高负荷压气机叶栅采用附面层抽吸的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代高性能叶轮机械的发展对压气机的负荷提出了越来越高的要求,而负荷的增大将导致附面层增厚、气流阻塞、高损失范围增大等不利影响,因此在提高叶片负荷的同时,抑制或消除附面层分离,降低叶栅的损失,对提高压气机的负荷、减小端部损失、提高压气机效率、增加稳定工作范围意义重大。而附面层吸除技术是一种非常有效的解决手段。
     本文实验以低速平面叶栅风洞为平台,设计并加工了叶片吸力面上不同弦向位置的吸气槽,以及进行吸气和调节吸气量的设备,同时构建了实验台测量和数据采集系统。在不同吸气量(进口流量的0.5%、1.0%和1.5%)和吸气位置(轴向弦长的25%、35%、48%和60%)等条件下,测试了高负荷压气机叶栅在设计冲角下的气动性能。对实验结果进行后处理,得到了测量面上的总压损失系数、二次流矢量、节距平均总压损失系数、叶栅出口节距平均气流角、型面静压系数等重要参数的分布规律。同时还采用墨迹显示方法研究了叶栅端壁和叶片表面的气流流动状况。
     研究结果表明,附面层吸除技术能够有效减弱吸力面的附面层分离、减小角区分离的强度和范围,减小损失,增加叶片负荷并提高气流折转能力,显著改善大转角压气机叶栅气动性能,随吸气量增加,吸力面角区低能流体积聚减弱,阻塞作用减轻,负荷增加,气流落后角减小,且在附面层分离充分发展的位置,采用大吸气量可以得到更明显的改善效果;附面层抽吸对通道涡核心的位置影响较小,却能降低其强度和尺寸,吸气位置位于分离点附近时,吸气对通道涡的抑制效果明显增强;叶片吸力面开全叶高槽进行附面层抽吸对端部气动性能影响较小,叶展中部流动的改善是导致整个叶栅损失下降的主要原因,在分离线后、通道涡尚未充分发展而远离壁面的位置进行抽吸,可明显减小端区的损失;最佳吸气量与吸气位置的布置有关,当吸气位置在原型分离起始位置及其上游位置时,流动并未发生分离或分离程度很小,低能流体相对较少,采用吸力面吸气只能延缓通道涡的发展,在较小的吸气量下即得到了该吸气位置的最佳效果,继续增加吸气量还会对主流区流动产生干扰,导致叶栅气动性能不随吸气量增大而得到更大改善,当吸气位置位于分离刚刚发生的区域时,虽然吸除部分附面层流体减轻了吸气位置后的分离流动,但是由于此时端壁附面层和通道涡已得到较充分的发展,积聚了大量的低能流体,且距离吸力面的横向位置逐渐拉大,必须采用较大的吸气量才能实现较好的抽吸效果,因此对应的最佳吸气量较大,对流场的改善也更为显著。可见,吸气位置的选取对于附面层在压气机中的影响尤为重要。
The development of turbomachine with high performance requires highly-loaded compressor system. However, this leads to boundary layer thickening in compressor cascade, resulting in flow blockage and increase in energy loss. So finding an effective way to reduce or even eliminate the boundary layer separation and thus reduce the energy loss will benefit the increase in blade loading, and the improvment of the compressor performance. Boundary layer suction technology was adopted in this paper to reduce the flow separation in the highly-loaded compressor cascade.
     First, the compressor blades with suction slot as well as the instrument used to control the suction flow rate were designed. Then the data acquisition system was set up. At last, the effects of boundary layer suction on the performance of the compressor cascade under different suction slot locations (25%, 35%, 48% and 60% of the axial chord) and suction flow rates (0.5%, 1.0% and 1.5% of the inlet mass flow rate) were studied. The total loss coefficient, secondary flow vectors, pitch-average total loss coefficient and spanwise outlet flow angle were calculated.
     The results show that investigation presents, compared to conventional cascade, the boundary layer suction can restrain the separated flow, improve the condition of flow on the endwall corner, reduce the loss, increase blade loading and the capability of diffusion. With the appropriate suction and suction flow rate, the compressor performance should be further improved. The boundary layer suction can decrease the strength and size of passage vortex rather than its position. The more downstream suction location is, the effect is more obvious; Boundary layer suction at the suction surface controls the wake effectively and reduces the loss at the midspan of the flow passage remarkably in all the cases studied in this paper. And the endwall loss reduction is visually only when the suction location is placed at where the boundary layer deviates but is not too far from the blade surface; the optimal suction flow rate relates to suction location. When the slot is before the initial separation location, flow separation degree is very small and there is little of low energy fluid. The boundary layer suction can delay the development of passage vortex. It can make best effect with small suction flow rate in this slot. As the suction flow rate rises, more low-energy fluid is removed from the flow passage, so the aerodynamic performance of cascade doesn’t improve with the increment of suction flow rate. When the slot is located into the separation region where the endwall boundary layer and passage vortex have developed fully, a lot of low energy fluid accumulating in the suction corner and the slot is far from the leading edge of blades, so only larger suction flow rate can make a good result. It can be seen that, the suction slot is very important and must be cautious to select.
引文
1. I. Wilke, H–P. Kau. A Numerical Investigation of the Influence of Casing Treatments on the Tip Leakage Flow in a Hpc Front Stage. ASME Paper. 2002:23-40
    2.钟兢军,王会社,王仲奇.多级压气机中可控扩散叶型研究的进展与展望第一部分可控扩散叶型的设计与发展,航空动力学报, 2001, 16(3):205-211
    3.王会社,钟兢军,王仲奇.多级压气机中可控扩散叶型研究的进展与展望第二部分可控扩散叶型的试验与数值模拟,航空动力学报, 2002, 17(1):17-22
    4.恽土林,王世民,阮景发.叶轮机械内具有复合型叶栅流场的计算研究.汽轮机技术, 1996, 38(1):29-34
    5.李绍斌,王松涛,冯国泰,王仲奇.串列叶栅后排静叶周边位置对压气机性能影响的数值研究.工程物理学报, 2004, 25(6):944-945
    6. D. G. Ainley. The Performance of Axial Flow Turbines. Proc. Institution of Mechanical Engineers. 1948, 159: 230-237
    7. D. G. Ainley, G. C. R. Mathieson. A Method of Performance Estimation for Axial Flow Turbines. British ARC R&M 2974. 1951
    8. J. H. Horlock. Axial Flow Turbines. Butterworths Press, London. 1966
    9. H. B. Squire, K. G. Winter, The Secondary Flow in a Cascade of Airfoils in a Non- uniform Stream. J.A.S., April 1951
    10. W. R. Hawthorne, Rotational Flow Through Cascades. J.Mech. & Appl. Math., 1955,3
    11. A. Klein. Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbine. BHRA-T-1004, 1966
    12. L. S. Langston, M. L. Nice, R. M. Hooper. Three-Dimensional Flow within a Turbine Blade Passage. ASME J. Engineering for Power, 1977, 99(1):21-28
    13. C. H. Sieverding. Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages. ASME J. Engineering for Gas Turbine and Power, 1985, 107(4):248-257
    14. O. P. Sharama, T. L. Butler. Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbines Cascades, ASME Journal of Turbomachinery, 1987, 109(2):229-236
    15. R. J. Goldstein, R. A. Spaores. Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades, ASME, J. of Heat Transfer, 1988, 110:862-869
    16. H. P. Wang, S. J. Olson, et al. Flow Visualization in a Linear Turbine Cascade of High Performance Blades, ASME, J. of Turbomachinery, 1997, 119:1-8
    17. C. H. Sieverding, Van den Bosch P., The Use of Coloured Smoke to VisualizeSecondary Flows in a Turbine-Blade Cascade, J. of Fluid Mechanics, 1983, 134:561-569
    18. P. Marchal, C. H. Sieverding. Secondary Flow Within Turbomachinery Bladings. Secondary Flows in Turbomachines, AGARD CP214, 1977
    19. R. E. Gaugler, L. M. Russell. Streamline Flow Visualization Study of a Horseshoe Vortex in a Large-Scale Two-Dimensional Turbine Stator Cascade. ASME Paper 80-GT-4, 1980
    20. J. Ishii, S. A. Honami. Three-Dimensional Turbulent Detached Flow with a Horseshoe Vortex. ASME Journal of Engineering for Gas Turbines and Power. 1986, 108(1):125-130
    21. J. Jilek. An Experimental Investigation of the Three-Dimensional Flow within Large-Scale Turbine Cascades. 1986, ASME Paper 86-GT-170
    22. J. Moore, A. Ransmay. Flow in a Turbine Cascade Part 1: Losses and Leading Edge Effects. ASME Paper 83-GT-68, 1983
    23. A. Yamamoto. Production and Development of Secondary Flows and Losses within Two Types of Straight Turbine Cascades, Part I: A Stator Case. ASME Paper 86-GT-184, 1986
    24. B. Lakshminarayana, J. G. Horlock. Review: Secondary Flows and Losses in Cascades and Axial-Flow Turbomachines. International Journal of Mechanical Sciences, 1963, 5(3):397-409
    25. M. Y. Jabbari, R. J. Goldstein, K. C. Marston, E. R. G. Eckert. Three Dimensional Flow within Large Scale Turbine Cascades. Warme Und-Stoffubertragung. 1992, 27:51-59
    26. R. J. Goldstein, H. P. Wang, M. Y. Jabbari. The Influence of Secondary Flows nears the Endwall and Boundary Layer Disturbance on Convective Transport from a Turbine Blade. ASME Paper 94-GT-165, 1994
    27. T. Sonoda. Experimental Investigation on Spatial Development of Streamwise Vortices in a Turbine Inlet Guide Vane Cascade. ASME Paper 85-GT-20, 1985
    28. H.史里希延.边界层理论(上册).孙燕候等译.科学出版社, 1991:410-435
    29. J. L. Kerrebrock et al. A Family of Designs for Aspirated Compressors. ASME paper. 98-GT-196, 1998
    30.陈懋章.粘性流体动力学基础.高等教育出版社, 2002:123-148
    31. A. Merchant. Aerodynamic Design and Performance of Aspirated Airfoils. ASME Paper. GT-2002-30369, 2002
    32. J. L. Kerrebrock, D.P.Reijnan, W. S. Ziminsky, L. M. Smilg. Aspirated Compressors. ASME Paper. 97-GT-525, 1997
    33. C. Magness, O. Robinson, D. Rockwell. Control of leading edge vortices on delta wing. 1989, AIAA-89-0999
    34. D. Findlay, S.Kern. Numerical investigation of the effect of blowing on high angle of attack flow over delta wings. 1991, AIAA-91-1809
    35. H. Q. Yang. Control of vortex breakdown on a delta wing by leading edge blowing and suction. 1994, AIAA-94-0622
    36. D. B. Owens, J.N.Perkins. Improved performance on highly swept wings by suction boundary-layer control. 1996, AIAA-96-0431
    37. R. J. Loughery, R. A. Horn.Jr., P. C. Tramm. Single Stage Experimental Evaluation of Boundary Layer Blowing and Bleed Techniques for High Lift Stator Blades. 1971, NASA CR-54573
    38. A. J. Wennerstrom. Highly Loaded Axial Flow Compressor: History and Current Development. Journal of Turbomachinery. 1990, 112:567-578
    39. J. L. Kerrebrock, D. P. Reijnan, W. S. Ziminsky, L.M.Smilg. Aspirated Compressors. ASME 97-GT-525, 1997
    40. D. P. Reijnen. Experimental Study of Boundary Layer Suction in a Transonic Compressor. PhD thesis, MIT, Cambridge, MA. 1997
    41. J. L. Kerrebrock, M. Drela, A. A. Merchant, B. J. Schuler. A Family of Designs for Aspirated Compressors. ASME 98-GT-196, 1998
    42. A. A. Merchant. Design an Analysis of Supercritical Airfoils with Boundary Layer Suction. Master’s thesis, MIT. 1996
    43. A. A. Merchant. Design and Analysis of Axial Aspirated Compressor Stages. PhD thesis, MIT, Cambridge, MA. 1999
    44. A. A. Merchant, M. Drela, J. L. Kerrebrock. Aerodynamic Design and Analysis of a High Pressure Ratio Aspirated Compressor Stage. ASME 2000-GT-619, 2000
    45. A. A. Merchant, M. Drela, J.L.Kerrebrock. Aerodynamic Design and Analysis of a High Pressure Ratio Aspirated Compressor Stage. ASME 2000-GT-619, 2000
    46. B. J. Schuler, J. L. Kerrebrock, A. A. Merchant, M. Drela. Design, Analysis, Fabrication and Test of an Aspirated Fan Stage. ASME 2000-GT-618, 2000
    47. B. J. Schuler. Mechanical Design of an Experimental Aspirated Compressor. SM, MIT, Cambridge, MA. 1998
    48. B. J. Schuler. Experimental Investigation of an Aspirated fan Stage. PhD thesis. MIT, Cambridge, MA. 2001
    49. J. L. Kerrebrock. the Prospects for Aspirated Compressors. AIAA-2000-2472
    50. W. K. Lord, D.G.MacMartn, G.Tillman. Flow Control Opportunities in Gas Turbine Engines. AIAA-2000-2234
    51. N. McCabe. A System Study on the Use of Aspirated Technology in Gas Turbine Engines. Master’s thesis, MIT. 2001
    52. M. D. Hathaway. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance. ASME GT-2002-30368, 2002
    53. Kirchner J. Aerodynamic design of an aspirated counter-rotating compressor [D]. Master’s Thesis , Massachusetts Institute of Technology, 2002
    54. Bolln G W J r, Field KJ, Burnes R. F414 engine today and growth potential for 21st cent ury fighter mission challenges[R]. ISABE 9927113
    55. A. A. Merchant, J. L. Kerrebrock. Experimental Investigation of A High Pressure Ratio Aspirated Fan Stage. ASME GT2004-53679, 2004
    56. J. L. Kerrebrock. Design and Test of an Aspirated Counter-Rotating Fan. ASME GT2006-90582, 2006
    57. Ali Merchant, Jack L.Kerrebrock, John J.Adamczyk, Edward Brauscheidel. Experimental Investigation of a High Pressure Ratio Aspirated Fan Stage.
    58.陈芳,陈懋章,蒋浩康.平面叶栅端壁流的试验研究.工程热物理学报. 1988, 9(2):125-130
    59.李锋,汪翼云,崔尔杰.表面吸气方法控制分离的数值模拟.空气动力学学报. 1994, 12(1):36-42
    60.白鹏,周伟江,汪翼云.三角翼大攻角分离流开缝吸气效应研究.航空学报. 1999, 20(5):393-398
    61.舒桃,杨国伟,陆夕云,庄李贤.三角翼大迎角低速绕流及其涡控制的数值模拟.空气动力学学报. 2002, 20(1):64-71
    62.孙弼,刘晓峰,鄢宇鹏,苟剑飞.边界层抽吸技术等对透平通流部分效率的影响.汽轮机技术. 1995, 37(2):65-72
    63.孙弼,刘晓峰,鄢宇鹏.采用边界层抽吸方法提高透平通流部分效率.西安交通大学学报. 1996, 30(6):48-53
    64.王新军,李炎锋,徐廷相.汽轮机静叶表面上抽吸缝对流场影响的数值计算.汽轮机技术. 1998, 40(5):272-276
    65.郭绪垚,俞茂铮.端壁边界层抽吸对透平静叶栅二次流影响的数值研究.西安交通大学学报. 1999, 33(5):49-53
    66.郭绪垚,俞茂铮.采用端壁边界层抽吸方法抑制叶栅二次流的效果分析.工程热物理学报. 1999, 20(6):699-702
    67.郭绪垚,俞茂铮,毛靖儒.端壁边界层抽吸技术在汽轮机调节级静叶栅中的应用.工程热物理学报. 2000, 21(3):298-301
    68.周海,李秋实,陆亚钧.跨音风扇转子叶片抽吸气数值试验探索.航空动力学报. 2004, 19 (3) :408-412
    69.陈浮,宋彦萍,赵桂杰等.附面层吸除对压气机叶栅稠度特性影响,工程热物理学报, 2005, 26(2):211-215
    70.宋彦萍,陈浮,刘军,王仲奇.采用附面层吸除的扩压叶栅变冲角性能,工程热物理学报, 2006, 27(4):589-591
    71.宋彦萍,陈浮,赵桂杰等.吸气槽道形状对扩压叶栅性能的影响,工程热物理学报, 2005, 26(5):761-763
    72. Song Yanping, Chen Fu; Yang Jun, Wang Zhongqi. A numerical investigation of boundary layer suction in compound lean compressor cascades, 2005, ASME Paper GT2005-68441
    73. Song Yanping, Chen Fu; Chen Huanlong, Wang Zhongqi. Effects of air injection on performance of highly-loaded compressor cascades, 2007, ASME Paper GT2007-27062
    74. Chen Fu, Chen Huanlong,Song Yanping, et al. Aerodynamic performance of high-turning curved compressor cascade with boundary layer suction, Journal of Harbin Institute of Technology, 2007, 14(3):341-348
    75.羌晓青.低反动度高负荷吸附式轴流压气机.哈尔滨工业大学工学硕士论文. 2006:12-16:308-311
    76.邓昌清,胡骏.大转角压气机静子叶栅附面层吹吸数值研究.燃气涡轮试验与研究. 2007, 21(7):17-20
    77.南向谊,刘波,靳军,陈云永,侯为民.超声速压气机转子叶片吸力面抽气抑制附面层分离的机理.航空动力学报. 2007, 22(7): 1093-1099
    78.葛正威,葛治美,朱俊强,张宏武,黄伟光,杜辉.吸附式跨声速压气机叶栅流场数值模拟.航空动力学报. 2007, 22(8): 1365-1370
    79.周杨,邹正平,刘火星,叶建.边界层吹吸气对高负荷扩压叶栅性能的影响.推进技术, 2007, 28(6):647-652
    80.牛玉川,朱俊强,聂超群,葛正威.吸附式亚音速压气机叶栅气动性能实验及分析.航空动力学报, 2008, 23(3): 483-489
    81.陈迪,桂幸民.静叶吸气对某轴流压气机裕度影响的研究.航空动力学报, 2008, 23(3):527-533
    82.高祖兴,王新月,李宏新.压气机动叶抽吸气的数值模拟探索.机械设计与制造, 2008, 6(6):115-117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700