舟山六横近岸环流特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环流是自然界水体中广泛存在的一种水力现象,它对其所处水域的流场特性、悬移物质的输移、地形的演变、近岸生物的生长环境等有着重要的影响,因而引起了许多学者的关注,对其形成、发展及特性进行了一定的研究。
     本文选择了舟山六横岛附近海域作为研究海域,根据现有地形资料,结合六横近岸东北侧水域的水文实测资料,初步分析了六横近岸的环流情况。随后采用Delft-3D软件中的FLOW模块,对六横东北侧的附近水域进行了三维数值模拟,在验证良好的模型基础上,结合实测分析结果,探讨了六横近岸环流的特点。
     实测结果分析表明,在由小岛屿引起的切向地形突变带存在较为明显的横向环流现象,涨潮时段环流基本为顺时针方向,落潮时呈逆时针方向。水下地形突变较明显地带,环流现象也较为明显,急流时刻环流的强度大潮大于小潮,而憩流时段小潮环流的持续时间长于大潮。另外,涨急时刻在A断面近岸坡折带近底层,憩流时刻在近岸水域都存在平面环流,涨憩刻较为明显,尤其在大潮期。区域垂向环流现象不明显。
     数模计算结果认为:在六横近岸坡折带及由小岛屿引起的切向地形突变带存在较为明显的环流现象,它们随着水动力条件的周期性变化而生成、发展和消亡。急流时刻环流基本稳定在坡折带附近,憩流时段环流存在时间约为0.5-2小时,一般在浅水侧生成,消亡于深水侧,环流影响范围在130-700m左右;环流方向自涨潮到落潮,由顺时针方向转为逆时针方向;小潮期急流时刻流速相对较小,憩流时段环流持续时间相对较长,影响范围较大。数模结果还显示,憩流时刻,尤其是涨憩时刻,坡折带附近平面环流现象较为明显。研究水域垂向环流不明显。
     总体而言,由实测数据分析及三维潮流数值模拟得到的环流结果基本吻合,本文较为成功地体现了舟山六横近岸的环流现象。
Natural water circulation is a common phenomenon, in which its waters flow field, suspended material transport, the evolution of topography, the near-shore environment, the growth of organisms have an important impact, which caused the concern of many scholars, they had made researches on its formation, development and characteristics.
     This paper chose the sea near the island of Zhoushan Liuheng as a research area, based on existing topographic data, combined with the measured data of northeast coastal waters of Liuheng, made a preliminary analysis on Liuheng circulation near the shore. FLOW module of Delft-3D software was used to calculate the 3D tidal current of Liuheng, a good model in the verification based on the combination of the measured results of the analysis of the Liuheng coastal circulation features.
     Measured results show that, caused by the small island with a mutation in the tangential topography there existed obvious horizontal circulation, while the clockwise circulation of flood tide, ebb tide was counterclockwise. The more obvious areas of underwater terrain mutation, circulation phenomenon is more obvious, the intensity of spring tide circulation greater than the neap tide about jet stream, while the slack flow of neap tidal circulation time longer than the spring tide. In addition, jet stream times in the A section near the bottom slope break belt, and slack times in the near-shore waters, had obvious flat circulation, especially in the spring tide period. Regional vertical circulation is not obvious.
     Mathematical model results that:near slope break that caused by the small island and near shore formed a obvious circulation phenomenon, they would form, develop and disappear with the change of hydrodynamic force in a tidal circle. The location of circulation were kept at slope in jet stream, while in slack flow, the time would last about 0.5-2 hours, usually formed in shallow water side of the generation, dying in the deep water side,it affected areas was about 130-700m; the circulation direction from the flood tide to ebb tide changed from clockwise to counterclockwise; neap tide moments of jet velocity is relatively small, slack flow duration is relatively long circulation time, and a larger sphere of influence. Mathematical modeling results also show that slack flow of time, especially the flood of slack time, near the slope break flat circulation phenomena are obvious. Vertical circulation of water is not obvious.
     Overall, the trend of the measured data analysis and numerical simulation of 3D circulation obtained results are consistent, the paper reflects the circulation phenomenon of Zhoushan Liuheng coastal successfully.
引文
[1]Stommel H. Thernohaline convection with two stable regimes of flow Tellus,1961, 13,224-230
    [2]Welander P. A simple heat-salt oscillator. Dyn of Atmos and Oceans,1982,6: 233-242
    [3]Marotzke J, Willebrand J. Multiple equilibria of the global thermohaline circulation. Journal of Physical Oceanography,1991,21:1372-1385
    [4]Stocker T F, Wright D G. Rapid transition of the ocean's deep circulation induced by changes in surface water flux. Nature,1991,351:729-732
    [5]Wright D G, Stocker T F. Sensitivities of a zonally averaged global ocean circulation model. J Geophys Res,1992,97:12707-12730
    [6]Fichefet T, Hovine S, Duplessy J C. A model study of the Atlantic circulation during the last glacial maximum. Nature,1994,372:252-255
    [7]Garrett, C. J. R.& J. W. Loder,1981. Dynamical aspects of shallow sea fronts. Phil. Tran. R. Soc. Lond. A302,503-518
    [8]Hill, A.E., L.D.James and P.F. Lindeen et.al. Dynamics of tidal mixing fronts in the North Sea. Phil Trans R. Soc. Lond.,1993,343.431-446
    [9]吴国雄,张学洪.刘辉等.LASG全球海洋-大气-陆面系统模式(GOALS/LASG)及其模拟研究[J].应用气象学报,1997,8(增刊):15-28.
    [10]闰晓勇,张铭.风应力对印度洋上层环流的模拟研究[J].海洋预报.2005,22(3):17-24.
    [11]Blumrberg, A. E, An Estuarine and Coastal Ocean Version of POM[J]. Proceeding of the Princeton Ocean Model Users Meeting(POM96), Princeton, NJ,1996.
    [12]毕亚文,赵保仁.黄海西南部陆架锋区锋断面环流数值模拟[J].海洋科学.1993,6:61-64
    [13]James, I. D.,1978, Estuarine and Coastal Marine Science 7:197-202.
    [14]李徽翡,赵保仁.渤黄东海夏季环流的数值模拟[J].海洋科学.2001,(1):28-31.
    [15]魏泽勋,李春雁,方国洪,等.渤海夏季环流和渤海海峡水体输运的数值诊断研 究[J].海洋科学进展,2003,21(4):454-464.
    [16]乔方利,渡边正孝,袁业立.黄海和东海环流数值研究[J].水动力学进展,1998,A13(2):244-254.
    [17]刘桂梅,王辉,孙松,韩博平.黄海夏季潮汐锋区环流的数值研究.Advances in Atmospheric Sciences(大气科学进展:英文版),2003,20(3):453-460
    [18]苏健.跨陆架锋水交换的数值研究[D].青岛:中国海洋大学,2005.10.
    [19]蔡树群,苏纪兰.南海环流的一个两层模式[J].海洋学报,1995,17(2):14-20.
    [20]蔡恰,李毓湘.南海冬季环流数值模拟[J].热带海洋,1999,18(2):48-55.
    [21]苏纪兰.中国近海的环流动力机制研究[J].海洋学报,2001,23:1-16.
    [22]王卫强,王东晓,施平.南海上层海洋大尺度环流的建立与调整[J].中国科学D辑,2002,32(12):995-1002.
    [23]Thomson J. On the Origin and Winding of Rivers in Alluvial Plains. Proe. Royal Society of London,1876,25(3)
    [24]Leschziner M A, Rodi W. Calculation of Strongly Curved Open Channel Flow. J. Hydr. Div., ASCE, Hy10,1979.10
    [25]王平义.弯曲河道动力学[M].成都:成都科技大学出版社,1995.
    [26]张瑞瑾.论环流结构与河道演变的关系.武汉水利电力学院学报,1963(2)
    [27]董耀华.弯道水流的三维数值模拟[D].武汉水利电力大学,1990
    [28]Rozovskii I L. Flow of Water in Bends of Open Channels. Israel Program for Scientific Translation,1965
    [29]Bathurst J C, Thorne C R, and Hey R C. Secondary Flow and Shear Stress at River Bend J Hydr. Div., AS-CE, Vol.105, Hylo,1979
    [30]芮德繁.连续弯道环流与泥沙冲淤特性数值模拟及实验[D].四川大学,2005.
    [31]童思陈,钟亮,许光祥.弯道水流环流结构的试验研究[J].水运工程,2009.10:32-35
    [32]M. R. Pirestan, i M. R. M Tabataba, i A. A. Salehi Ney shabour. i. U型弯道流速变化的物理型研究[J].人民黄河,2005,(11):71-72.
    [33]Akihiro TOM INAGA, Masashi NAGAO. Secondary flow structures in bends of narrow open channels with various cross sections[R]. ICHE(conferences in Seoul), 2000.1-9.
    [34]罗索夫斯基.弯道水流的研究[J].尹学良译.泥沙研究,1958,3(1):83-95.
    [35]张红武,吕昕.弯道水力学[M].北京:水利电力出版社,1993.
    [36]张耀先,丁新求,等.弯道水流横向流动与输沙研究[J].水利建设与管理,2003:477-479.
    [37]宋志尧.计算弯道环流的通用公式[J].泥沙研究,2003,8(4):19-23.
    [38]孙东坡,朱岐武,等.弯道环流流速与泥沙横向输移研究[J].水科学进展,2006,(1):61-66.
    [39]Pritchard D.W. The dynamic structure of coastal plain estuary [J]. Marine Research,1956, (15):33-42
    [40]Pritchard D.W. Estuarine circulation patterns [A]. Proceeding of the America Society of Civil Engineering [C],1955,81-717:1-11
    [41]Sylains G., Boxall S. R. Residual currents and flux estimates in a partially-mixed estuary [J]. Estuarine, Coastal and Shelf Science,46:671-682
    [42]Festa J. F. Hansen D. V. Turbidity maximum in partially mixed estuaries:a two-dimensional model [J]. Estuaries and Coastal Marine Science,1978,7:347-357
    [43]Blumberg A. F. The influence of density variations on estuarine tides and circulations [J]. Estuarine and Coastal Marine Science,1978,7:209-215
    [44]Fortunato A. B., Baptista A. M., Luettich R. A. A three-dimensional model of tidal currents in the mouth of Tagus estuary [J]. Continental Shelf Research, 1997,17(14):1689-1714
    [45]王康十墡,苏纪兰.长江口南港环流及悬移物质输运的计算分析[J].海洋学报,1987,9(5):627-637
    [46]朱建荣,胡松,傅得健,等.河口环流及盐水入侵Ⅰ:模式及控制数值试验[J].青岛海洋大学学报,2003,32(2):180-184
    [47]朱建荣,胡松.河口形状对河口环流和盐水入侵的影响[J].华东师范大学学报(自然科学报),2003,(2):68-73
    [48]包芸,任杰.伶仃洋盐度高度层化现象及盐度锋面的研究[J].水动力学研究与进展,2005,20(6):689-693.
    [49]吴超羽.黄茅海河口小尺度动力结构及其沉积作用[J].中山大学学报(自然科学 版),1995,34(2):86-94
    [50]于东生.基于ADCP的长江口水沙运动分析及三维水流数学模型[D].南京:河海大学,2004.
    [51]Shen J., Kuo A.Y. Numerical investigation of an estuarine front and its associated eddy [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1999,125(3): 127-135.
    [52]Linda M. Huzzey, John M. Brubaker. The Formation of Longitudinal Fronts in a Coastal Plain Estuary [J]. Journal of Geophysical Research,1988,93(C2):1329-1334.
    [53]C.D. Storlazzi et. Cross-shore velocity shear, eddies and heterogeneity in water column properties over fringing coral reefs West Maui, Hawaii [J]. Continental Shelf Research,2005.2,26:401-421.
    [54]朱慧芳.河口切变锋引起的滩槽泥沙交换效应[J].长江流域资源与环境,1995,4(2):54-57.
    [55]应轶甫.珠江口伶仃洋锋的类别及其对沉积的影响[J].热带海洋,1994.5,13(2):25-32.
    [56]蒋国俊,金如义.河口锋特性及其对港口航道泥沙淤积的影响[J].海洋通报,1995.6,14(3):34-40
    [57]Johnson. D. A.. Phyiography, structure and sediment-current interactions. Marine Geology,1984,58:1-34
    [58]Ledbetter. M. T. Bottom current speed in the Vema Channel recorded by particle size of sediment fine-fraction. Marine Geol.,1984,58:137-150
    [59]蒋国俊.峡道效应研究-以舟山群岛峡道地区为例[D].上海:华东师范大学,1996.3.
    [60]蒋国俊,金义如等.舟山马岙峡道的水文泥沙特性和峡道效应[J].海洋通报,2001,20(1):15-22
    [61]蒋国俊,姚炎明.虾峙门水道口门区动力和动力沉积特性[J].海洋通报,1998,17(4):46-54
    [62]蒋国俊等.舟山群岛峡道潮滩动力沉积特性[J].海洋学报,1998.3,20(2):139-147.
    [63]陈沈良.崎岖列岛海区的水文泥沙及其峡道效应[J].海洋学报,2000,3:123-131
    [64]李玉中,陈沈良.洋山港海域余流分离和会聚现象研究[J].水利学报,2003.5,(5):24-29.
    [65]庄骅.洋山港区一期工程港池水域水文泥沙分析[J].水道港口,2001.3,22(1):31-35.
    [66]施青松,张健.崎岖列岛附近海域环境质量现状与分析[J].东海海洋,2002.6,20(2):23-30.
    [67]王庆等.山东庙岛海峡的峡道动力地貌[J].海洋地质与第四纪地质,2006.4,26(2):17-24.
    [68]夏小明等.东海沿岸潮流峡道海岸剖面发育及其动力机制[J].海洋与湖沼,2000.9,31(5):543-552
    [69]郑沛楠,吴德星等.对马海峡环流季节变化的模拟及分析[J].中国海洋大学学报,2008,38(1):7-16.
    [70]丁琦.舟山群岛峡道海区潮流切变锋特性的二维数值研究[D],浙江大学,,2008.8
    [71]寿玮玮.舟山群岛附近海域水动力特征及其对物质输运的影响分析[D],中国海洋大学,2009.5
    [72]曹欣中等.宁波、舟山内海域实测海流分析及潮流场的数值模拟[J].东海海洋,1996.6,14(2):1-9.
    [73]张燕等.宁波-舟山海域环境容量研究Ⅰ.三维潮流数值模拟[J].海洋环境科学,2005.8,24(3):60-63.
    [74]陈倩等.浙江近海潮汐潮流的数值模拟[J].海洋学报,2003.9,25(5):9-20.
    [75]马启南等.杭州湾的三维水流数值模拟[J].海洋工程,2001.11,19(4):58-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700