结构及工艺参数变化对双喷嘴挡板阀性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服阀由于具有高性能、高可靠性、低功耗、体积小以及重量轻等特点,在航空航天领域得到了广泛的应用。具有代表性的双喷嘴挡板力反馈两级电液伺服阀,其前置放大级为双喷嘴挡板阀,其性能的优劣对整个电液伺服阀的性能有着重要的影响。本文依据某航天科工集团研究院的委托项目,首先对两级电液伺服阀的前置放大级——双喷嘴挡板阀的结构参数和工艺参数变化对其性能的影响进行研究,来寻求双喷嘴挡板阀的最佳参数,其次对双喷嘴挡板阀流固耦合方程及影响因素进行分析,最后对影响双喷嘴挡板阀性能影响的主要参数进行实验研究。
     文中首先针对某航天科工集团研究院的双喷嘴挡板伺服阀的先导级——双喷嘴挡板阀建立数值模拟计算模型,采用流场数值模拟分析方法对力反馈两级电液伺服阀的前置级液压放大级——双喷嘴挡板阀在结构参数变化时的不同流场进行对比分析研究,如:固定节流孔的直径、长度、内夹角、腔内径;喷嘴直径、长度、内外夹角、腔内径和端面直径;回油节流孔直径以及零位间隙等结构参数,分析了各种参数下双喷嘴挡板阀的流场特性,并计算流量系数和功率损失,同时应用正交试验法对流场数值模拟结果进行分析,找到影响双喷嘴挡板阀性能参数的主次因素,同时也得出功率损失最小时的最佳的参数组合。
     其次对工艺参数变化如:供油压力、回油压力、油液温度和挡板偏转角变化时,对双喷嘴挡板阀性能影响的主次因素,并通过正交试验法建立不同参数下的数值模拟试验模型,通过数值模拟分析和计算,找到影响阀性能的主次参数和最佳参数组合。
     再次对基于流固耦合,将挡板组件的变形挠度方程、挡板与喷嘴间的径向压差流动方程作为协调方程,将其带入伺服阀内部的压力—流量方程组中,建立双喷嘴挡板阀的流固耦合方程,分析挡板刚度对于双喷嘴挡板力反馈伺服阀性能的影响。而后应用正交试验法分析双喷嘴挡板阀参数变化时对压力、流量的影响,同时也对挡板刚度对伺服阀性能的影响进行分析,研究结果对双喷嘴挡板力反馈伺服阀的挡板—反馈弹簧杆的设计具有一定的参考价值。
     最后以某航天科工集团研究院提供的某种型号的双喷嘴挡板伺服阀为测试对象,对改变阀的固定节流孔直径、喷嘴挡板间隙以及油液温度这三种情况的静耗量进行测试研究,并与前述数值计算获得的结果相比较,验证所建立的计算模型以及数值模拟的正确性,所做研究对双喷嘴挡板伺服阀的设计和分析具有参考价值。
Electro-hydraulic servo valve has the advantages of high performance, high reliability,low power consumption and small size, light weight and other characteristics, so it is usedwidely in aviation and aerospace in electro-hydraulic servo system. At present, doublenozzle flapper force feedback two-stage servo valve is representative, the first stage ofwhich is double nozzle flapper valve, its performance has an important influence on theperformance of the electro-hydraulic servo valve. This paper takes a commissioned projectof one aviation group company as the background, analyzing characteristics of thepreamplifier stage of the two-stage servo valve——double nozzle flapper valve, whenchanging the structural and technical parameters, searching the best parameters; Andestablishing function of the double nozzle flapper valve which basing on fluid-solidcoupling, and analysis the influencing factors; Setting experimental research on doublenozzle flapper valve of the main parameters that influencing the performance of thedouble nozzle flapper valve.
     In this thesis, numerical simulation model of different structural parametercombination of the double nozzle flapper valve is established firstly, which aimed at thepreamplifier stage of double nozzle flapper servo valve of one group company. Thesestructural parameters such as: the diameter, the length, the inner angle, the cavity diameterof the fixed orifice; and the diameter, the length, the inner and outer angle, the cavitydiameter, the transverse diameter of the nozzle; the diameter of the return oil orifice andzero distance and so on. Analyzing the the interior flow field performance of the doublenozzle flapper valve, and caculating the flow efficient and the power loss, usingorthogonal test method to find out the primary and secondary factors that affecting itsperformance, and the same time find out the best parameter combination of the doublenozzle servo valve which has the minimum power loss.
     Secondly, the changing of the working condition can influence the flow field of thedouble nozzle flapper servo valve, such as oil supply pressure, oil return pressure, oiltemperature and baffle deflection, and so on. In order to study the primary and secondary factors affecting the flow field when these external parameters change, by usingorthogonal test method to establish numerical simulation model that has differentparameters, through analysis and calculation finding out the best parameter combinationthat has the minimum power loss.
     And then, with the changing of the parameters of the double nozzle flapper valve theflow field will be changed, the same time the changing flow field will effect on the flapper,based on the fluid-solid coupling effect, the mathematics model of the doubleflapper-nozzle servo valve with the elastic flapper was established, and the influence ofthe stiffness of the flapper on the performance of the servo valve was analyzed.Orthogonal test is used to analyze the changing of the pressure and the flow field of thedouble nozzle flapper valve when changing the parameters, the proposed researchanalyzes the influence of the flapper stiffness on the double flapper-nozzle servo valve,and provides the theoretical basis for the design of the flapper-nozzle force feedback servovalve.
     Lastly, with one certain type of double nozzle flapper servo valve as the experimentaltest object which provides by one group company, testing the static consumption of thevalve when changing the the fixed orifice diameter, distance between nozzle and flapper,and the oil temperature, and then comparing with the numerical results obtained, findingthat experimental testing and numerical calculation results are basically identical, whichverified the correctness of the calculation model and numerical simulation, which has areference value for the design and analysis of the double nozzle flapper servo valve.
引文
[1]方群.电液伺服阀技术发展[J].液压与气动,2012(8):143-147.
    [2]黄增,侯保国,方群,等.射流管式与喷嘴挡板式电液伺服阀之比较[J].流体传动与控制,2007,23(7):43-45.
    [3]李其朋,丁凡.电液伺服阀技术研究现状及发展趋势[J].工程机械,2003(6):28-32.
    [4]黄人豪,濮凤根.液压控制技术回顾与展望[J].液压气动与密封,2002,96(6):1-9.
    [5]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压,2007,35(11):162-165.
    [6]陈彬,易孟林.电液伺服阀的研究现状和发展趋势[J].液压与气动,2005,6:5-8.
    [7] Ogata K,卢伯英.现代控制工程[M].北京:电子工业出版社.2000:1~10.
    [8]刘小初.三级电液伺服阀特性及其控制技术研究[D].哈尔滨:哈尔滨工业大学.2010:2-4.
    [9] Schothorst G V.Modelling of Long-Stroke Hydraulic Servo-Systems for Flight Simulator MotionControl and System Design[M].Delft University of Technology.1997:26~51.
    [10] Sirouspour M R,Salcudean S E.On the Nonlinear Control of Hydraulic Servo-Systems[J],Proceedings of the2000IEEE International Conference on Robotics and Automation.2000:1276-1282.
    [11] He Y B,Chua P S K.Performance Analysis of a Two-Stage Electro-hydraulic Servo-valve inCentrifugal Force Field[J].Journal of Fluids Engineering.January,2003.
    [12] Van Wel O P.The Modelling of an Electrohydraulic Servovalve[M].Delft University ofTechnology,Mechanical Engineering Systems and Control Group.1992:1~30.
    [13] Krivts I L.Optimization of Performance Characteristics of Electro-pneumatic (Two-Stage) ServoValve[J].Journal of Dynamic Systems, Measurement,and Control,2004(6):416~420.
    [14] Panagiotis Chatzakos, Evangelos Papadopoulos. On Model-based Control of HydraulicActuators[J].12th International Workshop on Robotics in Alpe-Adria-Danube RegionCassino.2003.
    [15] Dean H,Kim,Tsu Chin T.A Linearized Electro-hydraulic Servo valve Model for ValveDynamics Sensitivity Analysis and Control System Design[J].Journal of Dynamic Systems,Measurement and Control.2000(122):179-187.
    [16] Zeb J.Mathematical Modeling of a Position Control Electrohydraulic Servosystem[J].Secondinternational Bhurban conference on applied sciences and technology.2003:564–574.
    [17] Papadopoulos E,Mu B,Frenette R.On Modeling Identification and Control of a Heavy-dutyElectro-hydraulic Harvester Manipulator[J]. IEEE/ASME Transactions onMechatronics.2003(8):178-187.
    [18]母东杰,李长春,延皓,等.双喷嘴挡板伺服阀非线性建模及其线性化[J].机械工程学报,2012,48(2):197-202.
    [19] Mu Dongjie,Li Changchun.A New Mathematical Model of Twin Flapper-nozzle Servo ValveBased on Input-output Linearization Approach[C]. Management Science and ElectronicCommerce (AIMSEC),20112nd International Conference on Digital Object Identifier,2011:3662-3666.
    [20] Mu Dongjie,Li Changchun.Numerical Simulation of Fluid Transients in Servo-ControlledHydraulic Piping [C]. The2nd International Conference on Manufacturing Science andTechnology,Singapore,September16-18,2011:2262-2268.
    [21] Wang Jue,Niu Baoliang.Nonlinear Characteristic Modeling of Servo Valve on Electro-hydraulicShaking Table's Dynamic Characteristic[J].Chinese Hydraulics&Pneumatics,2008(6):51-53.
    [22] Wang Yongqin,Zhang Yunfei,Yan Xingchun,etc.Nonlinear Characteristic Modeling of ServoValue on Hydraulic Bending Roll System's Dynamic Characteristic[J].Journal of Chong QingUniversity (Natural Science Edition),2005,28(11):6-8.
    [23] Xu Ming.Research on Electro Hydraulic Proportional Control for Heavy Vehicle Blend BrakingSystem[J].Journal of China Ordnance.2009(1):6-10.
    [24] Yang Junhong, Yin Ziqiang. Nonlinear Modelling and Feedback Linearization ofValve-controlled Asymmetrical Cylinder[J]. Journal of Mechanical Engineering,2006,42(5):203-207.
    [25] Monhammad R.On the Nonlinear Control of Hydraulic Servo-systems[J].Proceedings IEEEInternational Conference on Robotics and Automation,2006(2):1276-1282.
    [26] Wang Xiaoming,Cui Pingyuan.Controllability of affine nonlinear systems[J].Control andDecision.2008(23):1129-1134.
    [27] Jacob,Mchenya M,Zhang Shengzhuo,et al.A study of Flow-field Distribution between theFlapper and Nozzle in a Hydraulic Servo-valve[C].Fluid Power and Mechatronics (FPM),2011International Conference on Digital Object Identifier:2011:658-662.
    [28]陈召国,黄琪.双喷嘴挡板电液伺服阀流量特性的研究[J].机床与液压,2006,(3):115-117.
    [29]陈召国,李志刚.双喷嘴挡板电液伺服阀压力特性的研究[J].试验研究,2005(7):28-30.
    [30]陈召国,丁凡,蔡悦华.单级双喷嘴挡板电液伺服阀的特性研究[M].机床与液压,2007,35(4):114-116.
    [31] Chen Zhaoguo,Huang Qi.Research on Static Flow Characteristics of Two Flapper-nozzle ServoValve[J].Machine and Hydraulic,2006.
    [32]冀宏,魏列江,方群,等.射流管伺服阀射流管放大器的流场解析[J].机床与液压,2008,36(10):119-121.
    [33]訚耀保,黄伟达,张曦.电液伺服阀喷嘴挡板阀流场分析[J].流体传动与控制,2011,(3):1-4.
    [34] Lin S J,Akers A.Dynamic Analysis of a Flapper Nozzle Valve[J]. Journal of Dynamic Systems,Measurement and Control,1991,(113):163-167.
    [35]孙春耕,罗璟,彭志飞,等.双喷嘴挡板阀主阀流场的CFD分析及结构优化[J].液压与气动,2012,(3):30-32.
    [36] Zhang Li,Luo Jing,Yuan Ruibo,et al.The CFD Analysis of Twin Flapper-nozzle Valve in PureWater Hydraulic[J].Procedia Engineering,2012,(31):220-227.
    [37] Peng Zhifei,Sun Chungeng,Yuan Ruibo.The CFD Analysis of Main Valve Flow Field andStructural Optimization for Double-nozzle Flapper Servo Valve[C].International Conference onAdvances in Computational Modeling and Simulation,2012,31:115-121.
    [38]黄浩,周渊,陈奎生,等.双喷嘴挡板电液伺服阀主要参数的优化[J].武汉科技大学学报,2011,34(6):455-457.
    [39] Huang hao,Yao bi,Jin Xiaohong.Numerical Simulation of the Internal Flow Field of MovingCoil Servo Valve. Wuhan: Journal of Wuhan Universtiy of Science and Technology,2010,33(2):214-218.
    [40] Huang Hao,Lei Huihu.Simulation Study on Spool Edge's Round Angle Effects on Spool ValveOrifice Discharge Characteristic[C].Proceedings of2011International Conference on Electronicand Mechanical Engineering and Information Technology,EMEIT2011,(2):867-870.
    [41]李如平,聂松林,易孟林.固定节流孔影响水压伺服阀静态特性试验研究[J].中国机械工程,2009,20(6):652-656
    [42] Nie S L,Huang G H,Li Y P,et al.Research on Low Cavitation in Water Hydraulic Two-StageThrottle Poppet Valve[J].Journal of Process Mechanical Engineering,2006, v220(3),167-179.
    [43] Li Ruping,Nie Songlin,Yi Menglin,et al.Simulation Investigation on Fluid Characteristics ofJet Pipe Water Hydraulic Servo Valve Based on CFD[J].Journal of Shanghai University (EnglishEdition),2010(10).
    [44] Nie S L,Huang G H,Li Y P.Tribological Study on Hydrostatic Slipper Bearing with AnnularOrifice Damper for Water Hydraulic Axial Piston Motor[J].Tribology International,2006.
    [45]高殿荣,王益群.管道节流孔口流场的有限元数值模拟[J].流体机械,2000,28(5):29-31,28.
    [46] Gao Dianrong,Qiao Haijun,Lu Xianghui.Finite Element Numerical Simulation and PIVMeasurement of Flow Field inside Metering-in Spool Valve[J]. Chinese Journal of MechanicalEngineering.2009,22(01):106-108.
    [47] Geron M,Paciorri R,Nasuti F,et al.Flow Field Analysis of a Linear Clustered Plug Nozzle withRound-to-Square Modules[J].Aerospace Science and Technology,2007,11(2-3):110-118.
    [48]程耕国,程平,李受人.节流管孔流动参数与雷诺数关系的数值研究[J].计算机工程与设计,2005,26(3):575-576,607.
    [49]程平,程耕国.节流孔口半径对流体诸变量影响的数值解析[J].科学技术与工程,2003,3(1):10-13.
    [50] Rafael Aman,Heikki Handroos,Tero Eskola.Computationally Efficient Two-Regime FlowOrifice Model for Real-Time Simulation[J].Simulation Modelling Practice and Theory,2008,16(8):945-961.
    [51] Henry K,Nahra,Kamotani Y.Bubble Formation from Wall Orifice in Liquid Cross-Flow underLow Gravity[J].Chemical Engineering Science,2000,55(20):4653-4665.
    [52] Pham,Xuan Hong Son.Research on fluid characteristics of jet pipe electro-hydraulic servo-valvebased on structural parameters.Proceedings of the20124th International Conference onIntelligent Human-Machine Systems and Cybernetics, IHMSC2012,(2):310-313.
    [53] Tao Wang,Maolin Cai,Kenji Kawashima,etc.Modelling of a nozzle-flapper type pneumaticservo valve including the influence of flow force[J].International Journal of Fluid Power.2005,6(3):33-43.
    [54]杨国来,陈亮,李秀华,等.锥直形喷嘴内部结构对射流流场影响的数值模拟[J].液压与气动,2009,(11):6-8.
    [55] Huang Hao,Yao Bi,Jin Xiaohong.Numerical simulation of the internal flow field of moving coilservo valve. Wuhan: Journal of Wuhan University of Science and technology,2010,33(2):214-218.
    [56] Hao Huang,Huihu Lei.Simulation study on spool edge's round angle effects on spool valveorifice discharge characteristic.Proceedings of2011International Conference on Electronic andMechanical Engineering and Information Technology,EMEIT2011,(2):867-870.
    [57] Pan X.D.,Wang G.L.,Zhang, L..e-Engineering and Digital Enterprise Technology NumericalSimulation Study on Discharge Characteristic of Slide Valve Based on Fluent [J],EquipmentManufacturing Technology,,2007:6–7.
    [58] Xudong Pan,Guang Wang,Dongxiang Shao.Measurement of spool valve overlap value ofservo-valve[J].J Vib Measure Des.2009,29(4):392–397.
    [59] Xudong Pan, Guanglin Wang, Zesheng Lu.Flow field simulation and a flow model ofservo-valve spool valve orifice,Energy Conversion and Management,,2011,52(10):3249-3256
    [60]刘银水,杨友胜,朱玉泉,等.以水为介质阻尼孔气穴流动理论和试验研究[J].机械工程学报,2007,43(2):147-150.
    [61] Liu Yinshui,Wu Zhengjiang,Yang Yousheng.Experimental Study on Cavitation Characteristicsof Water Hydraulic Orifice[C].Proceedings of6th ICFP. Hangzhou:2005:204-207.
    [62]杜学文,邹俊,傅新,等.节流孔流场特性分析及液压泵减振槽研究节流槽结构对气穴噪声的影响[J].浙江大学学报(工学版),2007,41(3):456-460,465.
    [63] Borutzky W, Barnard B, Thoma J. An orifice flow model for laminar and turbulentconditions[J].Simulat Model Practice Theory.2002(10):141-152.
    [64] Masahiro Ishibashi,Masaki Takamoto.Methods to calibrate a critical nozzle and flowmeter usingreference critical nozzles[J].Flow Measurement andInstrumentation.2000(11):293-303.
    [65]杨长安,杨国来,刘志刚,等.三角槽节流孔角度和孔径对气蚀的影响[J].机床与液压,2010,38(2):48-49,52.
    [66]杨长安.节流孔流场特性分析及液压泵减振槽研究[D].兰州:兰州理工大学,2009:11-15.
    [67] Borutzky W, Barnard B, Thoma J. An orifice flow model for laminar and turbulentconditions[J].Simulate Model Practice Theory.2002(10):141-152.
    [68] Zhang Xi,Yin Yaobao,Huang Weida.Influence of Temperature on Null Position PressureCharacteristics of Flapper-nozzle Servo Valve[C].2010International Conference On ComputerDesign And Applications (ICCDA),2010:257-262.
    [69]李长明.振动环境下电液伺服阀特性研究[D].上海:同济大学,2009.
    [70]纪春华,朱煜,徐登峰.阻尼孔振荡流场下的动态特性分析[J].润滑与密封,2011,36(10):4-7.
    [71] Ramamurthi K,Nandakumar K.Characteristics of flow through small sharp-edged cylindricalorifices[J].Flow Measurement and Instrumentation.1999(10):133-143.
    [72]宋学官,蔡林,张华.ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012:250-270.
    [73]李松晶,彭敬辉,张亮.伺服阀力矩马达衔铁组件振动特性分析[J].兰州理工大学学报,2010(6):38-41.
    [74] Ganji M,Behbahani S,de Silva CW.Integrated Modeling of an Electro-hydraulic ServoManipulator Using Linear Graphs[C].20108th IEEE International Conference on Control andAutomation(ICCA2010),2010:303-308.
    [75] Anderson R T,Li P Y.Mathematical Modeling of a Two Spool Flow Control Servo valve Usinga Pressure Control Pilot[J]. Transactions of ASME Journal of Dynamic Systems, Measurementand Control,2002,(124):420--427.
    [76] Lin S J,Akers A.Dynamic Analysis of a Flapper Nozzle Valve[J]. ASME Journal of DynamicSystems,Measurement and Control,1991,(113):163-167.
    [77]张亮,彭敬辉,李松晶.喷嘴挡板伺服阀力矩马达振动特性的谐响应分析[C].《第十五届流体动力与机电控制工程学术会议论文集》,2011.
    [78]李松晶,鲍文.磁流体对伺服阀力矩马达动态特性的影响[J].机械工程学报,2008,44(12):137-142.
    [79]彭敬辉.多场耦合的伺服阀力矩马达衔铁组件振动特性研究[D].哈尔滨:哈尔滨工业大学,2011.
    [80] Urata E. On torque motor generated in a servo valve torque motor using permanentmagnetic[J].IMechE Part C.2007(5):519-527.
    [81]陈元章.基于CFD的电液伺服阀衔铁组件啸叫研究[J].液压气动与密封,2012(9):9-12.
    [82]田恬.管路流固耦合振动研究的发展历史和现状[J].世界华商经济年鉴·科技财经,2012,19(7):25.
    [83]庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2003.
    [84]王冬娜,刘志超.应用正交试验法优化喷嘴结构[J].煤矿机电,2007,(2):68-72.
    [85]杨雄.石油钻头自激振荡脉冲喷嘴真空扩散焊接工艺正交试验研究[J].石油天然气学报,2009,(6):161-164.
    [86]冯志君,周德俭.基于正交实验的电液伺服系统最优参数选择[J].流体传动与控制,2010,(4):35-38.
    [87]翟国富,梁慧敏,王嗥,等.基于正交试验设计的极化磁系统参数优化设计方法的研究[J].中国电机工程学报,2003,23(10):159-162.
    [88]王晓晶,姜继海,苏文海,等.基于摩擦正交实验的连续回转电液伺服马达定子材料的选择[J].液压与气动,2009(5):83-85.
    [89]王幼民,范恒灵.基于正交试验法的电液伺服系统PID控制[J].农业机械学报,2007,38(7):196-198,208.
    [90]靳莲.电液伺服阀优化设计[D].陕西:西北工业大学,2007.
    [91]于勇.Fluent入门与进阶教程[M].北京:北京理工大学出版社,2008.
    [92] Denisikhina D M, Bassina I N,Nikulin D A,etc.Numerical Simulation of self oscillation ofturbulent jet flowing into a rectangular cavity[J].High temperature.2005,43(4):568-579.
    [93] Amirante R,Del Vescovo G,Lippolis A.Flow forces analysis of an open center hydraulicdirectional control valve sliding spool[J].Energy Convers Manage.2006(47):114-131.
    [94]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [95] Amirante R,Del Vescovo G,Lippolis A.Evaluation of the flow forces on an open centredirectional control valve by means of a computational fluid dynamic analysis[J].Energy ConversManage.2006(47):1748-1755.
    [96] Amirante R,Moscatelli PG,Catalano LA.Evaluation of the flow forces on a direct (single stage)proportional valve by means of a computational fluid dynamic analysis[J].Energy ConversManage.2007(48):942-953.
    [97]花克勤.电液伺服阀动态参数寻优[J].机床与液压,2004(10):147-149
    [98]王幼民.电液伺服结构优化[J].安徽机电学院学报,2002(17):13-17
    [99]张正甫.基于虚拟仪器的电液伺服阀测试系统研究[D].广州:广东工业大学,2004.
    [100]Bokov V.Nozzle-flapper sensor mechanistic and statistical concurrent modeling.Measurement,2005(37):47-61.
    [101]刘建.电液伺服阀静动态综合特性计算机辅助测试系统的研发[D].秦皇岛:燕山大学,2004.
    [102]汪首坤,王军政,赵江波,等.电液伺服阀静动态性能测试系统的研制[J].液压与气动,2003(2):18-20.
    [103]David A, McNeil, ack Addlesee, etc. An experimental study of viscous flows incontractions[J].Journal of Loss Prevention in the Process Industries.1999(12):249-258.
    [104]Ioan Ursu,Felicia Ursu,Florica Popescu.Backstepping design for controlling electrohydraulicservos[J].Journal of the Franklin Institute.2006(343):94-110.
    [105]蒋学华,陈国华,韩虎.电液伺服阀动态性能测试系统设计[J].机床与液压,2008,36(8):91-93.
    [106]李健锋,袁锐波,张自华.电液伺服阀测试系统研究[J].液压与气动,2007,12:65-67.
    [107]王广林.伺服阀阀口加工质量自动检测与控制的研究[D].哈尔滨:哈尔滨工业大学,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700