slab-column connections. ACI Structural Journal,2000,97(5):720-730.
    [148]Uniform Building Code UBC 97, International Conference of Building Officials, Whittier, Calif.,1997.
    [149]Hawkins,N.,and Mitchell,D.Progressive collapse of Flat Plate Structures[J].AC I journal,Technical Paper Title No.76-36,proceedings,197976(7):755-808.
    [150]Mitchell, D. and Cook, W. D. Preventing progressive collapse of slab structures. Journal of the Structural Division,1984.110(7):1513-1532.
    [151]Ru Liu, Buick Davison, Andrew Tyas. A Study of Progressive Collapse in Multi-Storey Steel Frames. Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium.New York,2005,122-132
    [152]Chengqing Wu and Hong Hao. Safe Scaled Distance for Masonry Infilled RC Frame Structures Subjected to Airblast Loads. Journal of Performance of Constructed Facilities.2007,21(6):422-431.
    [153]Frank E. Richart, Reinforced Concrete Wall and Column Footings. ACI Structural Journal,1948.45(2):97-128.
    [154]Moe J.. Shearing Strength of Reinforced Concrete Slabs and Footings under Concentrated Loads,Development Department Bulletin D47,Portland Cement Association,Skokie,Illinois.1961.
    [155]Hawkins N.M., Cirswell M.E., and Regan F., Shear Strength of Slabs Without Shear Reinforcement Shear in Reinforced Concrete. ACI Publication,1974. 2(SP-42).
    [156]Regan P.E., A Comparison British and ACI 318-71 Treatments of Punching Shear aci SP-42:Shear in Reinforced Concrete. ACI Structural Journal,1974. 2:881-904.
    [157]Regan P.E., Symmetric punching of reinforced concrete slabs. Magzine of Concrete Research,1986.38(136):115-128.
    [158]Islam S. and Park R., Tests on Slab-Column Connections with Shear and Unbalanced Flexure. Journal of the Structural Division, ASCE,1976.102(3): 549-568.
    [159]Hawkins N. M., Corley W. G., Transfer of Unbalanced Moment and Shear from Flat Plates to Columns, ACI SP-30-7, pp.147-176, Detroit, USA,1971.
    [160]Elgabry A., Moment Transfer by Shear in Slab-Column Connections, ACI Structural Journal, Vol.93,1996:187-196,
    [161]Krueger G., Burdet O., Favre R., Punching Tests on RC Flat Slabs with Eccentric Loading,2nd Intern. Ph.D. Symposium in Civil Engineering, Budapest 1998, Budapest, Hungary,1998, pp.1-8.
    [162]Carl Erik Broms. Flat plates in seismic areas:comparison of shear. ACI Structural Journal,2007,104(6),712-721.
    [163]Mary Beth D. Hueste, Jo Ann Browning, Andres Lepage, and John W. Wallace. Seismic design criteria for slab-column connections. ACI Structural Journal, 2007,104(4),448-458.
    [164]Thomas H.-K. Kang and John W. Wallace. Dynamic responses of flat plate systems with shear reinforcement. ACI Structural Journal,2005,102(5), 763-773.
    [165]Thomas H.-K. Kang and John W. Wallace. Seismic performance of reinforced concrete slab-column connections with thin plate stirrups. ACI Structural Journal,2008,105(5),617-625.
    [166]Ying Tian, James O. Jirsa, Oguzhan Bayrak, Widianto, and Jaime F. Argudo. Behavior of slab-column connections of existing flat-plate structures. ACI Structural Journal,2008,105(5),561-569.
    [167]Ying Tian, James O. Jirsa, and Oguzhan Bayrak. Strength evaluation of interior slab-column connections. ACI Structural Journal,2008,105(6),692-700.
    [168]Jack P. Moehle and John W. Diebold. Lateral load response of flat-plate frame. Journal of Structural Engineering,1985,111(10),2149-2164.
    [169]马云昌,吕西林.钢筋混凝土板柱节点的抗震性能研究.建筑结构学报,2001,2(4),49-54.
    [170]H. Marzouk, Moustafa Osman, and A. Hussein. Cyclic loading of high strength lightweight concrete slabs. ACI Structural Journal,2001,98(2),207-214.
    [171]Laurel M. Dovich and James K. Wight. Effective slab width model for seismic analysis of flat slab frames. ACI Structural Journal,2005,102(6),868-875.
    [172]Ian Robertson and Gaur Johnson. Cyclic lateral loading of nonductile slab-column connections. ACI Structural Journal,2006,103(3),356-364.
    [173]Y. S. Cho. Structural performance of RC flat plate slab shear-reinforced interior connections under lateral loading. Magazine of Concrete Research,2009,61(3), 155-164.
    [174]Y.-S. Cho, S.-Y. Noh and H.-W. Kim, Punching shear reinforcing using studs with steel plates in reinforced concrete flat plates. Magazine of Concrete Research,2009,61(9),721-729.
    [175]Daniel N. Farhey, Moshe A. Adin, z and David Z. Yankelevsky. RC flat slab-column subassemblages under lateral loading. Journal of Structural Engineering,1993,119(6),1903-1916.
    [176]Wood R.H. Plastic and elastic design of slabs and plates. Thamed and Hudson; 1961.
    [177]Johansen K.W. Yield line theory. Circular slabs. London:Cement and concrete association; 1962.75-6.
    [178]Park P. Ultimate strength of rectangular concrete slabs under short term uniform loading with edges restrained against lateral movements. Proceedings of Institution of Civil Engineers, vol.28. London, England; June 1969. pp. 125-50.
    [179]Mansur M. A., Ahmad I.. Punching Shear Strength of Simply Supported Ferro cement Slabs. Journal of Materials in Civil Engineering,13(6):418-426.
    [180]建筑结构荷载规范(GB50009-2001),北京:建筑工业出版社.2002.
    [181]Li Q S, Wu J F. Correlation of dynamic characteristics of a super-tall building from full-scale measurements and numerical analysis with various finite element models. Earthquake Engineering and Structural Dynamics,2004,33: 1311-1336
    [182]徐丽.基于模态参数的混凝土框架结构损伤诊断研究.[湖南大学博士学位论文],长沙:湖南大学,2004,1-124.
    [183]周云.地基板与混凝土框架结构参数识别的试验与研究.[湖南大学博士学位论文],长沙:湖南大学,2008,1-132.
    [184]周先雁,沈蒲生,程翔云.用振动参数识别技术对混凝土框架进行破损评估.土木工程学报,1998,31(2):39-45.
    [185]陈跃庆,吕西林,李培振等.分层土—基础—高层框架结构相互作用体系振动台模型试验研究.地震工程与工程振动,2001,21(3):104-112
    [186]Stylianidis P. M, Nethercot D. A, Izzuddin B.A, and Elghazouli A. Y. Progressive Collapse:Failure Criteria Used in Engineering Analysis. Structures Congress,2009,1811-1820.
    [187]Ingeralev A., The Strength of Rectangular Slabs. J. Inst. Struct. Eng.,1(1). 1923, pp:3-14.
    [188]Hognestad E.. Yield Line Theory for the Ultimate Flexural Strength of Reinforced Concrete Slab. Proc. ACI. 24.1953.637-656.
    [189]Park R. Gamble W.L. Reinforced concrete slab. John Wiley & Sons Inc, New York.1979.
    [190]Park R. and Paulay T. Reinforced Concrete Structures, Wiley, New York,1975, pp:769.
    [191]Ockleston A.J. Arching action in reinforced concrete slabs. The structural engineer,1958.197-201.
    [192]Black M. S., Ultimate Strength Study of Two-way Concrete Slabs, Journal of Structural Division, ASCE,1975,101(1):311-324.
    [193]Lubliner J, J Oliver, S Oller, E Oate. A plastic-damage model for concrete. International Journal of Solids and Structures,1989,25(3):299-329.
    [194]Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics,1998,124(8):892-900.
    [195]Taylor R. and Hayes B., Some Tests on the Effect of Edge Restraint on Punching Shear in Reinforced. Concrete Slabs, Magazine of Concrete Research,1935,17(50):39-44.
    [196]Aoki Y. and Seki H., Shearing strength and cracking in two-ways slabs subjected to concentrated load. Cracking Defection and Ultimate Load of concrete Slab System. ACI Special Publicaton 30. American Concrete Institute Detroit,1971,108-126.
    [197]Tong P. Y., and Batchelor B., Compressive Membrane Enhancement in Two-Way Bridge Slabs, ACI Publication SP-30,1971.271-288.
    [198]Barrington deV. Batchelor, Shear Strength of Two-Way Bridge SlabsJournal of the Structural Division,1976,102(12),2315-2331.
    [199]Timoshenko S., and Woinowsky-Krieger S., J.N.板壳理论.板壳理论翻译组.北京.科学出版社.1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700