轴流压气机转子叶尖间隙非定常动态压力测量与频谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压气机是利用叶片进行机械能量与流体能量相互转换的一种旋转机械,广泛应用于能源动力、航空等与国民经济及国防安全紧密相关的领域。深入研究压气机转子叶尖间隙流场非定常压力脉动,掌握非定常流场结构和能量损失机理,对进一步提高压气机效率是非常重要的。
     本文对一单级轴流压气机的转子叶尖间隙流场的动态压力进行了测量与研究。在靠近转子叶片处机匣端壁上放置Kulite高频动态压力传感器,通过调节压气机不同的工作状态,测量叶尖前后端壁流场动态压力脉动,利用快速傅里叶变换,把压力信号从时域转换到频域,从频谱的角度揭示轴流压气机转子叶尖间隙的非定常压力脉动特征,以及其随着压气机转子转速、出口背压、静叶周向位置等工况变化规律,同时分析压气机的气动性能与气流稳定性的关联。
     为了提高流场动态压力的测量准确度,文中对组成动态压力测量系统的动态压力传感器、采集系统、测量分析软件等的选取和安装进行了详细的介绍。另外,为了降低干扰源对测量系统的影响,采取了干扰源屏蔽措施。
     试验结果显示了转子叶尖前后非定常流场压力脉动频谱中主要含有一阶谱以及二阶谱、三阶谱等高阶谱。一阶谱频率即基频只与转子转速和转子叶片数相关,与出口背压等压气机其它工况无关,随着转速升高,基频相应增大。文中主要分析了转子转速、出口背压以及静叶周向位置对一到四阶谱峰值的影响。
     随着转子转速的提高,各阶谱峰值呈现上升趋势,但对叶尖前后流场影响程度不同,对叶尖中部处流场影响最大,其次是叶尖前、后缘处流场。出口背压提高,叶尖中部处各阶谱峰值呈现明显下降趋势,叶尖前缘处一阶谱峰值也有略微下降趋势,但叶尖尾缘处一阶谱峰值有略微上升趋势,高阶谱峰值变化不明显。静叶周向位置对上游流场压力脉动各阶谱峰值也有略微的影响。
     本文的研究结果对研究其它旋转机械流场压力脉动也有参考价值。
Compressor is one of the rotating machinery which used to convert mechanical energy to fluid energy and widely used in dynamic energy, aviation and other fields closely related to the national economy and security. Thoroughly researches to unsteady pressure pulse in tip clearance flow of rotor and its changes are extremely significant to further improving the efficiency of the compressor.
    The pressure fluctuation of the tip clearance flow of the rotor in a single-stage axial compressor have been measured and analyzed in this paper. The dynamic pressure sensors have been installed on the casing near the tip clearance of the rotor and a high speed dynamic pressure measurement system had been furnished. The time-domain wave of unsteady pressure fluctuation acquired at different work status of the compressor were transformed into frequency spectral curves by Fast Fourier Transform (FFT) in this paper to investigate the relation of rotor speed ,outlet pressure and circumferential position of stator to the frequency spectrum performance, and associated with aerodynamic performance and flow stability of compressor .
    In order to improve the measurement accuracy, the dynamic pressure measurement system which is composed of the dynamic pressure sensor, acquisition System, measurement and analysis software is detailed in this paper. In addition, in order to reduce the impact of interference sources to the measurement system, interference shielding measures are introduced.
    The results showed that pressure fluctuation spectrum in unsteady flow field between the leading edge and trailing edge of tip blade contain the firist order spectrum, second order spectrum, third order spectrum etc. Dominant frequency increases with the increase of the rotor speed, but less reaction to the outlet pressure and other work status. Then the impact of rotor speed, outlet pressure and circumferential position of stator to the first, second, third and forth order peak value are mainly analyzed in the paper.
    With the rotor speed increases, the first and high order peak value showed a increase trend. But have different degree at different flow field. Compared with the leading edges and trailing edge of blade, the peak value achieves maximum at the center
引文
[1].张莉.离心叶轮机械内部非定常流动的研究[D].上海交通大学博士学位论文,2001.
    [2].凌代军,姜正礼,仲永兴.平面叶栅非定常流动试验方法研究[J].燃气涡轮试验与研究,2006,19(3):24-29,36
    [3]. Huber F W, Johnson P D, Sharma O P. Performance Improvement Through Indexing of Turbine Airfoils: Part Ⅰ-Experimental Investigation[R]. ASME Paper No.95-GT-27, 1995.
    [4].侯安平.轴流压气机非定常两代流型理论的机理探索[D].北京航空航天大学博士学位论文,2003.
    [5]. Dring, R. P., Johslyn, H. D. and Hardin, L., An investigation of Axial Compressor Rotor Aerodynamics, ASME Journal of Engineering for Power, 104(1): 84-96, 1982.
    [6]. Smith, G. D. J., and Cumpsty, N. A, Flow Phenomena in Compressor Casing Treatment, ASME J. Engr. For Gas Turbines and Power, Vol.106, July 1984, p p. 532-541.
    [7]. Wisler, D. C., Loss Reduction in Axial Flow Compressors Through Lower-Speed Model Testing, ASME J. Turbomachinery, Vol.107, pp 354-363.
    [8]. J. J. Adamczyk, et al. The roles of tip clearance in high-speed fan stall [J]. ASME Journal of Turbomachinery, 1993, 115(1): 28-39.
    [9].范洁川等.近代流动显示技术[M].国防工业出版社,2002.
    [10].陈富新,罗鹏,巴德纯.流动可视化实验技术的最新进展及应用[J].风机技术,2005(4),43-46.
    [11].童秉纲.非定常流与涡运动.国防工业出版社[M],1993.
    [12]. Smith, L. H., CsingBoundary Layers in Multistage Axial Flow Compressor, Flow Research in Blading,Edited By Elsevier Publishing Company, Amsterdam, 1970.
    [13]. Deregel, P. And Tan, C. S., Impact of Rotor Wakes on Steady-state Axial Compressor Performance, ASME Paper 96-Gt-2533, 1996.
    [14].张永新.用数值模拟研究叶轮机内的非定常流动[D].北京航空航天大学博士学位论文,2003.
    [15].孟庆国.叶轮机转子/静子交互排列非定常流动模型探讨[D].北京航空航天大学博士学位论文,1996.
    [16].张庆国.单级轴流压气机转子及静子尖区三维非定常流场的实验研究[D].北京航空航天大学硕士学位论文,2002.
    [17].何川.单级跨音压气机非定常流场的时间精确模拟[D].北京航空航天大学硕士学位论文,2001.
    [18].唐狄毅.叶轮机非定常流.国防工业出版社[M],1992.
    [19]. Storer J. A. Cumpsty N. A., Tip Leakage Flow in Axial Compressors, ASME Journal of Turbomachinery 1991, 13(2), pp.252-259.
    [20]. Kang S., Hirsch C.. Tip Leakage Flow in Linear Compressor Cascade, ASME Journal of Turbo machinery, 1994, 16(4), pp.657-664.
    [21]. Nikolos I. K., Douvikas K. D. Theoretical Modeling of Relative Wall Motion Effects in Tip Leakage Flows. ASME Paper, 95-GT8 8, 19 95.
    [22]. Inoue M., Kuromaru M., Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor, ASME Journal of Turbo machinery 1989, 111 (2): 50-256.
    [23]. Inoue M., Kuromaru M., Fukuhara M., Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor, ASME Journal of Engineering for Asa Turbines and Power, 1986, 10 8(1): 7-14.
    [24]. Chima R. V. Calculation of Tip Clearance Effects in a Transonic Compressor Rotor, ASME Journal of Turbomachinery 1998, 120(1): 31-140.
    [25]. Copenhaver. W. W. Mayhew E. R., Hah C. The Effect of Tip Clearance on a Swept Transonic Compressor Rotor, ASME Paper, 94-GT-363, 1994.
    [26].杨策,施新.径流式叶轮机械理论及设计[M].国防工业出版社,2004.
    [27]. RainsD. A., Tip Clearance Flow in Axial Flow Compressors and Pumps, California In statute of Technology, Hydro-Dynamics and Mechanical Engineering Laboratories, Report No.5, 1954.
    [28]. Lakshminarayana B., Zacearia M., Marathe B. The Structure of Tip Clearance Flow in Axial Flow Compressor, ASME Journal of Turbomachinery, 1995, 117 (3): 336-347.
    [29]. Chen G. T, Greitze E. M., In C. S., Similarity Analysis of Compressor Tip Clearance Flow Structure, ASME Journal of Turbomachinery, 1991, 13(2): 260-271.
    [30]. Kang S., Hirsch C., Numerical Simulation of Three-Dimensional Viscous Flow in a Linear Compressor Cascade With Tip Clearance, ASME Journal of Turbo machinery, 1996, 11 8(3): 492-505.
    [31].贾希诚.叶轮机械中叶顶泄漏和间隙形态对气动性能影响的数值研究[D].中国科学院博士学位论文,2001.
    [32].敬荣强.高负荷跨音压气机叶尖间隙流动数值分析[D].北京航空航天大学硕士学位论文,2002.
    [33]. Adamczyk J. J., Celestina M. L., Beach T. A., Barnet M..Simulation of Three-Dimensional Viscous Flow with in a Multi-Stage Turbine, ASME Journal of Turbo machinery, 1989, 12(3): 370-376.
    [34]. Suder K. L. Celestina M. L. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor, ASME Paper, 94-GT3 65, 1994.
    [35]. Adler D, Levy Y, A Laser-Doppler Investigational of the Flow Inside a Baekswept, Closed, Centrifugal Impeller[J]. Journal of Mechanical Engineering Science, 1979, 21: 1-6.
    [36].杨策,施新.径流式叶轮机械理论及设计[M].国防工业出版社,2004。
    [37].贾希诚.叶轮机械中叶顶泄漏和间隙形态对气动性能影响的数值研究.中国科学院博士学位论文[D],2001.
    [38].敬荣强.高负荷跨音压气机叶尖间隙流动数值分析[D]。北京航空航天大学硕士学位论文,2002.
    [39].王掩刚,曹志鹏,靳军,南向谊.轴流压气机转子叶项间隙数值模拟研究”.中国工程热物理年会(西安),2004.
    [40]. Wisler D C. Shock Wave and Flow Velocity Measurements in High Speed Fan Rotor Using the Laser Velocimeter[J]. ASME Journal of Engineering for Power, Series A, 1977, 99: 558-572.
    [41]. Adler D, Levy Y. A Laser Doppler Investigational of the Flow Inside a Baekswept, Closed, Centrifugal Impeller[J]. Journal of Mechanical Engineering Science, 1979, 21: 1-6.
    [42].张庆国.单级轴流压气机转子及静子尖区三维非定常流场的实验研究[D],北京航空航天大学硕士学位论文,2002.
    [43].刘宝杰,于宏军,刘火星等.跨音风扇转子尖部非定常流场的PIV初步测量[J].工程热物理学报.2001,16(2):147-152.
    [44].刘宝杰,于宏军,刘火星等.压气机转子叶尖泄漏涡的SPIV测量研究[J].工程热物理学报,2005,25(5):769-772.
    [45].于宏军,刘宝杰,刘火星,蒋浩康.近失速状态下压气机转子叶尖旋涡流动研究[J].航空学报,2004,25(1)9-15.
    [46].于宏军,刘宝杰,刘火星,蒋浩康.设计状态下压气机转子叶尖泄漏涡流动研究[J]航空学报,2004,25(1):1-8.
    [47]. Wennerstrom A J, et al. Inverstigation of a 1500 ft/sec, transonic, high-through-flow single-stage axial-flow compressor with low hub/tip ratio. AD B019509. 1976.
    [48].桂幸民,王同庆等.跨音速压气机转子叶尖流场试验与分析.工程热物理学报,1998,19(5):553-558.
    [49].张燎原,胡俊.轴流压气机叶片排流场非定常频谱特性试验技术[J].燃气涡轮试验与研究,2004,17(1):46-49.
    [50].张燎原.轴流压气机叶片排流场非定常频谱特性[D].南京航空航天大学硕士学位论文,2004.
    [51].胡宗安,冯毓诚.跨音轴流压气机转子叶尖通道中的动态压力及冲波测量.见:高等学校工程热物理第一届全国学术会议学术论文集,1983.
    [52]. O P Sharma, R H Ni, S Tanrikut. Unsteady Flows in Turbines-Impact on Design Procedure. AGARD Lecture Series 195. 1994.
    [53].杨海涛,黄洪雁,冯国泰,苏杰先,王仲奇.低速压气机中静叶Clocking效应的二维和三维数值模拟与实验结果验证[J].工程热物理学报2005,26(6):927-930
    [54]. W S Barankiewicz, M D Hathaway. Effects of Stator Indexing on Perform ance in a Low Speed Multistage Axial Compressor. ASM E 97. GT. 496. 1997
    [55]. Huang H Y, Yang H T, Feng G T, et al. Fully ClockingEfect in a Two Stage Compressor[R]. ASME GT-2003-38867.
    [56]. Saren V E, Savin V M, Domey D J, et al. Experimental and Numerical Investigation of Aerofoil Clocking and Inter-Blade-Row Effects on Compressor Stage Performance[R]. AIAA 98—3413.
    [57]. Walker G J, Oliver A R. The Effect of Interaction Between Wakes From Blade Rows in ffn Axial Flow Compressor on the Noise Generated by Blade Interaction[R]. ASME Paper No.72-GT-15, 1972.
    [58]. Barankiewicz W S, Hathaway M D. Effects of Stator Indexing on Performance in a Low Speed Multistage Axial Compresor [R]. Orlando, FL.. ASME Paper No. 97-GT-496. June, 1997.
    [59]. Saren V E, Savin N M, Domey D J, Zacharias R M. Experimental and Numerical Investigation of U nsteady Rotor-Stator Interaction on Axial Compressor stage(W ith IGV)performance[R]. Stickholn, Sweden: 8th International Symposium on Unsteady Aerod ynamics and Aeroelasticity of Turbomachines, September 14-18, 1997.
    [60]. Hsu S T, Wo A M. Reduction of Unsteady Blade Loading by Beneficial Use of Vortical and Potential Disturbances in an Axial Compressor with Rotor Clocking[J]. ASMEJournalofTurbomachinery, 1999, 13(2): 10-16.
    [61]. Dorney, D. J., Sharma, O. P., Gundy-Burlet K. L. Physics of Airfoil Clocking in fl High-Spee Axial Compressor[RI. ASM E Paper No. 98-GT-82.
    [62]. Walker G J, Hughes J D. Solomon Periodic Transition on an Axial Compressor Stator-Incidence and Clocking Effects Part I-Experimental Data[R]. ASME Paper No. 98-GT-363. 1998.
    [63].侯安平,周盛.轴流式叶轮机时序效应的机理探讨[J].航空动力学报,2003,18(1):70-75.
    [64]. Adamczyk J J. Aerodynamic Analysis of Multislage Turbomachinery Flows in Support of Aerodynamic Design[R1. ASMEPaperNo. 99—GT—80。1999.
    [65]. Smith L H, Wake dissipation in turbomaehine [J], ASME J of Basic Engineering, 1966, 88 D: 688~690.
    [66].陈雁.硅压阻式高温压力传感器[M].电子科技大学硕士学位论文,2002.
    [67].戴艳梅,王文襄.压阻式压力传感器的动态特性[J].1999,18(3):52-53.
    [68].沈桂芬.压阻式传感器灵敏度特性分析[J].1999,18(4):17-20.
    [69]. Wennerstrom A J, et al.Inverstigation ofa 1500ft/sec, transonic, high through flow single-stage axial-flow compressor with low hub/tip ratio. AD B019509, 1976.
    [70].刘建,顾明皓,桂幸民.某轴流压气机叶尖间隙效应实验研究.工程热物理学报,2003,24(3):399-402.
    [71].桂幸民,聂超群.跨音压气机转子叶尖间隙复杂流动观测.工程热物理学报,2000,21(5):570-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700